-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathexampleUseSMR.py
55 lines (42 loc) · 1.63 KB
/
exampleUseSMR.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import multiprocessing
import string
from multiprocessing_mapreduce import SimpleMapReduce
def file_to_words(filename):
"""Read a file and return a sequence of (word, occurances) values.
"""
STOP_WORDS = set([
'a', 'an', 'and', 'are', 'as', 'be', 'for', 'if', 'in',
'is', 'it', 'of', 'or', 'py', 'rst', 'the', 'to', 'with',
])
TR = string.maketrans(string.punctuation, ' ' * len(string.punctuation))
print multiprocessing.current_process().name, 'reading', filename
output = []
with open(filename, 'rt') as f:
for line in f:
if line.lstrip().startswith('..'): # Skip rst comment lines
continue
line = line.translate(TR) # Strip punctuation
for word in line.split():
word = word.lower()
if word.isalpha() and word not in STOP_WORDS:
output.append( (word, 1) )
return output
def count_words(item):
"""Convert the partitioned data for a word to a
tuple containing the word and the number of occurances.
"""
word, occurances = item
return (word, sum(occurances))
if __name__ == '__main__':
import operator
import glob
input_files = glob.glob('*.rst')
mapper = SimpleMapReduce(file_to_words, count_words)
word_counts = mapper(input_files)
word_counts.sort(key=operator.itemgetter(1))
word_counts.reverse()
print '\nTOP 20 WORDS BY FREQUENCY\n'
top20 = word_counts[:20]
longest = max(len(word) for word, count in top20)
for word, count in top20:
print '%-*s: %5s' % (longest+1, word, count)