-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexp_runner.py
524 lines (438 loc) · 26.5 KB
/
exp_runner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
import os
os.environ['CUDA_LAUNCH_BLOCKING']='1'
import logging
import argparse
import numpy as np
import cv2 as cv
import trimesh
import torch
import torch.nn.functional as F
from torch.utils.tensorboard import SummaryWriter
from shutil import copyfile
from tqdm import *
import time
from pyhocon import ConfigFactory
from models.fields import SingleVarianceNetwork, NeRF, RoughNet, IntEnvMapNet, ImplicitSurface, DiffuseNet
from models.renderer import NeuSRenderer
from models.general_utils import device, get_class
from torch.utils.data import DataLoader
from models.dataio.data_utils import *
from glob import glob
class Runner:
def __init__(self, conf_path, mode='train', case='CASE_NAME', select_model=None):
self.device = torch.device('cuda')
# Configuration
self.conf_path = conf_path
with open(self.conf_path, 'r') as f:
conf_text = f.read()
conf_text = conf_text.replace('CASE_NAME', case)
self.conf = ConfigFactory.parse_string(conf_text)
self.base_exp_dir_root = self.conf['general.base_exp_dir']
self.now_time = time.strftime('%Y-%m-%d_%H-%M-%S', time.localtime(time.time()))
self.base_exp_dir = os.path.join(self.base_exp_dir_root, self.now_time)
os.makedirs(self.base_exp_dir, exist_ok=True)
self.iter_step = 0
# Training parameters
self.end_iter = self.conf.get_int('train.end_iter')
self.save_freq = self.conf.get_int('train.save_freq')
self.report_freq = self.conf.get_int('train.report_freq')
self.val_freq = self.conf.get_int('train.val_freq')
self.val_mesh_freq = self.conf.get_int('train.val_mesh_freq')
self.batch_size = self.conf.get_int('train.batch_size')
self.train_resolution_level = self.conf.get_int('train.train_resolution_level')
self.validate_resolution_level = self.conf.get_int('train.validate_resolution_level')
self.learning_rate = self.conf.get_float('train.learning_rate')
self.learning_rate_alpha = self.conf.get_float('train.learning_rate_alpha')
self.use_white_bkgd = self.conf.get_bool('train.use_white_bkgd')
self.warm_up_end = self.conf.get_float('train.warm_up_end', default=0.0)
self.anneal_end = self.conf.get_float('train.anneal_end', default=0.0)
# Weights
self.igr_weight = self.conf.get_float('train.igr_weight')
self.mask_weight = self.conf.get_float('train.mask_weight')
self.azimuth_weight = self.conf.get_float('train.azimuth_weight')
self.use_half_pi_TSC_loss = self.conf.get_bool('train.use_half_pi_TSC_loss')
self.silhouette_weight = self.conf.get_float('train.silhouette_weight')
self.alpha = self.conf.get_float('train.alpha')
self.mode = mode
self.model_list = []
self.writer = None
self.data_type = self.conf.get_string('dataset.data_type')
self.obj_name = case
self.data_root = self.conf.get_string('dataset.data_root')
self.train_dataset = get_class(self.conf["train"]["dataset_class"])(obj_name=self.obj_name,
downscale=self.train_resolution_level,
data_type = self.data_type,
data_dir = self.data_root,
batch_size=self.batch_size,
use_pol = True,
training=True,
debug_mode = False,
exclude_views = [] )
self.train_dataloader = DataLoader(self.train_dataset, batch_size=512, shuffle=True, pin_memory=True, generator=torch.Generator(device = 'cuda'))
self.test_dataset = get_class(self.conf["train"]["dataset_class"])(obj_name=self.obj_name,
