-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy path13_cytokineResistancePhospho.Rmd
412 lines (325 loc) · 16.4 KB
/
13_cytokineResistancePhospho.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
---
title: "Cytokine Resistance Phosphodata"
author: "Sara Gosline"
date: "4/9/2021"
output: html_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = FALSE)
##process cytokine data
library(amlresistancenetworks)
library(dplyr)
library(ggplot2)
```
## Phospho data kinase enrichment
For this analysis will load in the phosphoproteomic data collected in the Molm13 cell lines. We use the stoichiometry corrected proteomic data to focus explicitly on the changes in kinase activity.
```{r data load,echo=FALSE,warning=FALSE}
###load all the data
phosData<-querySynapseTable('syn22986341')%>%subset(!is.nan(LogRatio))%>%
mutate(Gene=unlist(Gene))%>%
mutate(site=unlist(site))
clinvars<-phosData%>%
dplyr::select(Sample='sample',CellType,TimePoint,Treatment,Batch)%>%
distinct()
##what are we doing again?
earlySummary<-phosData%>%
subset(Batch=='Experiment 1')%>%
dplyr::select(sample,CellType,TimePoint,Treatment,Batch)%>%
distinct()%>%
mutate(conditionName=stringr::str_c(CellType,TimePoint,Treatment,sep='_'))
lateSummary<-phosData%>%
subset(TimePoint==0)%>%
subset(Batch=='Experiment 2')%>%
dplyr::select(sample,CellType,TimePoint,Treatment,Batch)%>%
distinct()%>%
mutate(conditionName=stringr::str_c(CellType,TimePoint,Treatment,sep='_'))
earlyPhosMat<-phosData%>%
subset(Batch=='Experiment 1')%>%
dplyr::select(sample,site,LogRatio)%>%
tidyr::pivot_wider(values_from=LogRatio,names_from=sample,
values_fn=list(LogRatio=mean,na.rm=T))%>%#updated 9/6,values_fill=list(LogRatio=0.0))%>%
tibble::remove_rownames()%>%
tibble::column_to_rownames('site')
latePhosMat<-phosData%>%
subset(TimePoint==0)%>%
subset(Batch=='Experiment 2')%>%
dplyr::select(sample,site,LogRatio)%>%
tidyr::pivot_wider(values_from=LogRatio,names_from=sample,
values_fn=list(LogRatio=mean,na.rm=T))%>%#updated 9/6,values_fill=list(LogRatio=0.0))%>%
tibble::remove_rownames()%>%
tibble::column_to_rownames('site')
```
## Now we can define the processing functions needed
We can plot the data and the kinase activity as needed in heatmap or PCA form.
```{r processing functions,echo=TRUE,warning=FALSE}
##
#' @param dat.table
# 2- Create PCA plots of global and phospho for the late molm13 only, and the late molm 13 + parental
#' @param dat.table
plotAllData <- function(dat.table, prefix='',expand=0.01, alpha=0.1, ...) {
library(ggfortify)
met <- dat.table %>%
dplyr::select(sample, CellType, TimePoint, Treatment) %>%
distinct()
mat <- dat.table %>% dplyr::select(Gene,LogRatio,sample) %>%
distinct() %>%
mutate(LogRatio=as.numeric(LogRatio)) %>%
tidyr::pivot_wider(names_from='sample', values_from='LogRatio',
values_fn=list(LogRatio=function(x) mean(x,na.rm=T)),
values_fill=list(LogRatio=0)) %>%
tibble::remove_rownames() %>%
tibble::column_to_rownames('Gene')
mat <- mat[complete.cases(mat),]
x <- prcomp(t(mat))$x
x <- as.data.frame(x)
x$sample <- rownames(x)
ggdata <- inner_join(x, met, by="sample")
library(ggforce)
ggplot(ggdata, aes_string(x="PC1", y="PC2", ...)) +
geom_point(size=2.5) +
ggforce::geom_mark_ellipse(color = NA, alpha=alpha, expand=expand)
}
##plot kinase activity
plotKinDat<-function(kindat,sig.kin=NULL,prefix='all'){
library(pheatmap)
