-
Notifications
You must be signed in to change notification settings - Fork 1
/
DylMath.py
executable file
·394 lines (370 loc) · 14.6 KB
/
DylMath.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
#!/usr/bin/python3.6
from typing import Dict, Tuple
import ROC1
import numpy as np
np.set_printoptions(threshold=np.inf)
np.seterr(all="ignore")
from multiprocessing import Pool
from scipy.interpolate import interp1d
from scipy.stats import norm
try:
import matplotlib
matplotlib.use('QT4Agg')
import matplotlib.pyplot as plt
font: dict = {'size' : 56}
#matplotlib.rc('font', **font)
from matplotlib.collections import PatchCollection
from matplotlib.patches import Rectangle
except BaseException:
pass
from DylData import continuousScale
unbiasedMeanMatrixVar = ROC1.unbiasedMeanMatrixVar
def paramToParams(predicted: list, D0: list=None, D1: list=None) -> Tuple[list, list, list]:
"""Takes one parameter and splits it into three if predicted is a 2d list."""
if isinstance(predicted[0], (list, tuple)):
return predicted[0], predicted[1], predicted[2]
else:
return predicted, D0, D1
def auc(results: tuple, D0: list=None, D1: list=None) -> float:
""" Takes an ROC curve from genROC and returns the AUC.
If results is a prediction not an ROC curve, generates the ROC curve.
If results is already an ROC curve, D0 and D1 are not required."""
if not isinstance(results[0], (list, tuple)):
results: list = genROC(results, D0, D1)
total: float = 0.0
for i,(x,y) in enumerate(results[:-1], start=1):
# start=1 means i is actually i + 1
total += 0.5*(y + results[i][1]) * (x - results[i][0])
return abs(total)
def hanleyMcNeil(auc: float, n0: int, n1: int) -> float:
"""The very good power-law variance estimate from Hanley/McNeil."""
auc2=auc*auc
q1=auc/(2.-auc)
q2=2.*auc2/(1.+auc)
return( (auc-auc2+(n1-1.)*(q1-auc2)+(n0-1.)*(q2-auc2))/n0/n1 )
def calcNLayers(arr: list) -> int:
"""Returns the number of layers that would be needed to sort.
If arr is the a tuple or list, uses the length.
If arr is already the length, uses that."""
if isinstance(arr, int):
length: int = arr
else:
length: int = len(arr)
return int(np.ceil(np.log2(length)))
def genSep(dist: str, auc: float) -> float:
"""Returns the sep parameter needed for the target AUC for the given distribution."""
if dist == 'exponential':
return abs(auc/(1-auc))
elif dist == 'normal':
return norm.ppf(auc)*(2**0.5)
raise NotImplementedError("Cannot gen sep for that distribution")
def MSE(sep: float, dist: str, ROC: list, rocEmpiric: list=None) -> Tuple[float, float, float]:
"""Returns the MSE of the given ROC.
If sep and dist are not None: the true ROC from sep and dist
If rocEmpiric is not None: the MSE between the Empiric and ROC
If sep and dist are None, the first value returned is always 0
The last value returned is always the AUC of the ROC"""
step: float = 10**-4
fpf = np.arange(0, 1, step)
if len(ROC) == 2:
approx = interp1d(*((ROC['x'], ROC['y']) if isinstance(ROC, dict) else ROC))(fpf)
else:
approx = interp1d(*zip(*ROC))(fpf)
if dist == 'exponential':
mseTrue: float = np.mean((approx - (fpf**(1/sep)))**2)
elif dist == 'normal':
mseTrue: float = np.mean((approx - (1-norm.cdf(norm.ppf(1-fpf) - sep)))**2)
else:
mseTrue: float = 0.0
if rocEmpiric != None:
if len(rocEmpiric) == 2:
trueApprox = interp1d(rocEmpiric['x'], rocEmpiric['y'])
else:
trueApprox = interp1d(*zip(*rocEmpiric))
mseEmpiric: float = np.mean((approx - (trueApprox(fpf)))**2)
else:
mseEmpiric = None
calcAUC: float = np.trapz(approx) / (1/step)
return (mseTrue, calcAUC) if rocEmpiric == None else (mseTrue, mseEmpiric, calcAUC)
def genX0X1(predicted: tuple, D1: tuple=None, D0: tuple=None) -> Tuple[list, list]:
"""Generates x0 and x1 vectors out of the given parameters.
D1 and D0 should never be smaller than the predicted array, but are often bigger."""
predicted, D0, D1 = paramToParams(predicted, D0, D1)
x0, x1 = genD0D1((D0, D1), predicted)
return np.array(x0), np.array(x1)
def genD0D1(d0d1: list, arr: list) -> tuple:
"""Generates filtered D0 and D1 vectors.
d0d1 is (D0, D1) together as a tuple/list."""
