-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathsqa_scraper.py
273 lines (219 loc) · 7.63 KB
/
sqa_scraper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
# Packages: beautifulsoup4, csv, requests
import requests
import csv
from bs4 import BeautifulSoup
# Global Variables
ODR_URL = "https://www.sqa.org.uk/sqa/57523.html"
def get_headers():
"""
Gets headers to make a request from the URL. Optimized so website doesn't think a bot is making a request.
Args:
NULL
Returns:
headers (Dictionary) : header values
"""
headers = {
"Access-Control-Allow-Origin": "*",
"Access-Control-Allow-Methods": "GET",
"Access-Control-Allow-Headers": "Content-Type",
"Access-Control-Max-Age": "3600",
"User-Agent": "Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:52.0) Gecko/20100101 Firefox/52.0",
}
return headers
def csv_output(header, data):
"""
Create output csv file of the final data scrapped from website.
Args:
header (List): A list of header items that are Strings.
data (List): A list of records.
Returns:
NULL
"""
with open("data/scraped-results/output_sqa.csv", "w", encoding="UTF8") as f:
writer = csv.writer(f)
# write the header
writer.writerow(header)
# write the data
for record in data:
writer.writerow(record)
def fetch_available_years():
"""
Fetches links to pages of available years from ODR_URL. It uses the dropdown menu on the 'Data' button.
Returns:
list_of_links (List): A list of URLs linking to the pages for each data category.
"""
dict_of_links = {}
initial_req = requests.get(ODR_URL, get_headers())
initial_soup = BeautifulSoup(initial_req.text, "html.parser")
data_button = initial_soup.find("select", id="selYear")
dropdown_list = data_button.find_all("option")
for dropdown_item in dropdown_list:
dict_of_links[dropdown_item.contents[0]] = (
"https://www.sqa.org.uk/sqa/" + dropdown_item["value"]
)
keys_to_skip = [
"--- Select Year ---",
"Statistics archive",
"Related",
"Derived Grades 2003",
]
[dict_of_links.pop(d,None) for d in keys_to_skip]
return dict_of_links
def fetch_year_page(link: str) -> BeautifulSoup:
"""
Fetches the content of pages of available years.
Returns:
BeautifulSoup object of the pages.
"""
req = requests.get(link, get_headers())
return BeautifulSoup(req.content, "html.parser")
def fetch_datasets(page: BeautifulSoup) -> list:
"""
Fetches the datasets present on a page.
Returns:
list_of_lists_of_datasets (List): A list of datasets present on the specific page.
"""
list_of_lists_of_datasets = []
content = page.find(id="content")
unsorted_lists = content.find_all("ul")
for unsorted_list in unsorted_lists:
list_of_datasets = unsorted_list.find_all("a")
list_of_lists_of_datasets.append(list_of_datasets)
return list_of_lists_of_datasets
def create_title(part1: str) -> str:
"""
Adds 'SQA' at the beginning of the input to create the title of the dataset
Returns:
stripped_title (str): A string of dataset's title.
"""
return "SQA " + part1
def fetch_asset_url(page: BeautifulSoup) -> str:
"""
Fetches the asset url of the dataset from the BeautifulSoup object.
Returns:
url (str): A string of dataset's asset url.
"""
link = page.get("href")
if link.startswith("//"):
url = "https:" + link
elif link.startswith("files"):
url = "https://www.sqa.org.uk/sqa/" + link
elif link.startswith("/sqa"):
url = "https://www.sqa.org.uk" + link
else:
url = link
return url
def fetch_create_date(page: BeautifulSoup, ul: BeautifulSoup) -> tuple:
"""
Fetches the create date and the date of correction of the dataset from the BeautifulSoup object.
Returns:
date (str): A string of dataset's create date.
"""
fetched_create_date = "NULL"
fetched_update_date = "NULL"
part = page.find("a", string=ul.get_text())
find_ul = part.find_parent("ul")
find_siblings = find_ul.next_siblings
for sibling in find_siblings:
if "<h2>" in repr(sibling):
return fetched_create_date, fetched_update_date
elif "Date of publication" in repr(sibling):
fetched_create_date = sibling.get_text().split(":")[1].strip(" .\xa0 ")
elif "Date of correction" in repr(sibling):
fetched_update_date = sibling.get_text().split(":")[1].strip(" .\xa0 ")
return fetched_create_date, fetched_update_date
def fetch_file_size(page: BeautifulSoup, ul: BeautifulSoup) -> tuple:
size = "NULL"
unit = "NULL"
part = page.find("a", string=ul.get_text())
size_list = part.find_parent("li").contents
for item in size_list:
if "(" in item:
size = item.strip(" \xa0 ()\n").split(" ")[0]
unit = item.strip(" \xa0 ()\n").split(" ")[1]
return size, unit
def fetch_description(ds, ys):
descr = (
"A range of statistical reports for SQA qualifications for "
+ ys.split(" ", 1)[1]
+ "."
)
return descr
def create_filename(part2: BeautifulSoup) -> str:
"""
Extracts the title of the dataset from the input
Returns:
A string of dataset's title.
"""
return part2.get_text()
def main():
# Record Headings
header = [
"Title",
"Owner",
"PageURL",
"AssetURL",
"FileName",
"DateCreated",
"DateUpdated",
"FileSize",
"FileSizeUnit",
"FileType",
"NumRecords",
"OriginalTags",
"ManualTags",
"License",
"Description",
]
data = []
print("Getting available years")
category_links = fetch_available_years()
for year_string in category_links.keys():
print("Getting", year_string)
years_page = fetch_year_page(category_links[year_string])
owner = "Scottish Qualifications Authority (SQA)"
title = create_title(year_string)
# print("title", title)
description = fetch_description(years_page, year_string)
pageurl = category_links[year_string]
list_datasets = fetch_datasets(years_page)
for list in list_datasets[:-3]:
# print("list", list)
for dataset in list:
# print("dataset", dataset)
asset_url = fetch_asset_url(dataset)
file_name = create_filename(dataset)
create_date, update_date = fetch_create_date(years_page, dataset)
file_sizeandunit = fetch_file_size(years_page, dataset)
file_size = file_sizeandunit[0]
file_unit = file_sizeandunit[1]
data_type = dataset.get("href").split(".")[-1]
num_recs = "NULL"
sqa_licence = "unknown" # contact SQA regarding license
output = [
title,
owner,
pageurl,
asset_url,
file_name,
create_date,
update_date,
file_size,
file_unit,
data_type,
num_recs,
"NULL",
"NULL",
sqa_licence,
description,
]
data.append(output)
print("Outputting to CSV")
csv_output(header, data)
if __name__ == "__main__":
main()
"""
issues with this scraper:
- year before 2000 don't return a dataset, even though there are unordered lists present"
- in many (all?) years, the last datasets seem to be missing
"""