forked from saily/vnc2video
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrgb-image.go
112 lines (98 loc) · 2.72 KB
/
rgb-image.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
package vnc2video
import (
"image"
"image/color"
)
// RGBA is an in-memory image whose At method returns color.RGBA values.
type RGBImage struct {
// Pix holds the image's pixels, in R, G, B, A order. The pixel at
// (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*3].
Pix []uint8
// Stride is the Pix stride (in bytes) between vertically adjacent pixels.
Stride int
// Rect is the image's bounds.
Rect image.Rectangle
}
type RGBColor struct {
R, G, B uint8
}
func (c RGBColor) RGBA() (r, g, b, a uint32) {
return uint32(c.R), uint32(c.G), uint32(c.B), 1
}
func (p *RGBImage) ColorModel() color.Model { return nil }
func (p *RGBImage) Bounds() image.Rectangle { return p.Rect }
func (p *RGBImage) At(x, y int) color.Color {
col := p.RGBAt(x, y)
return color.RGBA{col.R, col.G, col.B, 1}
}
func (p *RGBImage) RGBAt(x, y int) *RGBColor {
if !(image.Point{x, y}.In(p.Rect)) {
return &RGBColor{}
}
i := p.PixOffset(x, y)
return &RGBColor{p.Pix[i+0], p.Pix[i+1], p.Pix[i+2]}
}
// PixOffset returns the index of the first element of Pix that corresponds to
// the pixel at (x, y).
func (p *RGBImage) PixOffset(x, y int) int {
return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*3
}
func (p *RGBImage) Set(x, y int, c color.Color) {
if !(image.Point{x, y}.In(p.Rect)) {
return
}
i := p.PixOffset(x, y)
c1 := color.RGBAModel.Convert(c).(color.RGBA)
p.Pix[i+0] = c1.R
p.Pix[i+1] = c1.G
p.Pix[i+2] = c1.B
}
func (p *RGBImage) SetRGB(x, y int, c color.RGBA) {
if !(image.Point{x, y}.In(p.Rect)) {
return
}
i := p.PixOffset(x, y)
p.Pix[i+0] = c.R
p.Pix[i+1] = c.G
p.Pix[i+2] = c.B
}
// SubImage returns an image representing the portion of the image p visible
// through r. The returned value shares pixels with the original image.
func (p *RGBImage) SubImage(r image.Rectangle) image.Image {
r = r.Intersect(p.Rect)
// If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside
// either r1 or r2 if the intersection is empty. Without explicitly checking for
// this, the Pix[i:] expression below can panic.
if r.Empty() {
return &RGBImage{}
}
i := p.PixOffset(r.Min.X, r.Min.Y)
return &RGBImage{
Pix: p.Pix[i:],
Stride: p.Stride,
Rect: r,
}
}
// Opaque scans the entire image and reports whether it is fully opaque.
func (p *RGBImage) Opaque() bool {
if p.Rect.Empty() {
return true
}
i0, i1 := 3, p.Rect.Dx()*3
for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ {
for i := i0; i < i1; i += 3 {
if p.Pix[i] != 0xff {
return false
}
}
i0 += p.Stride
i1 += p.Stride
}
return true
}
// NewRGBA returns a new RGBA image with the given bounds.
func NewRGBImage(r image.Rectangle) *RGBImage {
w, h := r.Dx(), r.Dy()
buf := make([]uint8, 3*w*h)
return &RGBImage{buf, 3 * w, r}
}