-
Notifications
You must be signed in to change notification settings - Fork 2
/
eval.py
251 lines (215 loc) · 11.2 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
from __future__ import print_function
import os
import sys
import argparse
cur_path = os.path.abspath(os.path.dirname(__file__))
root_path = os.path.split(cur_path)[0]
sys.path.append(root_path)
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data as data
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import numpy as np
from PIL import Image
from models.model_zoo import get_segmentation_model
from utils.score import SegmentationMetric
from utils.visualize import get_color_pallete, get_blend_mask
from utils.logger import setup_logger
from utils.distributed import synchronize, get_rank, make_data_sampler, make_batch_data_sampler
from dataset.cityscapes import CSValSet
from dataset.camvid import CamvidValSet
from dataset.ade20k import ADEDataValSet
from dataset.voc import VOCDataValSet
from dataset.coco_stuff_164k import CocoStuff164kValSet
from utils.flops import cal_multi_adds, cal_param_size
def parse_args():
parser = argparse.ArgumentParser(description='Semantic Segmentation validation With Pytorch')
# model and dataset
parser.add_argument('--model', type=str, default='deeplabv3',
help='model name')
parser.add_argument('--backbone', type=str, default='resnet18',
help='backbone name')
parser.add_argument('--dataset', type=str, default='citys',
help='dataset name')
parser.add_argument('--data', type=str, default='./dataset/cityscapes/',
help='dataset directory')
parser.add_argument('--data-list', type=str, default='./dataset/list/cityscapes/val.lst',
help='dataset directory')
parser.add_argument('--crop-size', type=int, default=[1024, 2048], nargs='+',
help='crop image size: [height, width]')
parser.add_argument('--workers', '-j', type=int, default=8,
metavar='N', help='dataloader threads')
# training hyper params
parser.add_argument('--aux', action='store_true', default=False,
help='Auxiliary loss')
parser.add_argument('--blend', action='store_true', default=False,
help='blend mask for visualization')
# cuda setting
parser.add_argument('--gpu-id', type=str, default='0')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--local_rank', type=int, default=0)
# checkpoint and log
parser.add_argument('--pretrained', type=str, default='psp_resnet18_citys_best_model.pth',
help='pretrained seg model')
parser.add_argument('--save-dir', default='../runs/logs/',
help='Directory for saving predictions')
parser.add_argument('--save-pred', action='store_true', default=False,
help='save predictions')
parser.add_argument('--ignore-label', type=int, default=-1, metavar='N',
help='input batch size for training (default: 8)')
# validation
parser.add_argument('--scales', default=[1.], type=float, nargs='+', help='multiple scales')
parser.add_argument('--flip-eval', action='store_true', default=False,
help='flip_evaluation')
args = parser.parse_args()
if args.backbone.startswith('resnet'):
args.aux = True
else:
args.aux = False
return args
class Evaluator(object):
def __init__(self, args, num_gpus):
self.args = args
self.num_gpus = num_gpus
self.device = torch.device(args.device)
# dataset and dataloader
if args.dataset == 'citys':
self.val_dataset = CSValSet(args.data, './dataset/list/cityscapes/val.lst', crop_size=(1024, 2048))
elif args.dataset == 'camvid':
self.val_dataset = CamvidValSet(args.data, './dataset/list/CamVid/camvid_test_list.txt')
elif args.dataset == 'ade20k':
self.val_dataset = ADEDataValSet(args.data)
elif args.dataset == 'voc':
self.val_dataset = VOCDataValSet(args.data, './dataset/list/voc/val.txt')
elif args.dataset == 'coco_stuff_164k':
self.val_dataset = CocoStuff164kValSet(args.data, './dataset/list/coco_stuff_164k/coco_stuff_164k_val.txt')
val_sampler = make_data_sampler(self.val_dataset, False, args.distributed)
val_batch_sampler = make_batch_data_sampler(val_sampler, images_per_batch=1)
self.val_loader = data.DataLoader(dataset=self.val_dataset,
batch_sampler=val_batch_sampler,
num_workers=args.workers,
pin_memory=True)
# create network
BatchNorm2d = nn.SyncBatchNorm if args.distributed else nn.BatchNorm2d
if 'former' in args.model:
self.model = get_segmentation_model(model=args.model,
backbone=args.backbone,
img_size=args.crop_size,
pretrained=args.pretrained,
batchnorm_layer=BatchNorm2d,
num_class=self.val_dataset.num_class).to(self.device)
else:
self.model = get_segmentation_model(model=args.model,
backbone=args.backbone,
aux=args.aux,