##create matrix of kinase scores
if(!is.null(sig.kin)){
kindat<-subset(kindat,Kinase%in%sig.kin)#$Kinase.Gene)
#kinmat<-sig.kin%>%mutate(score='Yes')%>%
# tidyr::pivot_wider(names_from=Condition,values_from=score,values_fill=list(score='No'))%>%
# tibble::column_to_rownames('Kinase.Gene')
}
mat <-kindat%>%
ungroup()%>%
tidyr::pivot_wider(-c(meanNKINscore,numSubstr),
values_from=meanLFC,
names_from=Sample,
values_fn=list(meanLFC=mean), values_fill=0.0)%>%
tibble::remove_rownames()%>%
tibble::column_to_rownames('Kinase')
#if(!is.null(sig.kin))
# kinAts=kinmat
#else
kinAts<-kindat%>%
ungroup()%>%
dplyr::select(Kinase,numSubstr)%>%
distinct()%>%
group_by(Kinase)%>%
summarize(substrates=mean(numSubstr))%>%
tibble::remove_rownames()%>%
tibble::column_to_rownames('Kinase')
sampAts<-phosData%>%
dplyr::select(sample,TimePoint,Treatment)%>%
distinct()%>%
tibble::remove_rownames()%>%
tibble::column_to_rownames('sample')
sampAts$TimePoint=as.factor(sampAts$TimePoint)
pal<-nationalparkcolors::park_palette('GrandTeton')
sampCols= lapply(names(sampAts),function(x) {
p<-pal[1:length(unique(sampAts[[x]]))]
names(p)<-unique(sampAts[[x]])
return(p)})
names(sampCols)=names(sampAts)
#print(sampCols)
#vars=names(sort(apply(mat,1,var,na.rm=T),decreasing=T))
pheatmap(mat,cellwidth = 8,cellheight=8,clustering_distance_cols = 'correlation',
clustering_distance_rows = 'correlation',
annotation_colors=sampCols,annotation_col=sampAts)
pheatmap(mat,cellwidth = 8,cellheight=8,clustering_distance_cols = 'correlation',
clustering_distance_rows = 'correlation',
annotation_col=sampAts,annotation_colors = sampCols,
file=paste0(prefix,'cytokineKinaseHeatmap.pdf'),height=14,width=8)
pheatmap(mat,cellwidth = 8,cellheight=8,cluster_cols=FALSE,
clustering_distance_rows = 'correlation',
annotation_col=sampAts,annotation_colors = sampCols,
file=paste0(prefix,'cytokineKinaseHeatmapUnclustered.pdf'),height=14,width=8)
}
####Show kinase activity
kindat<-phosData%>%
subset(Batch=='Experiment 1')%>%
dplyr::rename(Sample='sample', LogFoldChange='LogRatio')%>%
mapPhosphoToKinase()
##plot PCA
phosData%>%
subset(Batch=='Experiment 1')%>%
subset(CellType=='MOLM-13')%>%
plotAllData(.,colour='Treatment',fill='Treatment')+
ggtitle("Phosphoproteomics Experiment 1")
```
## KSEA enrichment analysis
Next we define functions to carry out various KSEA analyses.
```{r ksea, echo=FALSE,message=FALSE}
#' plot all the KSEA
#' @param condList
#' @return data frame
doAllKSEAplots<-function(condList,pdat=phosData){
gene.to.site<-dplyr::select(pdat,Gene,site,Peptide)%>%distinct()%>%
dplyr::mutate(residue=stringr::str_replace(site,paste0(Gene,'-'),''))%>%
dplyr::mutate(residue=stringr::str_replace_all(residue,"([STY])", ";\\1"))%>%
dplyr::mutate(residue=stringr::str_replace(residue,"^;", ""))%>%
dplyr::mutate(residue=stringr::str_replace_all(residue,"([sty])", ""))
full.df<-purrr::map_df(names(condList),.f=function(clName){
print(clName)
condList[[clName]]%>%
tibble::rownames_to_column('site')%>%
left_join(gene.to.site)%>%
dplyr::select(Gene,Peptide,residue,value='logFC',p_adj='adj.P.Val')%>%
amlresistancenetworks::computeKSEA(.,prefix=clName,0.05,linkedSubs=1,suffix='pdf')%>%
mutate(Condition=clName)%>%
as.data.frame()
})
return(full.df)
}
#' build networks from data frame
#' @param data.res
#' @param gene.col
#' @param weight.col
#' @param condition.col
#' @return network list?
