-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathfluid.cu
647 lines (526 loc) · 19.7 KB
/
fluid.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
#include <stdio.h>
#include <string>
#include <fstream>
#include <iostream>
#include <sstream>
#include <iomanip>
#include <cuda_fp16.h>
#include "cutil_math.h"
#include "double_buffer.cpp"
// Container for simulation state
struct fluid_state {
float3 impulseLoc;
float impulseTemp;
float impulseDensity;
float impulseRadius;
float f_weight;
float cell_size;
float time_step;
int3 dim;
int64_t nelems;
int step;
DoubleBuffer<float3> *velocity;
DoubleBuffer<float> *density;
DoubleBuffer<float> *temperature;
DoubleBuffer<float> *pressure;
float *diverge;
fluid_state(int3 dims) {
step = 0;
dim = dims;
nelems = dims.x*dims.y*dims.z;
velocity = new DoubleBuffer<float3>(nelems);
density = new DoubleBuffer<float>(nelems);
temperature = new DoubleBuffer<float>(nelems);
pressure = new DoubleBuffer<float>(nelems);
cudaMalloc( (void**) &diverge, sizeof(float)*nelems);
}
~fluid_state() {
delete velocity;
delete density;
delete temperature;
delete pressure;
cudaFree(diverge);
}
};
// A couple IO utility functions
std::string pad_number(int n)
{
std::ostringstream ss;
ss << std::setw( 7 ) << std::setfill( '0' ) << n;
return ss.str();
}
void save_image(uint8_t *pixels, int3 img_dims, std::string name) {
std::ofstream file(name, std::ofstream::binary);
if (file.is_open()) {
file << "P6\n" << img_dims.x << " " << img_dims.y << "\n" << "255\n";
file.write((char *)pixels, img_dims.x*img_dims.y*3);
file.close();
} else {
std::cout << "Could not open file :(\n";
}
}
// GPU helper functions
inline __device__ int3 operator*(const dim3 a, const uint3 b) {
return make_int3(a.x*b.x, a.y*b.y, a.z*b.z);
}
inline __device__ int3 operator+(dim3 a, int3 b) {
return make_int3(a.x+b.x, a.y+b.y, a.z+b.z);
}
inline __device__ int get_voxel(int x, int y, int z, int3 d)
{
return z*d.y*d.x + y*d.x + x;
}
template <typename T> inline __device__ T zero() { return 0.0; }
template <> inline __device__ float zero<float>() { return 0.0f; }
template <> inline __device__ float3 zero<float3>() { return make_float3(0.0f); }
template <typename T>
inline __device__ T get_cell(int3 c, int3 d, T *vol) {
if (c.x < 0 || c.y < 0 || c.z < 0 ||
c.x >= d.x || c.y >= d.y || c.z >= d.z) {
return zero<T>();
} else {
return vol[ get_voxel( c.x, c.y, c.z, d ) ];
}
}
template <typename T>
inline __device__ T get_cellF(float3 p, int3 d, T *vol) {
// bilinear interpolation
float3 l = floor(p);
int3 rp = make_int3(l);
float3 dif = p-l;
T sum = zero<T>();
#pragma unroll
for (int a=0; a<=1; a++)
{
#pragma unroll
for (int b=0; b<=1; b++)
{
#pragma unroll
for (int c=0; c<=1; c++)
{
sum += abs(float(1-a)-dif.x) *
abs(float(1-b)-dif.y) *
abs(float(1-c)-dif.z) *
get_cell( make_int3( rp.x+a, rp.y+b, rp.z+c ), d, vol);
}
}
}
return sum;
}
// Convert single index into 3D coordinates
inline __device__ int3 mod_coords(int i, int d) {
return make_int3( i%d, (i/d) % d, (i/(d*d)) );
}
template <typename T>
inline __device__ T read_shared(T *mem, dim3 c,
int3 blk_dim, int pad, int x, int y, int z)
{
return mem[ get_voxel(c.x+pad+x, c.y+pad+y, c.z+pad+z, blk_dim) ];
}
template <typename T>
__device__ void load_shared(dim3 blkDim, dim3 blkIdx,
dim3 thrIdx, int3 vd, int sdim, T *shared, T *src)
{
int t_idx = thrIdx.z*blkDim.y*blkDim.x
+ thrIdx.y*blkDim.x + thrIdx.x;