downscale=self.validate_resolution_level,
data_type = self.data_type,
data_dir = self.data_root,
batch_size=self.batch_size,
use_pol = True,
training=False,
debug_mode = False,
exclude_views = [] )
self.test_dataloader = DataLoader(self.test_dataset, batch_size=1, shuffle=False, pin_memory=True, generator=torch.Generator(device = 'cuda'))
self.test_list = enumerate(self.test_dataloader)
# Networks
params_to_train = []
self.nerf_outside = NeRF(**self.conf['model.nerf']).to(self.device)
self.sdf_network = ImplicitSurface().to(self.device)
self.deviation_network = SingleVarianceNetwork(**self.conf['model.variance_network']).to(self.device)
self.color_network = DiffuseNet().to(self.device)
self.rough_network = RoughNet(**self.conf['model.rough_network']).to(self.device)
self.specular_network = IntEnvMapNet(**self.conf['model.specular_network']).to(self.device)
params_to_train += list(self.nerf_outside.parameters())
params_to_train += list(self.sdf_network.parameters())
params_to_train += list(self.deviation_network.parameters())
params_to_train += list(self.color_network.parameters())
params_to_train += list(self.rough_network.parameters())
params_to_train += list(self.specular_network.parameters())
self.optimizer = torch.optim.Adam(params_to_train, lr=self.learning_rate)
self.renderer = NeuSRenderer(self.nerf_outside,
self.sdf_network,
self.deviation_network,
self.color_network,
self.rough_network,
self.specular_network,
self.conf,
**self.conf['model.neus_renderer'])
# Load checkpoint
if select_model is not None and mode != 'train':
if select_model == 'latest':
model_path_root = os.path.join(self.base_exp_dir_root, 'checkpoints')
model_list = os.listdir(model_path_root)
model_list.sort()
select_model_file = os.path.join(model_path_root, model_list[-1])
model_list = []
for model_name in os.listdir(select_model_file):
if model_name[-3:] == 'pth' and int(model_name[5:-4]) <= self.end_iter:
model_list.append(model_name)
model_list.sort()
select_model_file = os.path.join(select_model_file, model_list[-1])
else:
select_model_file = select_model
self.load_checkpoint(select_model_file)
# Backup codes and configs for debug
if self.mode[:5] == 'train':
self.file_backup()
def train(self):
self.writer = SummaryWriter(log_dir=os.path.join(self.base_exp_dir, 'logs'))
self.update_learning_rate()
image_perm = self.get_image_perm()
only_diffuse = True
use_pol = True
while self.iter_step < self.end_iter:
pbar_batch = tqdm(enumerate(self.train_dataloader),total=len(self.train_dataloader))
for idx_,model_input in pbar_batch:
self.iter_step += 1
rays_o, rays_d, true_rgb, mask, idx, s0_gt, s1_gt, s2_gt= model_input["camera_center"].squeeze().to(device),model_input["view_direction"].squeeze().to(device)\
,model_input["img"].squeeze().to(device),model_input["object_mask"].squeeze()[...,None].to(device), model_input["view_idx"].squeeze().to(device)\
,model_input["s0"].squeeze().to(device), model_input["s1"].squeeze().to(device), model_input["s2"].squeeze().to(device)
self.a_mask = mask.squeeze()
near, far = near_far_from_sphere(rays_o, rays_d)
background_rgb = None
if self.use_white_bkgd:
background_rgb = torch.ones([1, 3])
if self.mask_weight > 0.0:
mask = (mask > 0.5).float()
else:
mask = torch.ones_like(mask).float()
tr = False
if self.iter_step>= 1000:
tr = True
mask_sum = mask.sum() + 1e-5
if self.iter_step>=1000:
only_diffuse = False
