-
Notifications
You must be signed in to change notification settings - Fork 20
/
advtrain.py
289 lines (242 loc) · 10.3 KB
/
advtrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
from __future__ import print_function
import keras
from keras.layers import Dense, Conv2D, BatchNormalization, Activation
from keras.layers import AveragePooling2D, Input, Flatten, Lambda
from keras.optimizers import Adam, SGD
from keras.callbacks import ModelCheckpoint, LearningRateScheduler, ReduceLROnPlateau
from keras.callbacks import ReduceLROnPlateau
from keras.preprocessing.image import ImageDataGenerator
from keras.regularizers import l2
from keras import backend as K
from keras.models import Model
from keras.datasets import mnist, cifar10, cifar100
import tensorflow as tf
import numpy as np
import os
from scipy.io import loadmat
import math
from utils.model import resnet_v1, resnet_v2
from utils.keras_wraper_ensemble import KerasModelWrapper
import cleverhans.attacks as attacks
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_integer('batch_size', 50, '')
tf.app.flags.DEFINE_integer('mean_var', 10, 'parameter in MMLDA')
tf.app.flags.DEFINE_string('optimizer', 'mom', '')
tf.app.flags.DEFINE_integer('version', 2, '')
tf.app.flags.DEFINE_float('lr', 0.01, 'initial lr')
tf.app.flags.DEFINE_bool('use_MMLDA', True, 'whether use MMLDA or softmax')
tf.app.flags.DEFINE_bool('use_ball', True, 'whether use ball loss or softmax loss')
tf.app.flags.DEFINE_float('adv_ratio', 1.0, 'the ratio of adversarial examples in each mini-batch')
tf.app.flags.DEFINE_string('attack_method', 'MadryEtAl', 'the attack used to craft adversarial examples for adv training')
tf.app.flags.DEFINE_bool('use_target', False, 'whether use target attack or untarget attack for adversarial training')
tf.app.flags.DEFINE_bool('use_BN', True, 'whether use batch normalization in the network')
tf.app.flags.DEFINE_bool('use_random', False, 'whether use random center or MMLDA center in the network')
tf.app.flags.DEFINE_string('dataset', 'mnist', '')
# Load the dataset
if FLAGS.dataset=='mnist':
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = np.expand_dims(x_train, axis=3)
x_test = np.expand_dims(x_test, axis=3)
epochs = 50
num_class = 10
epochs_inter = [30,40]
elif FLAGS.dataset=='cifar10':
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
epochs = 200
num_class = 10
epochs_inter = [100,150]
elif FLAGS.dataset=='cifar100':
(x_train, y_train), (x_test, y_test) = cifar100.load_data()
epochs = 200
num_class = 100
epochs_inter = [100,150]
else:
print('Unknown dataset')
# These parameters are usually fixed
subtract_pixel_mean = True
version = FLAGS.version # Model version
n = 5 # n=5 for resnet-32 v1
# Computed depth from supplied model parameter n
if version == 1:
depth = n * 6 + 2
feature_dim = 64
elif version == 2:
depth = n * 9 + 2
feature_dim = 256
if FLAGS.use_random==True:
name_random = '_random'
else:
name_random = ''
#Load means in MMLDA
kernel_dict = loadmat('kernel_paras/meanvar1_featuredim'+str(feature_dim)+'_class'+str(num_class)+name_random+'.mat')
mean_logits = kernel_dict['mean_logits'] #num_class X num_dense
mean_logits = FLAGS.mean_var * tf.constant(mean_logits,dtype=tf.float32)
# Input image dimensions.
input_shape = x_train.shape[1:]
# Normalize data.
x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255
# If subtract pixel mean is enabled
clip_min = 0.0
clip_max = 1.0
if subtract_pixel_mean:
x_train_mean = np.mean(x_train, axis=0)