D0, D1 = list(), list()
for item in arr:
if item in d0d1[0]:
D0.append(item)
elif item in d0d1[1]:
D1.append(item)
return D0, D1
def genROC(predicted: tuple, D1: list=None, D0: list=None) -> list:
"""Returns a list of collections of x,y coordinates in order of the threshold."""
predicted, D0, D1 = paramToParams(predicted, D0, D1)
x0 = list()
x1 = list()
for i, val in enumerate(predicted):
if val in D1:
x1.append(i)
elif val in D0:
x0.append(i)
roc = ROC1.rocxy(x1, x0)
return list(zip(roc['x'], roc['y']))
def graphROC(predicted: tuple, D0: list=None, D1: list=None):
"""Generates and graphs a single ROC curve and displays the results."""
predicted, D0, D1 = paramToParams(predicted, D0, D1)
fig = plt.figure(figsize=(4,4))
ax = fig.add_subplot(111)
ax.plot(*zip(*genROC(predicted, D0, D1)))
ax.plot((0,1),(0,1),c="r", linestyle="--")
ax.set_ylim(top=1.1,bottom=-0.1)
ax.set_xlim(left=-0.1,right=1.1)
ax.set_title(f"AUC: {auc(predicted, D0, D1):.5f}")
ax.set_xlabel("FPF")
ax.set_ylabel("TPF")
plt.show()
def graphROCs(arrays: list, withPatches: bool=False, withLine: bool=True, D0: list=None, D1: list=None):
"""Graphs a collection of array predictions. Takes the arrays as they would come out of DylSort sorts.
If withPatches, puts a color coded success matrix behind the line.
If withLine, graphs the line.
Returns the plt handle, does not display the results."""
rows: int = int(np.ceil(np.sqrt(len(arrays))))
cols: int = int(np.ceil(len(arrays) / rows))
fig, axes = plt.subplots(rows, cols, sharex=True, sharey=True, num="plots")
fig.suptitle("ROC curves")
if withLine:
params: list = [(array, D0, D1) for array in arrays]
if len(arrays[0]) < 1024:
results: list = list(map(genROC, params))
else:
with Pool() as p:
results: list = list(p.imap(genROC,params))
for i, ax in enumerate(axes.flat if (rows * cols > 1) else [axes]):
if i >= len(arrays):
continue
ax.set(xlabel="False Positive Fraction", ylabel="True Positive Fraction")
ax.label_outer()
ax.plot((0,1),(0,1),c='red', linestyle=":")
if withLine:
ax.plot(*zip(*results[i]), c='blue')
ax.set_ylim(top=1.02, bottom=0)
ax.set_xlim(left=-0.01, right=1)
if not withPatches:
ax.set_title(f"Iteration #{i} AUC: {auc(results[i]):.5f}")
if withPatches:
sm: np.ndarray = successMatrix(arrays[i], D0, D1)
yes: list = []
no: list = []
yLen: int = len(D1)
xLen: int = len(D0)
for (y,x), value in np.ndenumerate(sm):
if value:
yes.append(Rectangle((x/xLen,y/yLen),1/xLen,1/yLen))
else:
no.append(Rectangle((x/xLen,y/yLen),1/xLen,1/yLen))
patches = PatchCollection(no, facecolor = 'r', alpha=0.75, edgecolor='None')
ax.add_collection(patches)
patches = PatchCollection(yes, facecolor = 'g', alpha=0.75, edgecolor='None')
ax.add_collection(patches)
area = len(yes) / (len(yes) + len(no))
ax.set_ylim(top=1, bottom=0)
ax.set_xlim(left=0, right=1)
ax.set_title(f"Iteration #{i} AUC: {area:.5f}")
ax.set_aspect('equal', 'box')
figManager = plt.get_current_fig_manager()
figManager.window.showMaximized()
#plt.show()
return plt
def avROC(rocs: list) -> tuple:
"""Averages ROC curves. Rocs parameter are ROC curves from genROC."""
#hard coded SeSp
#e = 9*sys.float_info.epsilon
# convert [(x1, y1), (x2, y2) ...] into np array for better arithmatic
rocs: list = [np.array(roc) for roc in rocs]
rotrocs: list = [{'u': tuple((roc[:,0] + roc[:,1])/2), 'v': tuple((roc[:,1]-roc[:,0])/2)} for roc in rocs]
stdA: list = list()
for roc in rotrocs:
stdA.extend(roc['u'])
stdA: np.ndarray = np.array(sorted(set(stdA)))
aprotrocs: np.ndarray = np.zeros((len(rotrocs), len(stdA)))
for iRoc, roc in enumerate(rotrocs):
inter = interp1d(roc['u'], roc['v'])
for iU, u in enumerate(stdA):
aprotrocs[iRoc][iU] = inter(u)
ymean: np.ndarray = np.zeros((1, len(stdA)))
for apro in aprotrocs:
ymean += apro
ymean /= len(aprotrocs)
fpout: np.ndarray = stdA - ymean
tpout: np.ndarray = stdA + ymean
ret = tpout.tolist(), fpout.tolist()
return ret[0][0], ret[1][0]
def successMatrix(predicted: list, D0: list, D1: list):
"""Creates the success matrix for the predicted ordering.