render_out = self.renderer.render(rays_o, rays_d, self.a_mask, idx, self.train_dataset, near, far,
background_rgb=background_rgb,
cos_anneal_ratio=self.get_cos_anneal_ratio(),training=tr,only_diffuse=only_diffuse)
color_diffuse = render_out['color_fine'][...,0]
color_specular = render_out['specular_color'][...,0]
color_fine_loss = F.l1_loss((color_diffuse+color_specular) * mask, s0_gt * mask,reduction='sum')/ mask_sum
if use_pol and self.iter_step>=1000:
color_diffuse_s1 = render_out['color_fine'][...,1]
color_diffuse_s2 = render_out['color_fine'][...,2]
color_specular_s1 = render_out['specular_color'][...,1]
color_specular_s2 = render_out['specular_color'][...,2]
s1_loss = F.l1_loss((color_diffuse_s1+color_specular_s1) * mask, s1_gt * mask,reduction='sum')/ mask_sum
s2_loss = F.l1_loss((color_diffuse_s2+color_specular_s2) * mask, s2_gt * mask,reduction='sum')/ mask_sum
else:
s1_loss, s2_loss = 0,0
s_val = render_out['s_val']
gradient_error = render_out['gradient_error']
weight_sum = render_out['weight_sum']
azimuth_loss=0
psnr = 20.0 * torch.log10(1.0 / (((color_diffuse + color_specular - s0_gt)**2 * mask).sum() / (mask_sum * 3.0)).sqrt())
eikonal_loss = gradient_error
if self.iter_step>=1000:
self.azimuth_weight = 1
azimuth_loss = self.get_azimuth_loss(render_out,model_input)
mask_loss = F.binary_cross_entropy(weight_sum.clip(1e-7, 1.0 - 1e-7), mask)
loss = color_fine_loss +\
eikonal_loss * self.igr_weight +\
mask_loss * self.mask_weight+\
s1_loss+s2_loss+\
azimuth_loss * self.azimuth_weight
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
self.writer.add_scalar('Loss/loss', loss, self.iter_step)
self.writer.add_scalar('Loss/color_loss', color_fine_loss, self.iter_step)
self.writer.add_scalar('Loss/eikonal_loss', eikonal_loss, self.iter_step)
self.writer.add_scalar('Statistics/s_val', s_val.mean(), self.iter_step)
self.writer.add_scalar('Statistics/psnr', psnr, self.iter_step)
self.writer.add_scalar('Loss/maskloss', mask_loss, self.iter_step)
if self.iter_step % self.report_freq == 0:
print(self.base_exp_dir)
print('iter:{:8>d} loss = {} lr={}'.format(self.iter_step, loss, self.optimizer.param_groups[0]['lr']))
print('rgbloss={} azimuthloss={} maskloss={} eikloss={}'.format(color_fine_loss, azimuth_loss, mask_loss, eikonal_loss))
if self.iter_step % self.save_freq == 0:
self.save_checkpoint()
if self.iter_step % self.val_freq == 0:
self.validate_image(only_diffuse,self.a_mask)
self.update_learning_rate()
if self.iter_step % len(image_perm) == 0:
image_perm = self.get_image_perm()
def get_eikonal_loss(self,grad_theta):
if grad_theta.shape[0] == 0:
return torch.tensor(0.0).cuda().float()
eikonal_loss = ((grad_theta.norm(2, dim=1) - 1) ** 2).mean()
return eikonal_loss
def get_azimuth_loss(self,outputs,inputs):
gradients = outputs['gradients']
weights = outputs['weights'].reshape(-1, 1)
inside_sphere = outputs['inside_sphere']
surface_mask = outputs['surface_mask']
object_mask = inputs['object_mask']
object_mask = object_mask.squeeze()
normals = gradients
normals = normals * inside_sphere[..., None]
normals = normals.reshape(-1, 3)
TSC_loss =self.get_half_pi_tangent_space_consistency_loss(normals,
outputs["tangent_vectors_all_view"],
outputs[
"tangent_vectors_all_view_half_pi"],
outputs["visibility_mask"],
weights,surface_mask, object_mask)
return TSC_loss
def get_half_pi_tangent_space_consistency_loss(self, normals, tangents_all_view, tangents_all_view_pi2,
