-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_net_url.py
223 lines (194 loc) · 11.1 KB
/
train_net_url.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
"""
This code allows you to train the URL model proposed in
'Universal Representation Learning from Multiple Domains for Few-shot Classification'
(https://arxiv.org/pdf/2103.13841.pdf).
"""
import os
import sys
import torch
import numpy as np
import tensorflow as tf
from time import sleep
from tqdm import tqdm, trange
from torch.utils.tensorboard import SummaryWriter
from data.meta_dataset_reader import (MetaDatasetBatchReader,
MetaDatasetEpisodeReader)
from models.losses import cross_entropy_loss, prototype_loss, distillation_loss, DistillKL
from models.model_utils import (CheckPointer, UniformStepLR,
CosineAnnealRestartLR, ExpDecayLR, WeightAnnealing)
from models.models_dict import DATASET_MODELS_DICT
from models.model_helpers import get_model, get_optimizer, get_domain_extractors
from models.adaptors import adaptor
from utils import Accumulator, device
from config import args, BATCHSIZES, LOSSWEIGHTS, KDFLOSSWEIGHTS, KDPLOSSWEIGHTS, KDANNEALING
def train():
# initialize datasets and loaders
trainsets, valsets, testsets = args['data.train'], args['data.val'], args['data.test']
train_loaders = []
num_train_classes = dict()
kd_weight_annealing = dict()
for t_indx, trainset in enumerate(trainsets):
train_loaders.append(MetaDatasetBatchReader('train', [trainset], valsets, testsets,
batch_size=BATCHSIZES[trainset]))
num_train_classes[trainset] = train_loaders[t_indx].num_classes('train')
# setting up knowledge distillation losses weights annealing
kd_weight_annealing[trainset] = WeightAnnealing(T=int(args['train.cosine_anneal_freq'] * KDANNEALING[trainset]))
val_loader = MetaDatasetEpisodeReader('val', trainsets, valsets, testsets)
# initialize model and optimizer
model = get_model(list(num_train_classes.values()), args)
model_name_temp = args['model.name']
# KL-divergence loss
criterion_div = DistillKL(T=4)
# get a MTL model initialized by ImageNet pretrained model and deactivate the pretrained flag
args['model.pretrained']=False
optimizer = get_optimizer(model, args, params=model.get_parameters())
# adaptors for aligning features between MDL and SDL models
adaptors = adaptor(num_datasets=len(trainsets), dim_in=512, opt=args['adaptor.opt']).to(device)
optimizer_adaptor = torch.optim.Adam(adaptors.parameters(), lr=0.1, weight_decay=5e-4)
# loading single domain learning networks
extractor_domains = trainsets
dataset_models = DATASET_MODELS_DICT[args['model.backbone']]
embed_many = get_domain_extractors(extractor_domains, dataset_models, args, num_train_classes)
# restoring the last checkpoint
args['model.name'] = model_name_temp
checkpointer = CheckPointer(args, model, optimizer=optimizer)
if os.path.isfile(checkpointer.out_last_ckpt) and args['train.resume']:
start_iter, best_val_loss, best_val_acc =\
checkpointer.restore_out_model(ckpt='last')
else:
print('No checkpoint restoration')
best_val_loss = 999999999
best_val_acc = start_iter = 0
# define learning rate policy
if args['train.lr_policy'] == "step":
lr_manager = UniformStepLR(optimizer, args, start_iter)
lr_manager_ad = UniformStepLR(optimizer_adaptor, args, start_iter)
elif "exp_decay" in args['train.lr_policy']:
lr_manager = ExpDecayLR(optimizer, args, start_iter)
lr_manager_ad = ExpDecayLR(optimizer_adaptor, args, start_iter)
elif "cosine" in args['train.lr_policy']:
lr_manager = CosineAnnealRestartLR(optimizer, args, start_iter)
lr_manager_ad = CosineAnnealRestartLR(optimizer_adaptor, args, start_iter)
# defining the summary writer
writer = SummaryWriter(checkpointer.out_path)
# Training loop
max_iter = args['train.max_iter']
epoch_loss = {name: [] for name in trainsets}
epoch_kd_f_loss = {name: [] for name in trainsets}
epoch_kd_p_loss = {name: [] for name in trainsets}
epoch_acc = {name: [] for name in trainsets}
epoch_val_loss = {name: [] for name in valsets}
epoch_val_acc = {name: [] for name in valsets}
config = tf.compat.v1.ConfigProto()
config.gpu_options.allow_growth = False
with tf.compat.v1.Session(config=config) as session:
for i in tqdm(range(max_iter)):
if i < start_iter:
continue
optimizer.zero_grad()
optimizer_adaptor.zero_grad()
samples = []
images = dict()
num_samples = []
# loading images and labels
for t_indx, (name, train_loader) in enumerate(zip(trainsets, train_loaders)):
sample = train_loader.get_train_batch(session)
samples.append(sample)
images[name] = sample['images']
num_samples.append(sample['images'].size(0))