// Load sdim*sdim*sdim cube of memory into shared array
const int cutoff = (sdim*sdim*sdim)/2;
if (t_idx < cutoff) {
int3 sp = mod_coords(t_idx, sdim);
sp = sp + blkDim*blkIdx - 1;
shared[t_idx] = get_cell( sp, vd, src);
sp = mod_coords(t_idx+cutoff, sdim);
sp = sp + blkDim*blkIdx - 1;
shared[t_idx+cutoff] = get_cell( sp, vd, src);
}
}
// Simulation compute kernels
template <typename T>
__global__ void pressure_solve(T *div, T *p_src, T *p_dst,
int3 vd, float amount)
{
__shared__ T loc[1024];
const int padding = 1; // How far to load past end of cube
const int sdim = blockDim.x+2*padding; // 10 with blockdim 8
const int3 s_dims = make_int3(sdim, sdim, sdim);
const int x = blockDim.x*blockIdx.x+threadIdx.x;
const int y = blockDim.y*blockIdx.y+threadIdx.y;
const int z = blockDim.z*blockIdx.z+threadIdx.z;
load_shared(
blockDim, blockIdx, threadIdx, vd, sdim, loc, p_src);
__syncthreads();
if (x >= vd.x || y >= vd.y || z >= vd.z) return;
T d = div[get_voxel(x,y,z, vd)];
T p_sum =
read_shared(loc, threadIdx, s_dims, padding, -1, 0, 0);
p_sum += read_shared(loc, threadIdx, s_dims, padding, 1, 0, 0);
p_sum += read_shared(loc, threadIdx, s_dims, padding, 0, -1, 0);
p_sum += read_shared(loc, threadIdx, s_dims, padding, 0, 1, 0);
p_sum += read_shared(loc, threadIdx, s_dims, padding, 0, 0, -1);
p_sum += read_shared(loc, threadIdx, s_dims, padding, 0, 0, 1);
//avg /= 6.0;
//avg -= o;
p_dst[ get_voxel(x,y,z, vd) ] = (p_sum+amount*d)*0.166667;//o + avg*amount;
}
template <typename V, typename T>
__global__ void divergence(V *velocity, T *div, int3 vd, float half_cell)
{
__shared__ V loc[1024];
const int padding = 1; // How far to load past end of cube
const int sdim = blockDim.x+2*padding; // 10 with blockdim 8
const int3 s_dims = make_int3(sdim, sdim, sdim);
const int x = blockDim.x*blockIdx.x+threadIdx.x;
const int y = blockDim.y*blockIdx.y+threadIdx.y;
const int z = blockDim.z*blockIdx.z+threadIdx.z;
load_shared(
blockDim, blockIdx, threadIdx, vd, sdim, loc, velocity);
__syncthreads();
if (x >= vd.x || y >= vd.y || z >= vd.z) return;
T d =
read_shared(loc, threadIdx, s_dims, padding, 1, 0, 0).x;
d -= read_shared(loc, threadIdx, s_dims, padding, -1, 0, 0).x;
d += read_shared(loc, threadIdx, s_dims, padding, 0, 1, 0).y;
d -= read_shared(loc, threadIdx, s_dims, padding, 0, -1, 0).y;
d += read_shared(loc, threadIdx, s_dims, padding, 0, 0, 1).z;
d -= read_shared(loc, threadIdx, s_dims, padding, 0, 0, -1).z;
d *= half_cell;
div[ get_voxel(x,y,z, vd) ] = d;
}
template <typename V, typename T>
__global__ void subtract_pressure(V *v_src, V *v_dest, T *pressure,
int3 vd, float grad_scale)
{
__shared__ T loc[1024];
const int padding = 1; // How far to load past end of cube
const int sdim = blockDim.x+2*padding; // 10 with blockdim 8
const int3 s_dims = make_int3(sdim, sdim, sdim);
const int x = blockDim.x*blockIdx.x+threadIdx.x;
const int y = blockDim.y*blockIdx.y+threadIdx.y;
const int z = blockDim.z*blockIdx.z+threadIdx.z;
load_shared(
blockDim, blockIdx, threadIdx, vd, sdim, loc, pressure);
__syncthreads();
if (x >= vd.x || y >= vd.y || z >= vd.z) return;
V old_v = get_cell(make_int3(x,y,z), vd, v_src);
V grad;
grad.x =
read_shared(loc, threadIdx, s_dims, padding, 1, 0, 0) -
read_shared(loc, threadIdx, s_dims, padding, -1, 0, 0);
grad.y =
read_shared(loc, threadIdx, s_dims, padding, 0, 1, 0) -
read_shared(loc, threadIdx, s_dims, padding, 0, -1, 0);
grad.z =