visibility_mask, weights, surface_mask,object_mask):
normals = F.normalize(normals,dim=-1)
weights = weights[surface_mask]
normals = normals[surface_mask]
not_nan_mask = ~torch.isnan(tangents_all_view.sum(-1))
visibility_mask = visibility_mask & not_nan_mask
tangents_all_view[torch.isnan(tangents_all_view)] = 1
tangents_all_view_pi2[torch.isnan(tangents_all_view_pi2)] = 1
num_visible_views = visibility_mask.sum(-1)
loss_1= ((normals.unsqueeze(1) * tangents_all_view).sum(-1)) ** 2
loss_1 = loss_1 * weights
loss_2 = ((normals.unsqueeze(1) * tangents_all_view_pi2).sum(-1)) ** 2
loss_2 = loss_2 * weights
loss_1 = loss_1 * visibility_mask
loss_2 = loss_2* visibility_mask
visible_view_mask = num_visible_views > 0
loss = loss_1 * loss_2
loss = loss[visible_view_mask].sum(-1) / num_visible_views[visible_view_mask]
loss = loss.sum() / float(visible_view_mask.shape[0])
return loss
def get_image_perm(self):
return torch.arange(0, self.train_dataset.num_views, 1)
def get_cos_anneal_ratio(self):
if self.anneal_end == 0.0:
return 1.0
else:
return np.min([1.0, self.iter_step / self.anneal_end])
def update_learning_rate(self):
if self.iter_step < self.warm_up_end:
learning_factor = self.iter_step / self.warm_up_end
else:
alpha = self.learning_rate_alpha
progress = (self.iter_step - self.warm_up_end) / (self.end_iter - self.warm_up_end)
learning_factor = (np.cos(np.pi * progress) + 1.0) * 0.5 * (1 - alpha) + alpha
for g in self.optimizer.param_groups:
g['lr'] = self.learning_rate * learning_factor
def file_backup(self):
dir_lis = self.conf['general.recording']
os.makedirs(os.path.join(self.base_exp_dir, 'recording'), exist_ok=True)
for dir_name in dir_lis:
cur_dir = os.path.join(self.base_exp_dir, 'recording', dir_name)
os.makedirs(cur_dir, exist_ok=True)
files = os.listdir(dir_name)
for f_name in files:
if f_name[-3:] == '.py':
copyfile(os.path.join(dir_name, f_name), os.path.join(cur_dir, f_name))
copyfile(self.conf_path, os.path.join(self.base_exp_dir, 'recording', 'config.conf'))
def load_checkpoint(self, checkpoint_name):
checkpoint = torch.load(checkpoint_name, map_location=self.device)
self.nerf_outside.load_state_dict(checkpoint['nerf'])
self.sdf_network.load_state_dict(checkpoint['sdf_network_fine'])
self.deviation_network.load_state_dict(checkpoint['variance_network_fine'])
self.color_network.load_state_dict(checkpoint['color_network_fine'])
self.rough_network.load_state_dict(checkpoint['rough_network'])
self.specular_network.load_state_dict(checkpoint['specular_network'])
self.optimizer.load_state_dict(checkpoint['optimizer'])
self.iter_step = checkpoint['iter_step']
logging.info('End')
def save_checkpoint(self):
checkpoint = {
'nerf': self.nerf_outside.state_dict(),
'sdf_network_fine': self.sdf_network.state_dict(),
'variance_network_fine': self.deviation_network.state_dict(),
'color_network_fine': self.color_network.state_dict(),
'optimizer': self.optimizer.state_dict(),
'rough_network': self.rough_network.state_dict(),
'specular_network': self.specular_network.state_dict(),
'iter_step': self.iter_step,
}
os.makedirs(os.path.join(self.base_exp_dir_root, 'checkpoints', self.now_time), exist_ok=True)
torch.save(checkpoint, os.path.join(self.base_exp_dir_root, 'checkpoints', self.now_time, 'ckpt_{:0>6d}.pth'.format(self.iter_step)))
def validate_image(self,only_diffuse=False,a_mask=0,idx=-1, resolution_level=-1):
