This repository has been archived by the owner on Aug 6, 2024. It is now read-only.
forked from Rubiksman78/MonikA.I
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfacial_analysis.py
334 lines (297 loc) · 13.4 KB
/
facial_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
#Reduced version of file https://github.com/HSE-asavchenko/HSE_FaceRec_tf/blob/master/age_gender_identity/facial_analysis.py
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import sys
import os
#os.environ['CUDA_VISIBLE_DEVICES'] = ''
import argparse
import tensorflow as tf
import numpy as np
import cv2
import time
import subprocess, re
def is_specialfile(path,exts):
_, file_extension = os.path.splitext(path)
return file_extension.lower() in exts
img_extensions=['.jpg','.jpeg','.png']
def is_image(path):
return is_specialfile(path,img_extensions)
video_extensions=['.mov','.avi']
def is_video(path):
return is_specialfile(path,video_extensions)
class FacialImageProcessing:
# minsize: minimum of faces' size
def __init__(self, print_stat=False, minsize = 32):
self.print_stat=print_stat
self.minsize=minsize
models_path,_ = os.path.split(os.path.realpath(__file__))
models_path=os.path.join(models_path,'.','models','pretrained_faces')
model_files={os.path.join(models_path,'mtcnn.pb'):''}
with tf.Graph().as_default() as full_graph:
for model_file in model_files:
tf.import_graph_def(FacialImageProcessing.load_graph_def(model_file), name=model_files[model_file])
self.sess=tf.compat.v1.Session(graph=full_graph)#,config=tf.ConfigProto(device_count={'CPU':1,'GPU':0}))
self.pnet, self.rnet, self.onet = FacialImageProcessing.load_mtcnn(self.sess,full_graph)
def close(self):
self.sess.close()
@staticmethod
def load_graph_def(frozen_graph_filename):
graph_def=None
with tf.io.gfile.GFile(frozen_graph_filename, 'rb') as f:
graph_def = tf.compat.v1.GraphDef()
graph_def.ParseFromString(f.read())
return graph_def
@staticmethod
def load_graph(frozen_graph_filename, prefix=''):
graph_def = FacialImageProcessing.load_graph_def(frozen_graph_filename)
with tf.Graph().as_default() as graph:
tf.import_graph_def(graph_def, name=prefix)
return graph
@staticmethod
def load_mtcnn(sess,graph):
pnet_out_1=graph.get_tensor_by_name('pnet/conv4-2/BiasAdd:0')
pnet_out_2=graph.get_tensor_by_name('pnet/prob1:0')
pnet_in=graph.get_tensor_by_name('pnet/input:0')
rnet_out_1=graph.get_tensor_by_name('rnet/conv5-2/conv5-2:0')
rnet_out_2=graph.get_tensor_by_name('rnet/prob1:0')
rnet_in=graph.get_tensor_by_name('rnet/input:0')
onet_out_1=graph.get_tensor_by_name('onet/conv6-2/conv6-2:0')
onet_out_2=graph.get_tensor_by_name('onet/conv6-3/conv6-3:0')
onet_out_3=graph.get_tensor_by_name('onet/prob1:0')
onet_in=graph.get_tensor_by_name('onet/input:0')
pnet_fun = lambda img : sess.run((pnet_out_1, pnet_out_2), feed_dict={pnet_in:img})
rnet_fun = lambda img : sess.run((rnet_out_1, rnet_out_2), feed_dict={rnet_in:img})
onet_fun = lambda img : sess.run((onet_out_1, onet_out_2, onet_out_3), feed_dict={onet_in:img})
return pnet_fun, rnet_fun, onet_fun
@staticmethod
def bbreg(boundingbox,reg):
# calibrate bounding boxes
if reg.shape[1]==1:
reg = np.reshape(reg, (reg.shape[2], reg.shape[3]))
w = boundingbox[:,2]-boundingbox[:,0]+1
h = boundingbox[:,3]-boundingbox[:,1]+1
b1 = boundingbox[:,0]+reg[:,0]*w
b2 = boundingbox[:,1]+reg[:,1]*h
b3 = boundingbox[:,2]+reg[:,2]*w
b4 = boundingbox[:,3]+reg[:,3]*h
boundingbox[:,0:4] = np.transpose(np.vstack([b1, b2, b3, b4 ]))
return boundingbox
@staticmethod
def generateBoundingBox(imap, reg, scale, t):
# use heatmap to generate bounding boxes
stride=2
cellsize=12
imap = np.transpose(imap)
dx1 = np.transpose(reg[:,:,0])
dy1 = np.transpose(reg[:,:,1])
dx2 = np.transpose(reg[:,:,2])
