-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
107 lines (90 loc) · 2.78 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import numpy as np
import json
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
from nltk_utils import bag_of_words, tokenize, stem
from nltk.stem import PorterStemmer
from model import NeuralNet
stemmer = PorterStemmer()
# Load intents JSON file
with open('intents.json', 'r') as file:
intents = json.load(file)
# Extract data from intents for training
all_words = []
tags = []
xy = []
for intent in intents['intents']:
tag = intent['tag']
tags.append(tag)
for pattern in intent['patterns']:
w = tokenize(pattern)
all_words.extend(w)
xy.append((w, tag))
# Stem and lower each word, remove duplicates, and sort
ignore_words = ['?', '.', '!']
all_words = [stemmer.stem(w) for w in all_words if w not in ignore_words]
all_words = sorted(set(all_words))
tags = sorted(set(tags))
# Create training data
X_train = []
y_train = []
for (pattern_sentence, tag) in xy:
bag = bag_of_words(pattern_sentence, all_words)
X_train.append(bag)
label = tags.index(tag)
y_train.append(label)
X_train = np.array(X_train)
y_train = np.array(y_train)
# Hyperparameters
input_size = len(X_train[0])
hidden_size = 8
output_size = len(tags)
batch_size = 8
learning_rate = 0.001
num_epochs = 1000
# Define custom Dataset class
class ChatDataset(Dataset):
def __init__(self):
self.n_samples = len(X_train)
self.x_data = X_train
self.y_data = y_train
def __getitem__(self, index):
return self.x_data[index], self.y_data[index]
def __len__(self):
return self.n_samples
# Create DataLoader
dataset = ChatDataset()
train_loader = DataLoader(dataset=dataset, batch_size=batch_size, shuffle=True, num_workers=0)
# Define device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Initialize model, loss function, and optimizer
model = NeuralNet(input_size, hidden_size, output_size).to(device)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
# Train the model
for epoch in range(num_epochs):
for (words, labels) in train_loader:
words = words.to(device)
labels = labels.to(dtype=torch.long).to(device)
# Forward pass
outputs = model(words)
loss = criterion(outputs, labels)
# Backward and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (epoch + 1) % 100 == 0:
print(f'Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item():.4f}')
# Save the trained model
data = {
"model_state": model.state_dict(),
"input_size": input_size,
"hidden_size": hidden_size,
"output_size": output_size,
"all_words": all_words,
"tags": tags
}
FILE = "data.pth"
torch.save(data, FILE)
print(f'Training complete. Model saved to {FILE}')