training = False
idx,input = next(iter(self.test_list))
if idx == len(self.test_dataset)-1:
self.test_list = enumerate(self.test_dataloader)
if resolution_level < 0:
resolution_level = self.validate_resolution_level
rays_o, rays_d , mask_all= input["camera_center"].squeeze().to(device),input["view_direction"].squeeze().to(device),input["mask"].reshape(-1,1).to(device)
print('Validate: iter: {}, camera: {}'.format(self.iter_step, idx))
H, W = self.test_dataset.img_height, self.test_dataset.img_width
rays_o = rays_o.split(self.batch_size)
rays_d = rays_d.split(self.batch_size)
mask = mask_all.split(self.batch_size)
out_rgb_fine = []
out_normal_fine = []
out_specular_fine =[]
out_albedo_fine = []
out_roughness_fine = []
for rays_o_batch, rays_d_batch,mask in zip(rays_o, rays_d,mask):
near, far = near_far_from_sphere(rays_o_batch, rays_d_batch)
background_rgb = torch.ones([1, 3]) if self.use_white_bkgd else None
render_out = self.renderer.render(rays_o_batch,
rays_d_batch,a_mask,idx,self.test_dataset,
near,
far,
cos_anneal_ratio=self.get_cos_anneal_ratio(),
background_rgb=background_rgb,training=training,only_diffuse=only_diffuse)
def feasible(key): return (key in render_out) and (render_out[key] is not None)
if feasible('color_fine'):
out_rgb_fine.append(render_out['color_fine'][...,0].detach().cpu().numpy()+render_out['specular_color'][...,0].detach().cpu().numpy())
if feasible('gradients') and feasible('weights'):
n_samples = self.renderer.n_samples + self.renderer.n_importance
normals = render_out['gradients'] * render_out['weights'][:, :n_samples, None]
normals = normals.sum(dim=1) * mask
normals = F.normalize(normals,dim=-1).detach().cpu().numpy()
out_normal_fine.append(normals)
if feasible('specular_color'):
out_specular_fine.append(render_out['specular_color'][...,0].detach().cpu().numpy())
if feasible('color_fine'):
out_albedo_fine.append(render_out['color_fine'][...,0].detach().cpu().numpy())
if feasible('rough_color'):
out_roughness_fine.append(render_out['rough_color'][...,0].detach().cpu().numpy())
del render_out
img_fine = None
if len(out_rgb_fine) > 0:
img_fine = (np.concatenate(out_rgb_fine, axis=0).reshape([H, W, 3, -1])).clip(0, 1)**(1/2.2)*255
normal_img = None
if len(out_normal_fine) > 0:
normal_img = np.concatenate(out_normal_fine, axis=0).reshape([H, W, 3, -1])
w2c = self.test_dataset.W2C_list[idx, :3, :3]
# transform w2c to tensor
w2c = torch.tensor(w2c, dtype=torch.float32).to(device)
rot = np.linalg.inv((w2c.permute(1,0)).detach().cpu().numpy())
normal_img = normal_img[:, :, None]
normal_img = np.matmul(rot[None, :, :], normal_img).reshape([H, W, 3, -1])
normal = normal_img.copy()
if self.data_type == 'pandora' or self.data_type == 'ours_real':
normal[...,0,:] = -normal_img[...,2,:]
normal[...,1,:] = -normal_img[...,1,:]
normal[...,2,:] = normal_img[...,0,:]
elif self.data_type == 'ours_synthetic':
normal[...,0,:] = -normal_img[...,2,:]
normal[...,1,:] = normal_img[...,1,:]
normal[...,2,:] = -normal_img[...,0,:]
normal_img = ((normal+1)/2).clip(0,1)*255
roughness_fine = None
if len(out_roughness_fine) > 0:
roughness_fine = (np.concatenate(out_roughness_fine, axis=0).reshape([H, W, 1, -1]))
roughness_fine = roughness_fine/roughness_fine.max()
roughness_fine = roughness_fine.clip(0,1)*255
specular_fine = None
if len(out_specular_fine) > 0:
specular_fine = (np.concatenate(out_specular_fine, axis=0).reshape([H, W, 3, -1])).clip(0, 1)**(1/2.2)*255