read_shared(loc, threadIdx, s_dims, padding, 0, 0, 1) -
read_shared(loc, threadIdx, s_dims, padding, 0, 0, -1);
v_dest[ get_voxel(x,y,z, vd) ] = old_v - grad*grad_scale;
}
template <typename V, typename T>
__global__ void advection( V *velocity, T *source, T *dest, int3 vd,
float time_step, float dissipation)
{
const int x = blockDim.x*blockIdx.x+threadIdx.x;
const int y = blockDim.y*blockIdx.y+threadIdx.y;
const int z = blockDim.z*blockIdx.z+threadIdx.z;
if (x >= vd.x || y >= vd.y || z >= vd.z) return;
V vel = velocity[ get_voxel(x,y,z,vd) ];
float3 np = make_float3(float(x),float(y),float(z)) - time_step*vel;
dest[ get_voxel(x,y,z, vd) ] = dissipation * get_cellF(np, vd, source);
}
template <typename T>
__global__ void impulse( T *target, float3 c,
float radius, T val, int3 vd)
{
const int x = blockDim.x*blockIdx.x+threadIdx.x;
const int y = blockDim.y*blockIdx.y+threadIdx.y;
const int z = blockDim.z*blockIdx.z+threadIdx.z;
if (x >= vd.x || y >= vd.y || z >= vd.z) return;
float3 p = make_float3(float(x),float(y),float(z));
float dist = length(p-c);
if (dist < radius) {
target[ get_voxel(x,y,z, vd) ] = val;
}
}
template <typename T>
__global__ void soft_impulse( T *target, float3 c,
float radius, T val, float speed, int3 vd)
{
const int x = blockDim.x*blockIdx.x+threadIdx.x;
const int y = blockDim.y*blockIdx.y+threadIdx.y;
const int z = blockDim.z*blockIdx.z+threadIdx.z;
if (x >= vd.x || y >= vd.y || z >= vd.z) return;
float3 p = make_float3(float(x),float(y),float(z));
float dist = length(p-c);
T cur = target[ get_voxel(x,y,z, vd) ];
if (dist < radius && cur < val) {
target[ get_voxel(x,y,z, vd) ] = cur + speed*val;
}
}
template <typename T>
__global__ void wavey_impulse( T *target, float3 c,
float3 size, T base, float amp, float freq, int3 vd)
{
const int x = blockDim.x*blockIdx.x+threadIdx.x;
const int y = blockDim.y*blockIdx.y+threadIdx.y;
const int z = blockDim.z*blockIdx.z+threadIdx.z;
if (x >= vd.x || y >= vd.y || z >= vd.z) return;
float3 p = make_float3(float(x),float(y),float(z));
//float dist = length(p-c);
float3 minC = c-size;
float3 maxC = c+size;
//T cur = target[ get_voxel(x,y,z, vd) ];
if (p.x>minC.x && p.y>minC.y && p.z>minC.z &&
p.x<maxC.x && p.y<maxC.y && p.z<maxC.z ) {
float v = 0.5*(sin(freq*p.x)+sin(freq*p.z)+0.0);
v = v*v*v*v*v;
target[ get_voxel(x,y,z, vd) ] = base + amp*v;
}
}
template <typename V, typename T>
__global__ void buoyancy( V *v_src, T *t_src, T *d_src, V *v_dest,
float amb_temp, float time_step, float buoy, float weight, int3 vd)
{
const int x = blockDim.x*blockIdx.x+threadIdx.x;
const int y = blockDim.y*blockIdx.y+threadIdx.y;
const int z = blockDim.z*blockIdx.z+threadIdx.z;
if (x >= vd.x || y >= vd.y || z >= vd.z) return;
T temp = t_src[ get_voxel(x,y,z, vd)];
V vel = v_src[ get_voxel(x,y,z, vd)];
if (temp > amb_temp)
{
T dense = d_src[ get_voxel(x,y,z, vd)];
vel.y += (time_step * (temp - amb_temp) * buoy - dense * weight);
}
v_dest[ get_voxel(x,y,z, vd)] = vel;
}
// Runs a single iteration of the simulation
void simulate_fluid( fluid_state& state)
{
float measured_time=0.0f;
cudaEvent_t start, stop;
cudaEventCreate( &start );
cudaEventCreate( &stop );
const int s = 8;
dim3 block( s, s, s );
dim3 grid( (state.dim.x+s-1)/s,
(state.dim.y+s-1)/s,
(state.dim.z+s-1)/s );
cudaEventRecord( start, 0 );
advection<<<grid,block>>>(
state.velocity->readTarget(),
state.velocity->readTarget(),
state.velocity->writeTarget(),