Checks to make sure it got every entry filled."""
arr: np.ndarray = np.full((len(D1), len(D0)), -1)
indecies: Dict[int] = dict()
for val in D0 + D1:
indecies[val] = predicted.index(val)
for col, x in enumerate(reversed(D0)):
for row, y in enumerate(reversed(D1)):
arr[row, col] = indecies[x] < indecies[y]
if -1 in arr:
raise EnvironmentError("failed to create success matrix")
return arr
def runStats(groups: list, params: list, comp) -> list:
"""Runs stats on the groups provided.
Params parameter must be: ((d0d1), dist, targetAUC, n, currLayer, len(mergers))"""
aucs, varOfSM, hanleyMcNeils, estimates = list(), list(), list(), list()
d0d1, dist, targetAUC, n, *_ = params
rocs: list = list()
for group in groups:
D0, D1 = genD0D1(d0d1, group)
if D0 and D1:
rocs.append(genROC(group, D0, D1))
sm: np.ndarray = successMatrix(group, D0, D1)
auc: float = np.mean(sm)
if auc == auc:
aucs.append(auc)
hanleyMcNeils.append((len(D0), len(D1)))
smVAR: float = unbiasedMeanMatrixVar(sm)
if smVAR == smVAR and len(D0) > 3 and len(D1) > 3: # if not NaN
varOfSM.append(smVAR)
rocs: list = list(filter(lambda roc: np.min(np.isfinite(roc)), rocs))
varOfAverageAUC = np.var(aucs, ddof=1) / len(aucs)
aucs: np.ndarray = np.array(aucs)
avgAUC: float = np.mean(aucs)
estimateNs: list = [list()]
for ns in hanleyMcNeils:
estimateNs[0].append(ns)
# while there are groups to 'merge'
while len(estimateNs[-1]) != 1:
# get the previous layer and sort by N0 + N1
oldNs: list = sorted(estimateNs[-1], key=sum)
# roughly the same code as mergers creation
estimateNs.append(list())
while oldNs:
i: int = 0
toMerge: list = list()
segments: int = min(n, len(oldNs) - i)
for _ in range(segments):
toMerge.append(oldNs.pop(0))
estimateNs[-1].append([sum((x[0] for x in toMerge)), sum((x[1] for x in toMerge))])
estimateNs[-1].sort(key=sum)
estimates.append(hanleyMcNeil(avgAUC, estimateNs[-1][-1][0], estimateNs[-1][-1][1]) / len(estimateNs[-1]))
for i, (N0, N1) in enumerate(hanleyMcNeils):
hanleyMcNeils[i] = hanleyMcNeil(avgAUC, N0, N1)
if len(varOfSM) == 0:
varEstimate: float = float(varOfAverageAUC)
else:
varEstimate: float = (sum(varOfSM) / (len(varOfSM)**2))
avgROC: tuple = avROC(rocs)
if dist != 0: # not a net comparator
empiricROC: tuple = comp.empiricROC()
sep: float = genSep(dist, float(targetAUC)) # float in case it's a string
stats: list = [avgAUC, varEstimate, sum(hanleyMcNeils) / len(hanleyMcNeils)**2, estimates, *MSE(sep, dist, avgROC, empiricROC)[:2]]
else:
stats: list = [avgAUC, varEstimate, sum(hanleyMcNeils) / len(hanleyMcNeils)**2, estimates]
return stats
if __name__ == "__main__":
from DylSort import mergeSort
test: int = 9
if test == 1:
#print(D0, D1)
newData, D0, D1 = continuousScale("sampledata.csv")
print(auc(genROC(newData)))
arrays: list = [newData[:]]
for _ in mergeSort(newData):
arrays.append(newData[:])
print(arrays)
graphROCs(arrays)
elif test == 3:
predicted: list = [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19]
print(np.mean(successMatrix(predicted, [*range(10)], [*range(10,20)])))
elif test == 4:
arrays: list = [[0, 1, 4, 2, 5, 3, 6],
[0, 1, 2, 4, 3, 5, 6],
[0, 1, 2, 4, 3, 5, 6],
[0, 1, 2, 3, 4, 5, 6]]
graphROCs(arrays, D0=[0, 1, 2, 3], D1=[4, 5, 6])
elif test == 5:
graphROC([4, 1, 2, 3], [1, 2], [3, 4])
elif test == 6:
from DylSort import treeMergeSort
from DylComp import Comparator
from DylData import continuousScale
import matplotlib
font: dict = {'size' : 10}
matplotlib.rc('font', **font)
data, D0, D1 = continuousScale(128, 128)
comp: Comparator = Comparator(data, rand=True, level=0, seed=15)
for arr in treeMergeSort(data, comp=comp):
pass
D0.sort(key = comp.getLatentScore)
D1.sort(key = comp.getLatentScore)
roc: dict = ROC1.rocxy(comp.getLatentScore(D1), comp.getLatentScore(D0))
graphROCs([arr], True, True, D0, D1)
elif test == 7:
roc1: list = [[0, 0], [0, 1], [1, 1]]
roc3 = roc2 = roc1
roc4: list = [[0, 0], [0.5, 0], [0.5, 0.5], [1, 1]]
avgROC: tuple = avROC([roc1, roc2, roc3, roc4])
fig = plt.figure(figsize=(4,4))
ax = fig.add_subplot(111)
ax.plot(*zip(*roc1), 'm', label='chunk1', ls='-')
ax.plot(*zip(*roc2), 'b', label='chunk2', ls='--')
ax.plot(*zip(*roc3), 'g', label='chunk3', ls=':')
ax.plot(*zip(*roc4), 'c', label='chunk4')
ax.plot(*avgROC, 'orange', label='avg')
ax.plot((0,1),(0,1),c="r", linestyle="--")
ax.set_ylim(top=1.1,bottom=-0.1)
ax.set_xlim(left=-0.1,right=1.1)
ax.set_xlabel("FPF")
ax.set_ylabel("TPF")
ax.legend()
plt.show()
elif test == 8:
roc1: list = [[0,0],[0,0.05],[0,0.1],[0,0.15],[0,0.2],[0,0.25],[0,0.3],[0,0.35],[0,0.4],[0,0.45],[0.1,0.45],[0.1,0.5],[0.1,0.55],[0.1,0.6],[0.1,0.65],[0.2,0.65],[0.3,0.65],[0.3,0.7],[0.4,0.7],[0.5,0.7],[0.5,0.75],[0.5,0.8],[0.5,0.85],[0.5,0.9],[0.5,0.95],[0.5,1],[0.6,1],[0.7,1],[0.8,1],[0.9,1],[1,1]]
roc2: list = [[0,0],[0,0.1],[0,0.2],[0,0.3],[0,0.4],[0,0.5],[0.06666667,0.5],[0.13333333,0.5],[0.2,0.5],[0.26666667,0.5],[0.26666667,0.6],[0.26666667,0.7],[0.33333333,0.7],[0.4,0.7],[0.4,0.8],[0.4,0.9],[0.4,1],[0.46666667,1],[0.53333333,1],[0.6,1],[0.66666667,1],[0.73333333,1],[0.8,1],[0.86666667,1],[0.93333333,1],[1,1]]
avgROC: tuple = avROC([roc1, roc2])
fig = plt.figure(figsize=(4,4))
ax = fig.add_subplot(111)
ax.plot(*zip(*roc1), 'm', label='chunk1', ls=':', marker='o')
ax.plot(*zip(*roc2), 'b', label='chunk2', ls='--', marker='o')
ax.plot(*avgROC, 'orange', label='avg', marker='o')
ax.legend()
plt.show()
elif test == 9:
from DylSort import treeMergeSort
from DylComp import Comparator
import matplotlib.pyplot as plt
from time import time
t1: float = time()
data, D0, D1 = continuousScale(2048, 2048)
comp: Comparator = Comparator(data, rand=True)
comp.genRand(len(D0), len(D1), 7.72, 'exponential')
fig = plt.figure()
for level, groups in enumerate(treeMergeSort(data, comp, combGroups=False)):
rocs: list = list()
for group in groups:
roc: list = genROC(group, D0, D1)
rocs.append(roc)
avgROC:tuple = avROC(rocs)
rocs: list = list(zip(*avgROC))
rocs.reverse()
mse: float = MSE(7.72, 'exponential', rocs)
#print(*mse, auc(rocs))
print(f"{mse[0]:03.3e}, {auc(rocs):0.3f}, {len(comp)}")
ax = fig.add_subplot(3, 4, level + 1)
ax.set_aspect('equal', 'box')
approx = interp1d(*zip(*rocs), 'linear')
ax.plot(list(np.arange(0, 1 - 10**-4, 10**-4)), [approx(fp) for fp in np.arange(0, 1 - 10**-4, 10**-4)])
ax.plot(list(np.arange(0, 1 - 10**-4, 10**-4)), [fp**(1/7.72) for fp in np.arange(0, 1 - 10**-4, 10**-4)])
ax.set(title=f"{mse[0]:03.6e}:{len(comp)}")
#plt.subplots_adjust(hspace=0.25)
plt.show()
print(time() - t1)