dy2 = np.transpose(reg[:,:,3])
y, x = np.where(imap >= t)
if y.shape[0]==1:
dx1 = np.flipud(dx1)
dy1 = np.flipud(dy1)
dx2 = np.flipud(dx2)
dy2 = np.flipud(dy2)
score = imap[(y,x)]
reg = np.transpose(np.vstack([ dx1[(y,x)], dy1[(y,x)], dx2[(y,x)], dy2[(y,x)] ]))
if reg.size==0:
reg = np.empty((0,3))
bb = np.transpose(np.vstack([y,x]))
q1 = np.fix((stride*bb+1)/scale)
q2 = np.fix((stride*bb+cellsize-1+1)/scale)
boundingbox = np.hstack([q1, q2, np.expand_dims(score,1), reg])
return boundingbox, reg
# function pick = nms(boxes,threshold,type)
@staticmethod
def nms(boxes, threshold, method):
if boxes.size==0:
return np.empty((0,3))
x1 = boxes[:,0]
y1 = boxes[:,1]
x2 = boxes[:,2]
y2 = boxes[:,3]
s = boxes[:,4]
area = (x2-x1+1) * (y2-y1+1)
I = np.argsort(s)
pick = np.zeros_like(s, dtype=np.int16)
counter = 0
while I.size>0:
i = I[-1]
pick[counter] = i
counter += 1
idx = I[0:-1]
xx1 = np.maximum(x1[i], x1[idx])
yy1 = np.maximum(y1[i], y1[idx])
xx2 = np.minimum(x2[i], x2[idx])
yy2 = np.minimum(y2[i], y2[idx])
w = np.maximum(0.0, xx2-xx1+1)
h = np.maximum(0.0, yy2-yy1+1)
inter = w * h
if method == 'Min':
o = inter / np.minimum(area[i], area[idx])
else:
o = inter / (area[i] + area[idx] - inter)
I = I[np.where(o<=threshold)]
pick = pick[0:counter]
return pick
# function [dy edy dx edx y ey x ex tmpw tmph] = pad(total_boxes,w,h)
@staticmethod
def pad(total_boxes, w, h):
# compute the padding coordinates (pad the bounding boxes to square)
tmpw = (total_boxes[:,2]-total_boxes[:,0]+1).astype(np.int32)
tmph = (total_boxes[:,3]-total_boxes[:,1]+1).astype(np.int32)
numbox = total_boxes.shape[0]
dx = np.ones((numbox), dtype=np.int32)
dy = np.ones((numbox), dtype=np.int32)
edx = tmpw.copy().astype(np.int32)
edy = tmph.copy().astype(np.int32)
x = total_boxes[:,0].copy().astype(np.int32)
y = total_boxes[:,1].copy().astype(np.int32)
ex = total_boxes[:,2].copy().astype(np.int32)
ey = total_boxes[:,3].copy().astype(np.int32)
tmp = np.where(ex>w)
edx.flat[tmp] = np.expand_dims(-ex[tmp]+w+tmpw[tmp],1)
ex[tmp] = w
tmp = np.where(ey>h)
edy.flat[tmp] = np.expand_dims(-ey[tmp]+h+tmph[tmp],1)
ey[tmp] = h
tmp = np.where(x<1)
dx.flat[tmp] = np.expand_dims(2-x[tmp],1)
x[tmp] = 1
tmp = np.where(y<1)
dy.flat[tmp] = np.expand_dims(2-y[tmp],1)
y[tmp] = 1
return dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph
# function [bboxA] = rerec(bboxA)
@staticmethod
def rerec(bboxA):
# convert bboxA to square
h = bboxA[:,3]-bboxA[:,1]
w = bboxA[:,2]-bboxA[:,0]
l = np.maximum(w, h)
bboxA[:,0] = bboxA[:,0]+w*0.5-l*0.5
bboxA[:,1] = bboxA[:,1]+h*0.5-l*0.5
bboxA[:,2:4] = bboxA[:,0:2] + np.transpose(np.tile(l,(2,1)))
return bboxA
def detect_faces(self,img):
# im: input image
# threshold: threshold=[th1 th2 th3], th1-3 are three steps's threshold
threshold = [ 0.6, 0.7, 0.9 ] # three steps's threshold
# fastresize: resize img from last scale (using in high-resolution images) if fastresize==true
factor = 0.709 # scale factor
factor_count=0
total_boxes=np.empty((0,9))
points=np.array([])
h=img.shape[0]
w=img.shape[1]
minl=np.amin([h, w])
m=12.0/self.minsize
minl=minl*m
# creat scale pyramid
scales=[]
while minl>=12:
scales += [m*np.power(factor, factor_count)]
minl = minl*factor
factor_count += 1
# first stage
#t=time.time()
for j in range(len(scales)):
scale=scales[j]
hs=int(np.ceil(h*scale))
ws=int(np.ceil(w*scale))
im_data = cv2.resize(img, (ws,hs), interpolation=cv2.INTER_AREA)
im_data = (im_data-127.5)*0.0078125
img_x = np.expand_dims(im_data, 0)
img_y = np.transpose(img_x, (0,2,1,3))
out = self.pnet(img_y)
out0 = np.transpose(out[0], (0,2,1,3))
out1 = np.transpose(out[1], (0,2,1,3))
boxes, _ = FacialImageProcessing.generateBoundingBox(out1[0,:,:,1].copy(), out0[0,:,:,:].copy(), scale, threshold[0])