state.dim, state.time_step, 1.0);
state.velocity->swap();
advection<<<grid,block>>>(
state.velocity->readTarget(),
state.temperature->readTarget(),
state.temperature->writeTarget(),
state.dim, state.time_step, 0.998);
state.temperature->swap();
advection<<<grid,block>>>(
state.velocity->readTarget(),
state.density->readTarget(),
state.density->writeTarget(),
state.dim, state.time_step, 0.9999);
state.density->swap();
buoyancy<<<grid,block>>>(
state.velocity->readTarget(),
state.temperature->readTarget(),
state.density->readTarget(),
state.velocity->writeTarget(),
0.0f, state.time_step, 1.0f, state.f_weight, state.dim);
state.velocity->swap();
float3 location = state.impulseLoc;
location.x += 75.0*sinf(-0.003f*float(state.step));
location.y += 75.0*cosf(-0.003f*float(state.step));
/*
soft_impulse<<<grid,block>>>(
state.temperature->readTarget(),
location, state.impulseRadius,
state.impulseTemp, 0.01, state.dim);
soft_impulse<<<grid,block>>>(
state.density->readTarget(),
location, state.impulseRadius,
state.impulseDensity, 0.01, state.dim);
*/
divergence<<<grid,block>>>(
state.velocity->readTarget(),
state.diverge, state.dim, 0.5);
// clear pressure
impulse<<<grid,block>>>(
state.pressure->readTarget(),
make_float3(0.0), 1000000.0f,
0.0f, state.dim);
for (int i=0; i<35; i++)
{
pressure_solve<<<grid,block>>>(
state.diverge,
state.pressure->readTarget(),
state.pressure->writeTarget(),
state.dim, -1.0);
state.pressure->swap();
}
subtract_pressure<<<grid,block>>>(
state.velocity->readTarget(),
state.velocity->writeTarget(),
state.pressure->readTarget(),
state.dim, 1.0);
state.velocity->swap();
cudaEventRecord( stop, 0 );
cudaThreadSynchronize();
cudaEventElapsedTime( &measured_time, start, stop );
cudaEventDestroy( start );
cudaEventDestroy( stop );
std::cout << "Simulation Time: " << measured_time << "\n";
}
__device__ float2 rotate(float2 p, float a)
{
return make_float2(p.x*cos(a) - p.y*sin(a),
p.y*cos(a) + p.x*sin(a));
}
// GPU volumetric raymarcher
__global__ void render_pixel( uint8_t *image, float *volume,
float *temper, int3 img_dims, int3 vol_dims, float step_size,
float3 light_dir, float3 cam_pos, float rotation)
{
const int x = blockDim.x*blockIdx.x+threadIdx.x;
const int y = blockDim.y*blockIdx.y+threadIdx.y;
if (x >= img_dims.x || y >= img_dims.y) return;
int3 vd = make_int3(vol_dims.x, vol_dims.y, vol_dims.z);
// Create Normalized UV image coordinates
float uvx = float(x)/float(img_dims.x)-0.5;
float uvy = -float(y)/float(img_dims.y)+0.5;
uvx *= float(img_dims.x)/float(img_dims.y);
float3 v_center = make_float3(
0.5*float(vol_dims.x),
0.5*float(vol_dims.y),
0.5*float(vol_dims.z));
// Set up ray originating from camera
float3 ray_pos = cam_pos-v_center;
float2 pos_rot = rotate(make_float2(ray_pos.x, ray_pos.z), rotation);
ray_pos.x = pos_rot.x;
ray_pos.z = pos_rot.y;
ray_pos += v_center;
float3 ray_dir = normalize(make_float3(uvx,uvy,0.5));
float2 dir_rot = rotate(make_float2(ray_dir.x, ray_dir.z), rotation);
ray_dir.x = dir_rot.x;
ray_dir.z = dir_rot.y;
const float3 dir_to_light = normalize(light_dir);
const float occ_thresh = 0.001;
float d_accum = 1.0;
float light_accum = 0.0;
float temp_accum = 0.0;
// Trace ray through volume
for (int step=0; step<512; step++) {
// At each step, cast occlusion ray towards light source
float c_density = get_cellF(ray_pos, vd, volume);
float3 occ_pos = ray_pos;
ray_pos += ray_dir*step_size;