runNetworksFromDF<-function(data,gene.col='Kinase.Gene',
weight.col='aveSubstrateLog2FC',
pvalue.col='P.Value',
condition.col='Condition',extra.col=c('Substrate.Gene','Source','log2FC'),
signif=0.01,beta=5){
conditions=unique(dplyr::select(data,condition.col))
for(con in conditions$condition){
dat = data%>%
dplyr::select(cond=condition.col,value=weight.col,Gene=gene.col,p.value=pvalue.col)%>%
subset(p.value<signif)%>%
subset(cond==con)
vals<-dat$value
names(vals)<- stringr::str_replace_all(dat$Gene,"([sty])", "")
print(length(vals))
#print(con)
#print(vals)
amlresistancenetworks::computePhosphoNetwork(phos.vals=vals,beta=beta,fname=paste0('phosphoNetworkfor',con,'_beta',beta))
}
}
```
### Single agent time course comparisons
We want to identify changes in each condition at 5 min and 60 min compare to zero. From here we can see the changes in predicted kinase activity upon treatment. Specifically these comparisons include:
1. 5 min Trametinib vs. control
2. 60 min Trametinib vs. control
3. 5 min MCP-1 vs. control
4. 60 min MCP-1 vs. control
5. 5 min MCP-1+Trametinib vs. control
6. 60 min MCP-1+Trametinib vs. control
```{r early time course,warning=FALSE,echo=FALSE}
phosMat <- earlyPhosMat
summary <- earlySummary
#phosMat<-fullPhosMat
#phosData<-uncorrectedPhosData
m13Phos<-list(Tram_5min=limmaTwoFactorDEAnalysis(phosMat,
filter(summary,conditionName=='MOLM-13_0_none')$sample,
filter(summary,conditionName=='MOLM-13_5_Trametinib')$sample),
Tram_60min=limmaTwoFactorDEAnalysis(phosMat,
filter(summary,conditionName=='MOLM-13_0_none')$sample,
filter(summary,conditionName=='MOLM-13_60_Trametinib')$sample),
MCP1_5min=limmaTwoFactorDEAnalysis(phosMat,
filter(summary,conditionName=='MOLM-13_0_none')$sample,
filter(summary,conditionName=='MOLM-13_5_MCP-1')$sample),
MCP1_60min=limmaTwoFactorDEAnalysis(phosMat,
filter(summary,conditionName=='MOLM-13_0_none')$sample,
filter(summary,conditionName=='MOLM-13_60_MCP-1')$sample),
MCP1_tram_5min=limmaTwoFactorDEAnalysis(phosMat,
filter(summary,conditionName=='MOLM-13_0_none')$sample,
filter(summary,conditionName=='MOLM-13_5_Trametinib+MCP-1')$sample),
MCP1_tram_60min=limmaTwoFactorDEAnalysis(phosMat,
filter(summary,conditionName=='MOLM-13_0_none')$sample,
filter(summary,conditionName=='MOLM-13_60_Trametinib+MCP-1')$sample))
p3<-doAllKSEAplots(m13Phos,phosData)
sig.kin<-p3%>%
subset(p.value<0.05)%>%
select(Kinase.Gene,Condition)%>%distinct()
# print(sig.kin)
plotKinDat(subset(kindat,
Sample%in%subset(summary,CellType=='MOLM-13')$sample),
sig.kin$Kinase.Gene,'exp1_singleTimeCourse')
combPhos<-list(comb_5min=limmaTwoFactorDEAnalysis(phosMat,
filter(summary,conditionName=='MOLM-13_5_Trametinib+MCP-1')$sample,
filter(summary,conditionName%in%c('MOLM-13_5_Trametinib','MOLM-13_5_MCP-1'))$sample),
comb_60min=limmaTwoFactorDEAnalysis(phosMat,
filter(summary,conditionName=='MOLM-13_60_Trametinib+MCP-1')$sample,
filter(summary,conditionName%in%c('MOLM-13_60_Trametinib','MOLM-13_60_MCP-1'))$sample))
p4<-doAllKSEAplots(combPhos,phosData)
combDf<-do.call(rbind,lapply(names(combPhos),function(x) mutate(combPhos[[x]],condition=x)))
# tramMCP=runNetworksFromDF(combDf,gene.col='featureID',
# weight.col='logFC',pvalue.col='P.Value',beta=5,
# condition.col='condition',extra.col=c('AveExpr','t','P.Value'))
# tramMCP=runNetworksFromDF(combDf,gene.col='featureID',
# weight.col='logFC',pvalue.col='P.Value',beta=10,
# condition.col='condition',extra.col=c('AveExpr','t','P.Value'))
# #lateHeatmap<-kseaZscoreHeatmap(list(p3,p5),'earlyTreatmentKSEAzscoreHeatmap.pdf')
sig.kin<-p4%>%
subset(p.value<0.05)%>%
select(Kinase.Gene,Condition)%>%distinct()
# print(sig.kin)
plotKinDat(subset(kindat,Sample%in%subset(summary,CellType=='MOLM-13')$sample),
sig.kin$Kinase.Gene,'exp1_comboTimeCourse')
```
### Resistant cells time course comparisons
We want to see how the resistant cells compared compare to resistant controls at both 5 minutes and 60 minutes.