logits, mtl_features = model.forward(torch.cat(list(images.values()), dim=0), num_samples, kd=True)
stl_features, stl_logits = embed_many(images, return_type='list', kd=True, logits=True)
mtl_features = adaptors(mtl_features)
batch_losses, stats_dicts = [], []
kd_f_losses = 0
kd_p_losses = 0
for t_indx, trainset in enumerate(trainsets):
batch_loss, stats_dict, _ = cross_entropy_loss(logits[t_indx], samples[t_indx]['labels'])
batch_losses.append(batch_loss*LOSSWEIGHTS[trainset])
stats_dicts.append(stats_dict)
batch_dataset = samples[t_indx]['dataset_name']
epoch_loss[batch_dataset].append(stats_dict['loss'])
epoch_acc[batch_dataset].append(stats_dict['acc'])
ft, fs = torch.nn.functional.normalize(stl_features[t_indx], p=2, dim=1, eps=1e-12), torch.nn.functional.normalize(mtl_features[t_indx], p=2, dim=1, eps=1e-12)
kd_f_losses_ = distillation_loss(fs, ft.detach(), opt='kernelcka')
kd_p_losses_ = criterion_div(logits[t_indx], stl_logits[t_indx])
kd_weight = kd_weight_annealing[trainset](t=i, opt='linear') * KDFLOSSWEIGHTS[trainset]
bam_weight = kd_weight_annealing[trainset](t=i, opt='linear') * KDPLOSSWEIGHTS[trainset]
if kd_weight > 0:
kd_f_losses = kd_f_losses + kd_f_losses_ * kd_weight
if bam_weight > 0:
kd_p_losses = kd_p_losses + kd_p_losses_ * bam_weight
epoch_kd_f_loss[batch_dataset].append(kd_f_losses_.item())
epoch_kd_p_loss[batch_dataset].append(kd_p_losses_.item())
batch_loss = torch.stack(batch_losses).sum()
kd_f_loss = kd_f_losses * args['train.sigma']
kd_p_loss = kd_p_losses * args['train.beta']
batch_loss = batch_loss + kd_f_loss + kd_p_loss
batch_loss.backward()
optimizer.step()
optimizer_adaptor.step()
lr_manager.step(i)
lr_manager_ad.step(i)
if (i + 1) % 200 == 0:
for dataset_name in trainsets:
writer.add_scalar(f"loss/{dataset_name}-train_loss",
np.mean(epoch_loss[dataset_name]), i)
writer.add_scalar(f"accuracy/{dataset_name}-train_acc",
np.mean(epoch_acc[dataset_name]), i)
writer.add_scalar(f"kd_f_loss/{dataset_name}-train_kd_f_loss",
np.mean(epoch_kd_f_loss[dataset_name]), i)
writer.add_scalar(f"kd_p_loss/{dataset_name}-train_kd_p_loss",
np.mean(epoch_kd_p_loss[dataset_name]), i)
epoch_loss[dataset_name], epoch_acc[dataset_name], epoch_kd_f_loss[dataset_name], epoch_kd_p_loss[dataset_name] = [], [], [], []
writer.add_scalar('learning_rate',
optimizer.param_groups[0]['lr'], i)
# Evaluation inside the training loop
if (i + 1) % args['train.eval_freq'] == 0:
model.eval()
dataset_accs, dataset_losses = [], []
for valset in valsets:
val_losses, val_accs = [], []
for j in tqdm(range(args['train.eval_size'])):
with torch.no_grad():
sample = val_loader.get_validation_task(session, valset)
context_features = model.embed(sample['context_images'])
target_features = model.embed(sample['target_images'])
context_labels = sample['context_labels']
target_labels = sample['target_labels']
_, stats_dict, _ = prototype_loss(context_features, context_labels,
target_features, target_labels)
val_losses.append(stats_dict['loss'])
val_accs.append(stats_dict['acc'])
# write summaries per validation set
dataset_acc, dataset_loss = np.mean(val_accs) * 100, np.mean(val_losses)
dataset_accs.append(dataset_acc)
dataset_losses.append(dataset_loss)
epoch_val_loss[valset].append(dataset_loss)
epoch_val_acc[valset].append(dataset_acc)
writer.add_scalar(f"loss/{valset}/val_loss", dataset_loss, i)
writer.add_scalar(f"accuracy/{valset}/val_acc", dataset_acc, i)
print(f"{valset}: val_acc {dataset_acc:.2f}%, val_loss {dataset_loss:.3f}")
# write summaries averaged over datasets
avg_val_loss, avg_val_acc = np.mean(dataset_losses), np.mean(dataset_accs)
writer.add_scalar(f"loss/avg_val_loss", avg_val_loss, i)
writer.add_scalar(f"accuracy/avg_val_acc", avg_val_acc, i)
# saving checkpoints
if avg_val_acc > best_val_acc:
best_val_loss, best_val_acc = avg_val_loss, avg_val_acc
is_best = True
print('Best model so far!')
else:
is_best = False
extra_dict = {'epoch_loss': epoch_loss, 'epoch_acc': epoch_acc, 'epoch_val_loss': epoch_val_loss, 'epoch_val_acc': epoch_val_acc, 'adaptors': adaptors.state_dict(), 'optimizer_adaptor':optimizer_adaptor.state_dict()}
checkpointer.save_checkpoint(i, best_val_acc, best_val_loss,
is_best, optimizer=optimizer,
state_dict=model.get_state_dict(), extra=extra_dict)
model.train()
print(f"Trained and evaluated at {i}")
writer.close()
if start_iter < max_iter:
print(f"""Done training with best_mean_val_loss: {best_val_loss:.3f}, best_avg_val_acc: {best_val_acc:.2f}%""")
else:
print(f"""No training happened. Loaded checkpoint at {start_iter}, while max_iter was {max_iter}""")
if __name__ == '__main__':
train()