-
Notifications
You must be signed in to change notification settings - Fork 0
/
config.py
120 lines (119 loc) · 1.82 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
'''
modified from https://github.com/aladdinpersson/Machine-Learning-Collection/tree/master/ML/Pytorch/object_detection/YOLOv3
'''
import cv2
import torch
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
DATASET = "MYLabels"
UM_WORKERS = 4
BATCH_SIZE = 32
IMAGE_SIZE = 416
IMAGE_SIZEX = 32*4
IMAGE_SIZEY = round(180*1.777776)
NUM_CLASSES = 6
LEARNING_RATE = 1e-4
WEIGHT_DECAY = 1e-4
NUM_EPOCHS = 150
CONF_THRESHOLD = 0.05
MAP_IOU_THRESH = 0.5
NMS_IOU_THRESH = 0.4
PIN_MEMORY = True
LOAD_MODEL = False
SAVE_MODEL = True
S = [IMAGE_SIZE // 32, IMAGE_SIZE // 16, IMAGE_SIZE // 8]
MS = [(IMAGE_SIZEX//32,IMAGE_SIZEY//32),(IMAGE_SIZEX//16,IMAGE_SIZEY//16),(IMAGE_SIZEX//8,IMAGE_SIZEY//8)]
ANCHORS = [
[(0.28, 0.22), (0.38, 0.48), (0.9, 0.78)],
[(0.07, 0.15), (0.15, 0.11), (0.14, 0.29)],
[(0.02, 0.03), (0.04, 0.07), (0.08, 0.06)],
]
COCO_LABELS = [
'3um',
'8um',
'15um',
'll2',
'remain',
'thp1',
'train',
'truck',
'boat',
'traffic light',
'fire hydrant',
'stop sign',
'parking meter',
'bench',
'bird',
'cat',
'dog',
'horse',
'sheep',
'cow',
'elephant',
'bear',
'zebra',
'giraffe',
'backpack',
'umbrella',
'handbag',
'tie',
'suitcase',
'frisbee',
'skis',
'snowboard',
'sports ball',
'kite',
'baseball bat',
'baseball glove',
'skateboard',
'surfboard',
'tennis racket',
'bottle',
'wine glass',
'cup',
'fork',
'knife',
'spoon',
'bowl',
'banana',
'apple',
'sandwich',
'orange',
'broccoli',
'carrot',
'hot dog',
'pizza',
'donut',
'cake',
'chair',
'couch',
'potted plant',
'bed',
'dining table',
'toilet',
'tv',
'laptop',
'mouse',
'remote',
'keyboard',
'cell phone',
'microwave',
'oven',
'toaster',
'sink',
'refrigerator',
'book',
'clock',
'vase',
'scissors',
'teddy bear',
'hair drier',
'toothbrush'
]
MY_LABELS = [
'3um',
'8um',
'15um',
'LL2',
'remain',
'THP1',
]