x_train -= x_train_mean
x_test -= x_train_mean
clip_min -= x_train_mean
clip_max -= x_train_mean
# Convert class vectors to binary class matrices.
y_train = keras.utils.to_categorical(y_train, num_class)
y_test = keras.utils.to_categorical(y_test, num_class)
def dot_loss(y_true, y_pred):
return - tf.reduce_sum(y_pred * y_true, axis=-1) #batch_size X 1
#MMLDA prediction function
def MMLDA_layer(x, means=mean_logits, num_class=num_class, use_ball=FLAGS.use_ball):
#x_shape = batch_size X num_dense
x_expand = tf.tile(tf.expand_dims(x,axis=1),[1,num_class,1]) #batch_size X num_class X num_dense
mean_expand = tf.expand_dims(means,axis=0) #1 X num_class X num_dense
logits = -tf.reduce_sum(tf.square(x_expand - mean_expand), axis=-1) #batch_size X num_class
if use_ball==True:
return logits
else:
logits = logits - tf.reduce_max(logits, axis=-1, keepdims=True) #Avoid numerical rounding
logits = logits - tf.log(tf.reduce_sum(tf.exp(logits), axis=-1, keepdims=True)) #Avoid numerical rounding
return logits
def lr_schedule(epoch):
lr = FLAGS.lr
if epoch > epochs_inter[1]:
lr *= 1e-2
elif epoch > epochs_inter[0]:
lr *= 1e-1
print('Learning rate: ', lr)
return lr
model_input = Input(shape=input_shape)
#dim of logtis is batchsize x dim_means
if version == 2:
original_model,_,_,_,final_features = resnet_v2(input=model_input, depth=depth, num_classes=num_class, use_BN=FLAGS.use_BN)
else:
original_model,_,_,_,final_features = resnet_v1(input=model_input, depth=depth, num_classes=num_class, use_BN=FLAGS.use_BN)
if FLAGS.use_BN==True:
BN_name = '_withBN'
print('Use BN in the model')
else:
BN_name = '_noBN'
print('Do not use BN in the model')
#Whether use target attack for adversarial training
if FLAGS.use_target==False:
is_target = ''
y_target = None
else:
is_target = 'target'
y_target = tf.multinomial(tf.ones((FLAGS.batch_size,num_class)),1) #batch_size x 1
y_target = tf.one_hot(tf.reshape(y_target,(FLAGS.batch_size,)),num_class) #batch_size x num_class
if FLAGS.use_MMLDA==True:
print('Using MMT Training Scheme')
new_layer = Lambda(MMLDA_layer)
predictions = new_layer(final_features)
model = Model(input=model_input, output=predictions)
use_ball_=''
train_loss = dot_loss
if FLAGS.use_ball==False:
print('Using softmax function (MMLDA)')
use_ball_='_softmax'
filepath_dir = 'advtrained_models/'+FLAGS.dataset+'/resnet32v'+str(version)+'_meanvar'+str(FLAGS.mean_var) \
+'_'+FLAGS.optimizer \
+'_lr'+str(FLAGS.lr) \
+'_batchsize'+str(FLAGS.batch_size) \
+'_'+is_target+FLAGS.attack_method \
+'_advratio'+str(FLAGS.adv_ratio)+BN_name+name_random \
+use_ball_
else:
print('Using softmax loss')
model = original_model
train_loss = keras.losses.categorical_crossentropy
filepath_dir = 'advtrained_models/'+FLAGS.dataset+'/resnet32v'+str(version)+'_'+FLAGS.optimizer \
+'_lr'+str(FLAGS.lr) \
+'_batchsize'+str(FLAGS.batch_size)+'_'+is_target+FLAGS.attack_method+'_advratio'+str(FLAGS.adv_ratio)+BN_name
wrap_ensemble = KerasModelWrapper(model, num_class=num_class)
eps = 8. / 256.
if FLAGS.attack_method == 'MadryEtAl':
print('apply '+is_target+'PGD'+' for advtrain')
att = attacks.MadryEtAl(wrap_ensemble)
att_params = {
'eps': eps,
#'eps_iter': 3.*eps/10.,
'eps_iter': 2. / 256.,
'clip_min': clip_min,
'clip_max': clip_max,
'nb_iter': 10,
'y_target': y_target
}
elif FLAGS.attack_method == 'MomentumIterativeMethod':
print('apply '+is_target+'MIM'+' for advtrain')
att = attacks.MomentumIterativeMethod(wrap_ensemble)
att_params = {
'eps': eps,
#'eps_iter': 3.*eps/10.,
'eps_iter': 2. / 256.,
'clip_min': clip_min,
'clip_max': clip_max,
'nb_iter': 10,
'y_target': y_target
}
elif FLAGS.attack_method == 'FastGradientMethod':
print('apply '+is_target+'FGSM'+' for advtrain')
att = attacks.FastGradientMethod(wrap_ensemble)
att_params = {'eps': eps,
'clip_min': clip_min,
'clip_max': clip_max,
'y_target': y_target}
adv_x = tf.stop_gradient(att.generate(model_input, **att_params))
adv_output = model(adv_x)
normal_output = model(model_input)
def adv_train_loss(_y_true, _y_pred):
return (1-FLAGS.adv_ratio) * train_loss(_y_true, normal_output) + FLAGS.adv_ratio * train_loss(_y_true, adv_output)
if FLAGS.optimizer=='Adam':
model.compile(
loss=adv_train_loss,
optimizer=Adam(lr=lr_schedule(0)),
metrics=['accuracy'])
print('Using Adam optimizer')
elif FLAGS.optimizer=='mom':
model.compile(
loss=adv_train_loss,
optimizer=SGD(lr=lr_schedule(0), momentum=0.9),
metrics=['accuracy'])
print('Using momentum optimizer')
model.summary()
# Prepare model model saving directory.
save_dir = os.path.join(os.getcwd(), filepath_dir)
model_name = 'model.{epoch:03d}.h5'
if not os.path.isdir(save_dir):
os.makedirs(save_dir)
filepath = os.path.join(save_dir, model_name)
# Prepare callbacks for model saving and for learning rate adjustment.
checkpoint = ModelCheckpoint(
filepath=filepath, monitor='val_loss', mode='min', verbose=2, save_best_only=False, save_weights_only=True, period=5)
lr_scheduler = LearningRateScheduler(lr_schedule)
callbacks = [checkpoint, lr_scheduler]
# Run training, with data augmentation.
print('Using real-time data augmentation.')
# This will do preprocessing and realtime data augmentation:
datagen = ImageDataGenerator(
# epsilon for ZCA whitening
zca_epsilon=1e-06,
# randomly shift images horizontally
width_shift_range=0.1,
# randomly shift images vertically
height_shift_range=0.1,
# set mode for filling points outside the input boundaries
fill_mode='nearest',
# randomly flip images
horizontal_flip=True)
# Compute quantities required for featurewise normalization
datagen.fit(x_train)
# Fit the model on the batches generated by datagen.flow().
model.fit_generator(
datagen.flow(x_train, y_train, batch_size=FLAGS.batch_size),
validation_data=(x_test, y_test),
epochs=epochs,
verbose=2,
workers=4,
callbacks=callbacks)