pretrained=args.pretrained,
pretrained_base='None',
local_rank=args.local_rank,
norm_layer=BatchNorm2d,
num_class=self.val_dataset.num_class).to(self.device)
self.model.eval()
with torch.no_grad():
logger.info('Params: %.2fM FLOPs: %.2fG'
% (cal_param_size(self.model) / 1e6, cal_multi_adds(self.model, (1, 3, 512, 512))/1e9))
if args.distributed:
self.model = nn.parallel.DistributedDataParallel(self.model,
device_ids=[args.local_rank], output_device=args.local_rank)
self.model.to(self.device)
self.metric = SegmentationMetric(self.val_dataset.num_class)
def reduce_tensor(self, tensor):
rt = tensor.clone()
dist.all_reduce(rt, op=dist.ReduceOp.SUM)
return rt
def predict_whole(self, net, image, tile_size):
interp = nn.Upsample(size=tile_size, mode='bilinear', align_corners=True)
prediction = net(image.cuda())
if isinstance(prediction, tuple) or isinstance(prediction, list):
prediction = prediction[0]
prediction = interp(prediction)
return prediction
def eval(self):
self.metric.reset()
self.model.eval()
if self.args.distributed:
model = self.model.module
else:
model = self.model
logger.info("Start validation, Total sample: {:d}".format(len(self.val_loader)))
for i, (image, target, filename) in enumerate(self.val_loader):
image = image.to(self.device)
target = target.long().to(self.device)
N_, C_, H_, W_ = image.size()
tile_size = (H_, W_)
full_probs = torch.zeros((1, self.val_dataset.num_class, H_, W_)).cuda()
scales = args.scales
with torch.no_grad():
for scale in scales:
scale = float(scale)
print("Predicting image scaled by %f" % scale)
scale_image = F.interpolate(image, scale_factor=scale, mode='bilinear', align_corners=True)
scaled_probs = self.predict_whole(model, scale_image, tile_size)
if args.flip_eval:
print("flip evaluation")
flip_scaled_probs = self.predict_whole(model, torch.flip(scale_image, dims=[3]), tile_size)
scaled_probs = 0.5 * (scaled_probs + torch.flip(flip_scaled_probs, dims=[3]))
full_probs += scaled_probs
full_probs /= len(scales)
self.metric.update(full_probs, target)
pixAcc, mIoU = self.metric.get()
logger.info("Sample: {:d}, validation pixAcc: {:.3f}, mIoU: {:.3f}".format(
i + 1, pixAcc * 100, mIoU * 100))
if self.args.save_pred:
pred = torch.argmax(full_probs, 1)
pred = pred.cpu().data.numpy()
predict = pred.squeeze(0)
if args.blend:
mask = get_blend_mask(predict, self.args.dataset, filename[0][0])
mask.save(os.path.join(args.outdir, filename[0][0].split('/')[-1]))
else:
mask = get_color_pallete(predict, self.args.dataset)
mask.save(os.path.join(args.outdir, os.path.splitext(filename[1][0])[0] + '.png'))
if self.num_gpus > 1:
sum_total_correct = torch.tensor(self.metric.total_correct).cuda().to(args.local_rank)
sum_total_label = torch.tensor(self.metric.total_label).cuda().to(args.local_rank)
sum_total_inter = torch.tensor(self.metric.total_inter).cuda().to(args.local_rank)
sum_total_union = torch.tensor(self.metric.total_union).cuda().to(args.local_rank)
sum_total_correct = self.reduce_tensor(sum_total_correct)
sum_total_label = self.reduce_tensor(sum_total_label)
sum_total_inter = self.reduce_tensor(sum_total_inter)
sum_total_union = self.reduce_tensor(sum_total_union)
pixAcc = 1.0 * sum_total_correct / (2.220446049250313e-16 + sum_total_label) # remove np.spacing(1)
IoU = 1.0 * sum_total_inter / (2.220446049250313e-16 + sum_total_union)
mIoU = IoU.mean().item()
logger.info("Overall validation pixAcc: {:.3f}, mIoU: {:.3f}".format(
pixAcc.item() * 100, mIoU * 100))
synchronize()
if __name__ == '__main__':
args = parse_args()
#os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_id
num_gpus = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
args.distributed = num_gpus > 1
if not args.no_cuda and torch.cuda.is_available():
cudnn.benchmark = True
args.device = "cuda"
else:
args.distributed = False
args.device = "cpu"
if args.distributed:
torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group(backend="nccl", init_method="env://")
synchronize()
# TODO: optim code
outdir = '{}_{}_{}'.format(args.model, args.backbone, args.dataset)
args.outdir = os.path.join(args.save_dir, outdir)
if args.save_pred:
if (args.distributed and args.local_rank == 0) or args.distributed is False:
if not os.path.exists(args.outdir):
os.makedirs(args.outdir)
logger = setup_logger("semantic_segmentation", args.save_dir, get_rank(),
filename='{}_{}_{}_multiscale_val.txt'.format(args.model, args.backbone, args.dataset), mode='a+')
evaluator = Evaluator(args, num_gpus)
evaluator.eval()
torch.cuda.empty_cache()