albedo_fine = None
if len(out_albedo_fine) > 0:
albedo_fine = (np.concatenate(out_albedo_fine, axis=0).reshape([H, W, 3, -1])).clip(0, 1)**(1/2.2)*255
os.makedirs(os.path.join(self.base_exp_dir, 'validations_fine'), exist_ok=True)
os.makedirs(os.path.join(self.base_exp_dir, 'normals'), exist_ok=True)
os.makedirs(os.path.join(self.base_exp_dir, 'specular'), exist_ok=True)
os.makedirs(os.path.join(self.base_exp_dir, 'albedo'), exist_ok=True)
os.makedirs(os.path.join(self.base_exp_dir, 'roughness'), exist_ok=True)
for i in range(img_fine.shape[-1]):
if len(out_rgb_fine) > 0:
cv.imwrite(os.path.join(self.base_exp_dir,
'validations_fine',
'{:0>8d}_{}_{}.png'.format(self.iter_step, i, idx)),
np.concatenate([img_fine[..., i][...,::-1],
self.test_dataset.image_at(idx, resolution_level=resolution_level)]))
if len(out_normal_fine) > 0:
cv.imwrite(os.path.join(self.base_exp_dir,
'normals',
'{:0>8d}_{}_{}.png'.format(self.iter_step, i, idx)),
normal_img[..., i])
if len(out_specular_fine) > 0:
cv.imwrite(os.path.join(self.base_exp_dir,
'specular',
'{:0>8d}_{}_{}.png'.format(self.iter_step, i, idx)),
specular_fine[..., i][...,::-1])
if len(out_albedo_fine) > 0:
cv.imwrite(os.path.join(self.base_exp_dir,
'albedo',
'{:0>8d}_{}_{}.png'.format(self.iter_step, i, idx)),
albedo_fine[..., i][...,::-1])
if len(out_roughness_fine) > 0:
cv.imwrite(os.path.join(self.base_exp_dir,
'roughness',
'{:0>8d}_{}_{}.png'.format(self.iter_step, i, idx)),
roughness_fine[..., i][...,::-1])
def validate_mesh(self, world_space=False, resolution=64, threshold=0.0):
bound_min = torch.tensor(self.test_dataset.object_bbox_min, dtype=torch.float32)
bound_max = torch.tensor(self.test_dataset.object_bbox_max, dtype=torch.float32)
vertices, triangles =\
self.renderer.extract_geometry(bound_min, bound_max, resolution=resolution, mask = self.test_dataset.mask_list,\
intrinsics=self.test_dataset.K[:3,:3], extrinsics=self.test_dataset.W2C_list, threshold=threshold)
os.makedirs(os.path.join(self.base_exp_dir, 'meshes'), exist_ok=True)
if world_space:
vertices = vertices * self.test_dataset.scale_mats_np[0][0, 0] + self.test_dataset.scale_mats_np[0][:3, 3][None]
mesh = trimesh.Trimesh(vertices, triangles)
mesh.export(os.path.join(self.base_exp_dir, 'meshes', '{:0>8d}.ply'.format(self.iter_step)))
logging.info('End')
if __name__ == '__main__':
torch.random.manual_seed(0)
np.random.seed(0)
torch.set_default_tensor_type('torch.cuda.FloatTensor')
FORMAT = "[%(filename)s:%(lineno)s - %(funcName)20s() ] %(message)s"
logging.basicConfig(level=logging.DEBUG, format=FORMAT)
parser = argparse.ArgumentParser()
parser.add_argument('--conf', type=str, default='./confs/wmask_ours_synthetic.conf')
parser.add_argument('--mode', type=str, default='validate_mesh')
parser.add_argument('--mcube_threshold', type=float, default=0.0)
parser.add_argument('--gpu', type=int, default=0)
parser.add_argument('--select_model',type=str,default='latest')
parser.add_argument('--case', type=str, default='25_6')
args = parser.parse_args()
torch.cuda.set_device(args.gpu)
runner = Runner(args.conf, args.mode, args.case, args.select_model)
if args.mode == 'train':
runner.train()
elif args.mode == 'validate_mesh':
runner.validate_mesh(world_space=False, resolution=512, threshold=args.mcube_threshold)
for i in range(len(runner.test_dataset)):
runner.validate_image()