-
Notifications
You must be signed in to change notification settings - Fork 0
/
person_detect.py
223 lines (183 loc) · 7.01 KB
/
person_detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import numpy as np
import time
from openvino.inference_engine import IENetwork, IECore
import os
import cv2
import argparse
import sys
class Queue:
'''
Class for dealing with queues
'''
def __init__(self):
self.queues=[]
def add_queue(self, points):
self.queues.append(points)
def get_queues(self, image):
for q in self.queues:
x_min, y_min, x_max, y_max=q
frame=image[y_min:y_max, x_min:x_max]
yield frame
def check_coords(self, coords):
d={k+1:0 for k in range(len(self.queues))}
for coord in coords:
for i, q in enumerate(self.queues):
if coord[0]>q[0] and coord[2]<q[2]:
d[i+1]+=1
return d
class PersonDetect:
'''
Class for the Person Detection Model.
'''
def __init__(self, model_name, device, threshold=0.60):
self.model_weights=model_name+'.bin'
self.model_structure=model_name+'.xml'
self.device=device
self.threshold=threshold
try:
self.model=IENetwork(self.model_structure, self.model_weights)
except Exception as e:
raise ValueError("Could not Initialise the network. Have you enterred the correct model path?")
self.input_name=next(iter(self.model.inputs))
self.input_shape=self.model.inputs[self.input_name].shape
self.output_name=next(iter(self.model.outputs))
self.output_shape=self.model.outputs[self.output_name].shape
self.dsize = (self.input_shape[3], self.input_shape[2])
def load_model(self):
'''
TODO: This method needs to be completed by you
'''
# initialize the IECore interface
self.core = IECore()
# load the model
self.net = self.core.load_network(network=self.model, device_name=self.device, num_requests=1)
return
def predict(self, image):
'''
TODO: This method needs to be completed by you
'''
# preprocess the image
print('preprocess input')
p_image = self.preprocess_input(image)
# start asynchronous inference for specified request
print('Start async inference')
self.net.start_async(request_id=0, inputs={self.input_name: p_image})
# wait for the result
if self.net.requests[0].wait(-1) == 0:
# get the output of the inference
print('Waiting for output of inference')
outputs=self.net.requests[0].outputs[self.output_name]
# select coords based on confidence threshold
print('Obtain coords of the conf threshold')
coords = self.preprocess_outputs(outputs)
print('Return coords and images')
return self.draw_outputs(coords,image)
def draw_outputs(self, coords, image):
'''
TODO: This method needs to be completed by you
'''
out_coord = []
height,width,channel=image.shape
for x1, y1, x2, y2 in coords:
#conf = box[2]
#if conf > self.threshold:
xmin = int(x1 * width)
ymin = int(y1 * height)
xmax = int(x2 * width)
ymax = int(y2 * height)
cv2.rectangle(image,(xmin,ymin),(xmax,ymax),(255,0,0),1)
out_coord.append([xmin,ymin,xmax,ymax])
return out_coord, image
def preprocess_outputs(self, outputs):
'''
TODO: This method needs to be completed by you
'''
# filter output based on confidence threshold
coords = []
for box in outputs[0][0]:
conf = box[2]
if conf > self.threshold:
coords.append(box[3:])
return coords
def preprocess_input(self, image):
'''
TODO: This method needs to be completed by you
'''
image = cv2.resize(image,(self.dsize))
image = image.transpose((2,0,1))
image = image.reshape(1,*image.shape)
return image
def main(args):
model=args.model
device=args.device
video_file=args.video
max_people=args.max_people
threshold=args.threshold
output_path=args.output_path
start_model_load_time=time.time()
pd= PersonDetect(model, device, threshold)
pd.load_model()
total_model_load_time = time.time() - start_model_load_time
queue=Queue()
try:
queue_param=np.load(args.queue_param)
for q in queue_param:
queue.add_queue(q)
except:
print("error loading queue param file")
try:
cap=cv2.VideoCapture(video_file)
except FileNotFoundError:
print("Cannot locate video file: "+ video_file)
except Exception as e:
print("Something else went wrong with the video file: ", e)
initial_w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
initial_h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
video_len = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = int(cap.get(cv2.CAP_PROP_FPS))
out_video = cv2.VideoWriter(os.path.join(output_path, 'output_video.mp4'), cv2.VideoWriter_fourcc(*'avc1'), fps, (initial_w, initial_h), True)
counter=0
start_inference_time=time.time()
try:
while cap.isOpened():
ret, frame=cap.read()
if not ret:
break
counter+=1
coords, image= pd.predict(frame)
print('Inference success')
num_people= queue.check_coords(coords)
print(f"Total People in frame = {len(coords)}")
print(f"Number of people in queue = {num_people}")
out_text=""
y_pixel=25
for k, v in num_people.items():
out_text += f"No. of People in Queue {k} is {v} "
if v >= int(max_people):
out_text += f" Queue full; Please move to next Queue "
cv2.putText(image, out_text, (15, y_pixel), cv2.FONT_HERSHEY_COMPLEX, 1, (0, 255, 0), 2)
out_text=""
y_pixel+=40
out_video.write(image)
total_time=time.time()-start_inference_time
total_inference_time=round(total_time, 1)
fps=counter/total_inference_time
with open(os.path.join(output_path, 'stats.txt'), 'w') as f:
f.write(str(total_inference_time)+'\n')
f.write(str(fps)+'\n')
f.write(str(total_model_load_time)+'\n')
cap.release()
cv2.destroyAllWindows()
except Exception as e:
print("Could not run Inference: ", e)
if __name__=='__main__':
parser=argparse.ArgumentParser()
parser.add_argument('--model', required=True)
parser.add_argument('--device', default='CPU')
parser.add_argument('--video', default=None)
parser.add_argument('--queue_param', default=None)
parser.add_argument('--output_path', default='/results')
parser.add_argument('--max_people', default=2)
parser.add_argument('--threshold', default=0.60)
args=parser.parse_args()
main(args)