forked from Chasel-Tsui/mmrotate-dcfl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dotav2_test_dcfl_r101_1x.py
105 lines (103 loc) · 3.2 KB
/
dotav2_test_dcfl_r101_1x.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
_base_ = [
'../_base_/datasets/dotav2_test.py', '../_base_/schedules/schedule_1x.py',
'../_base_/default_runtime.py'
]
angle_version = 'le135'
model = dict(
type='RotatedRetinaNet',
backbone=dict(
type='ResNet',
depth=101,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
zero_init_residual=False,
norm_cfg=dict(type='BN', requires_grad=True),
norm_eval=True,
style='pytorch',
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101')),
neck=dict(
type='FPN',
in_channels=[256, 512, 1024, 2048],
out_channels=256,
start_level=1,
add_extra_convs='on_input',
num_outs=5),
bbox_head=dict(
type='RDCFLHead',
num_classes=18,
in_channels=256,
stacked_convs=4,
feat_channels=256,
assign_by_circumhbbox=None,
dcn_assign = True,
dilation_rate = 3,
anchor_generator=dict(
type='RotatedAnchorGenerator',
octave_base_scale=4,
scales_per_octave=1,
ratios=[1.0],
strides=[8, 16, 32, 64, 128]),
bbox_coder=dict(
type='DeltaXYWHAOBBoxCoder',
angle_range=angle_version,
norm_factor=1,
edge_swap=False,
proj_xy=True,
target_means=(.0, .0, .0, .0, .0),
target_stds=(1.0, 1.0, 1.0, 1.0, 1.0)),
loss_cls=dict(
type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0),
reg_decoded_bbox=True,
loss_bbox=dict(
type='RotatedIoULoss',
loss_weight=1.0)),
train_cfg=dict(
assigner=dict(
type='C2FAssigner',
ignore_iof_thr=-1,
gpu_assign_thr= 1024,
iou_calculator=dict(type='RBboxMetrics2D'),
assign_metric='gjsd',
topk=16,
topq=12,
constraint='dgmm',
gauss_thr=0.6),
allowed_border=-1,
pos_weight=-1,
debug=False),
test_cfg=dict(
nms_pre=2000,
min_bbox_size=0,
score_thr=0.05,
nms=dict(iou_thr=0.4),
max_per_img=2000))
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(type='RResize', img_scale=(1024, 1024)),
dict(
type='RRandomFlip',
flip_ratio=[0.25, 0.25, 0.25],
direction=['horizontal', 'vertical', 'diagonal'],
version=angle_version),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
]
data = dict(
samples_per_gpu=2,
workers_per_gpu=2,
train=dict(pipeline=train_pipeline, version=angle_version),
val=dict(version=angle_version),
test=dict(version=angle_version))
optimizer = dict(type='SGD', lr=0.0025, momentum=0.9, weight_decay=0.0001)
checkpoint_config = dict(interval=4)
evaluation = dict(interval=4, metric='mAP')