```{r collect comparisons,echo=FALSE}
#####now do various comparisons
phosMat <- earlyPhosMat
summary <-earlySummary
latePhos<-list(resist_vs_parental=limmaTwoFactorDEAnalysis(phosMat,
filter(summary,conditionName=='MOLM-13_0_none')$sample,
filter(summary,conditionName=='MOLM-13 Tr Resistant_0_none')$sample),
resist_vs_mcp1_5min=limmaTwoFactorDEAnalysis(phosMat,
filter(summary,conditionName=='MOLM-13 Tr Resistant_5_MCP-1')$sample,
filter(summary,conditionName=='MOLM-13 Tr Resistant_0_none')$sample),
resist_vs_mcp1_60min=limmaTwoFactorDEAnalysis(phosMat,
filter(summary,conditionName=='MOLM-13 Tr Resistant_60_MCP-1')$sample,
filter(summary,conditionName=='MOLM-13 Tr Resistant_0_none')$sample))
ph3<-doAllKSEAplots(latePhos)
# earlyLatePh<-plotConditionsInFlow(earlyLatePhos,title='Phosphoproteomics in late',0.05)
# ggsave('earlyLatePhos.png',earlyLatePh,width=11,height=6)
latePhresdf<-do.call(rbind,lapply(names(latePhos),function(x) data.frame(latePhos[[x]],Condition=x)))
# lateNets<-runNetworksFromDF(ph4)
# tramMCP=runNetworksFromDF(latePhresdf,gene.col='featureID',
# weight.col='logFC',pvalue.col='adj.P.Val',beta=5,
# condition.col='Condition',extra.col=c('AveExpr','t','P.Value'))
# tramMCP=runNetworksFromDF(latePhresdf,gene.col='featureID',
# weight.col='logFC',pvalue.col='adj.P.Val',beta=10,
# condition.col='Condition',extra.col=c('AveExpr','t','P.Value'))
sig.kin<-ph3%>%
subset(p.value<0.05)%>%
select(Kinase.Gene,Condition)%>%distinct()
plotKinDat(subset(kindat,
Sample%in%subset(summary,CellType%in%c('MOLM-13 Tr Resistant','Late MOLM-13'))$sample),
sig.kin$Kinase.Gene,'resistantCellLines')
```
These represent the late resistance samples
## Plot selected kinases
We have a list of kinases from Rucha that she wants to see.
```{r kinase activity}
kins=c('CDK1', 'CDK2', 'CDK4', 'CDK6', 'MAPK1', 'MAPK3', 'MAPK9', 'SRC', 'MTOR', 'JAK2', 'JAK3','TYK2','HCK','LCK')
p<- kindat%>%dplyr::rename(sample='Sample')%>%left_join(rbind(earlySummary,lateSummary))%>%subset(Kinase%in%kins)%>%subset(!Treatment%in%c('Treatment Withdrawn',NA))%>%ggplot(aes(x=TimePoint,y=meanLFC,color=Treatment,shape=CellType))+geom_jitter()+facet_grid(CellType~Kinase)
#print(p)
tws<-subset(earlySummary,Treatment%in%c('Trametinib Withdrawn',NA))$sample
kindat%>%
subset(!Sample%in%tws)%>%
plotKinDat(.,kins,prefix='selectedExp1')
#ggsave('selectedKinaseActivity.pdf',p)
```
<!-- ### Network analysis -->
<!-- To do the network analysis we focus on the substrates only, from the un-corrected data. Skipping this now. -->
<!-- ```{r network, echo=FALSE} -->
<!-- uncorrectedPhosData<-querySynapseTable('syn24389738')%>%subset(!is.nan(LogRatio))%>% -->
<!-- mutate(Gene=unlist(Gene))%>% -->
<!-- mutate(site=unlist(site)) -->
<!-- fullPhosMat<-uncorrectedPhosData%>%dplyr::select(sample,site,LogRatio)%>% -->
<!-- tidyr::pivot_wider(values_from=LogRatio,names_from=sample, -->
<!-- values_fn=list(LogRatio=mean))%>%#,values_fill=list(LogRatio=0.0))%>% -->
<!-- tibble::remove_rownames()%>% -->
<!-- tibble::column_to_rownames('site') -->
<!-- uncorrectedKinDat<-mapPhosphoToKinase(dplyr::rename(uncorrectedPhosData,Sample='sample', LogFoldChange='LogRatio')) -->
<!-- combPhos<-list(comb_5min=limmaTwoFactorDEAnalysis(fullPhosMat, -->
<!-- filter(summary,conditionName=='MOLM-13_5_Trametinib+MCP-1')$sample, -->
<!-- filter(summary,conditionName%in%c('MOLM-13_5_Trametinib','MOLM-13_5_MCP-1'))$sample), -->
<!-- comb_60min=limmaTwoFactorDEAnalysis(fullPhosMat, -->
<!-- filter(summary,conditionName=='MOLM-13_60_Trametinib+MCP-1')$sample, -->
<!-- filter(summary,conditionName%in%c('MOLM-13_60_Trametinib','MOLM-13_60_MCP-1'))$sample)) -->
<!-- ##now we can load this into a network -->
<!-- ``` -->