# inter-scale nms
pick = FacialImageProcessing.nms(boxes.copy(), 0.5, 'Union')
if boxes.size>0 and pick.size>0:
boxes = boxes[pick,:]
total_boxes = np.append(total_boxes, boxes, axis=0)
numbox = total_boxes.shape[0]
#elapsed = time.time() - t
#print('1 phase nb=%d elapsed=%f'%(numbox,elapsed))
if numbox>0:
pick = FacialImageProcessing.nms(total_boxes.copy(), 0.7, 'Union')
total_boxes = total_boxes[pick,:]
regw = total_boxes[:,2]-total_boxes[:,0]
regh = total_boxes[:,3]-total_boxes[:,1]
qq1 = total_boxes[:,0]+total_boxes[:,5]*regw
qq2 = total_boxes[:,1]+total_boxes[:,6]*regh
qq3 = total_boxes[:,2]+total_boxes[:,7]*regw
qq4 = total_boxes[:,3]+total_boxes[:,8]*regh
total_boxes = np.transpose(np.vstack([qq1, qq2, qq3, qq4, total_boxes[:,4]]))
total_boxes = FacialImageProcessing.rerec(total_boxes.copy())
total_boxes[:,0:4] = np.fix(total_boxes[:,0:4]).astype(np.int32)
dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph = FacialImageProcessing.pad(total_boxes.copy(), w, h)
numbox = total_boxes.shape[0]
#elapsed = time.time() - t
#print('2 phase nb=%d elapsed=%f'%(numbox,elapsed))
if numbox>0:
# second stage
tempimg = np.zeros((24,24,3,numbox))
for k in range(0,numbox):
tmp = np.zeros((int(tmph[k]),int(tmpw[k]),3))
tmp[dy[k]-1:edy[k],dx[k]-1:edx[k],:] = img[y[k]-1:ey[k],x[k]-1:ex[k],:]
if tmp.shape[0]>0 and tmp.shape[1]>0 or tmp.shape[0]==0 and tmp.shape[1]==0:
tempimg[:,:,:,k] = cv2.resize(tmp, (24,24), interpolation=cv2.INTER_AREA)
else:
return np.empty()
tempimg = (tempimg-127.5)*0.0078125
tempimg1 = np.transpose(tempimg, (3,1,0,2))
out = self.rnet(tempimg1)
out0 = np.transpose(out[0])
out1 = np.transpose(out[1])
score = out1[1,:]
ipass = np.where(score>threshold[1])
total_boxes = np.hstack([total_boxes[ipass[0],0:4].copy(), np.expand_dims(score[ipass].copy(),1)])
mv = out0[:,ipass[0]]
if total_boxes.shape[0]>0:
pick = FacialImageProcessing.nms(total_boxes, 0.7, 'Union')
total_boxes = total_boxes[pick,:]
total_boxes = FacialImageProcessing.bbreg(total_boxes.copy(), np.transpose(mv[:,pick]))
total_boxes = FacialImageProcessing.rerec(total_boxes.copy())
numbox = total_boxes.shape[0]
#elapsed = time.time() - t
#print('3 phase nb=%d elapsed=%f'%(numbox,elapsed))
if numbox>0:
# third stage
total_boxes = np.fix(total_boxes).astype(np.int32)
dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph = FacialImageProcessing.pad(total_boxes.copy(), w, h)
tempimg = np.zeros((48,48,3,numbox))
for k in range(0,numbox):
tmp = np.zeros((int(tmph[k]),int(tmpw[k]),3))
tmp[dy[k]-1:edy[k],dx[k]-1:edx[k],:] = img[y[k]-1:ey[k],x[k]-1:ex[k],:]
if tmp.shape[0]>0 and tmp.shape[1]>0 or tmp.shape[0]==0 and tmp.shape[1]==0:
tempimg[:,:,:,k] = cv2.resize(tmp, (48,48), interpolation=cv2.INTER_AREA)
else:
return np.empty()
tempimg = (tempimg-127.5)*0.0078125
tempimg1 = np.transpose(tempimg, (3,1,0,2))
out = self.onet(tempimg1)
out0 = np.transpose(out[0])
out1 = np.transpose(out[1])
out2 = np.transpose(out[2])
score = out2[1,:]
points = out1
ipass = np.where(score>threshold[2])
points = points[:,ipass[0]]
total_boxes = np.hstack([total_boxes[ipass[0],0:4].copy(), np.expand_dims(score[ipass].copy(),1)])
mv = out0[:,ipass[0]]
w = total_boxes[:,2]-total_boxes[:,0]+1
h = total_boxes[:,3]-total_boxes[:,1]+1
points[0:5,:] = np.tile(w,(5, 1))*points[0:5,:] + np.tile(total_boxes[:,0],(5, 1))-1
points[5:10,:] = np.tile(h,(5, 1))*points[5:10,:] + np.tile(total_boxes[:,1],(5, 1))-1
if total_boxes.shape[0]>0:
total_boxes = FacialImageProcessing.bbreg(total_boxes.copy(), np.transpose(mv))
pick = FacialImageProcessing.nms(total_boxes.copy(), 0.7, 'Min')
total_boxes = total_boxes[pick,:]
points = points[:,pick]
#elapsed = time.time() - t
#print('4 phase elapsed=%f'%(elapsed))
return total_boxes, points