// Don't bother with occlusion ray if theres nothing there
if (c_density < occ_thresh) continue;
float transparency = 1.0;
for (int occ=0; occ<512; occ++) {
transparency *= fmax(1.0-get_cellF(occ_pos, vd, volume),0.0);
if (transparency < occ_thresh) break;
occ_pos += dir_to_light*step_size;
}
d_accum *= fmax(1.0-c_density,0.0);
light_accum += d_accum*c_density*transparency;
if (d_accum < occ_thresh) break;
}
// gamma correction
light_accum = pow(light_accum, 0.45);
const int pixel = 3*(y*img_dims.x+x);
image[pixel+0] = (uint8_t)(fmin(255.0*light_accum, 255.0));
image[pixel+1] = (uint8_t)(fmin(255.0*light_accum, 255.0));
image[pixel+2] = (uint8_t)(fmin(255.0*light_accum, 255.0));
}
void render_fluid(uint8_t *render_target, int3 img_dims,
float *d_volume, float *temper, int3 vol_dims,
float step_size, float3 light_dir, float3 cam_pos, float rotation) {
float measured_time=0.0f;
cudaEvent_t start, stop;
cudaEventCreate( &start );
cudaEventCreate( &stop );
dim3 block( 32, 32 );
dim3 grid( (img_dims.x+32-1)/32, (img_dims.y+32-1)/32 );
cudaEventRecord( start, 0 );
// Allocate device memory for image
int img_bytes = 3*sizeof(uint8_t)*img_dims.x*img_dims.y;
uint8_t *device_img;
cudaMalloc( (void**)&device_img, img_bytes );
if( 0 == device_img )
{
printf("couldn't allocate GPU memory\n");
return;
}
render_pixel<<<grid,block>>>(
device_img, d_volume, temper, img_dims, vol_dims,
step_size, light_dir, cam_pos, rotation);
// Read image back
cudaMemcpy( render_target, device_img, img_bytes, cudaMemcpyDeviceToHost );
cudaEventRecord( stop, 0 );
cudaThreadSynchronize();
cudaEventElapsedTime( &measured_time, start, stop );
cudaEventDestroy( start );
cudaEventDestroy( stop );
std::cout << "Render Time: " << measured_time << "\n";
cudaFree(device_img);
}
int main(int argc, char* args[])
{
const int3 vol_d = make_int3(512,512,512);
const int3 img_d = make_int3(1920,1080,0);
float3 cam;
cam.x = static_cast<float>(vol_d.x)*0.5;
cam.y = static_cast<float>(vol_d.y)*0.5;
cam.z = 0.0;
float3 light;
light.x = 0.1;
light.y = 1.0;
light.z = -0.5;
uint8_t *img = new uint8_t[3*img_d.x*img_d.y];
fluid_state state(vol_d);
state.impulseLoc = make_float3(0.5*float(vol_d.x),
0.5*float(vol_d.y)-170.0,
0.5*float(vol_d.z));
state.impulseTemp = 4.0;
state.impulseDensity = 0.35;
state.impulseRadius = 18.0;
state.f_weight = 0.05;
state.time_step = 0.1;
dim3 full_grid(vol_d.x/8+1, vol_d.y/8+1, vol_d.z/8+1);
dim3 full_block(8,8,8);
// zero out buffers
impulse<<<full_grid, full_block>>>( state.velocity->readTarget(),
make_float3(0.0), 100000.0f, make_float3(0.0), vol_d);
impulse<<<full_grid, full_block>>>( state.temperature->readTarget(),
make_float3(0.0), 100000.0f, 0.0f, vol_d);
impulse<<<full_grid, full_block>>>( state.density->readTarget(),
make_float3(0.0), 100000.0f, 0.0f, vol_d);
wavey_impulse<<<full_grid, full_block>>>( state.density->readTarget(),
state.impulseLoc + make_float3(0.0, 70.0, 0.0),
make_float3(100.0, 15.0, 100.0), 0.25f, 0.0f, 1.0f, vol_d);
wavey_impulse<<<full_grid, full_block>>>( state.temperature->readTarget(),
state.impulseLoc + make_float3(0.0, 70.0, 0.0),
make_float3(100.0, 15.0, 100.0), 0.0f, 3.0f, 0.15f, vol_d);
for (int f=0; f<=3000; f++) {
std::cout << "Step " << f+1 << "\n";
light.x = 1.05*sinf(0.006*float(state.step));
light.z = 1.05*cosf(0.006*float(state.step));
render_fluid(
img, img_d,
state.density->readTarget(),
state.temperature->readTarget(),
vol_d, 1.0, light, cam, 0.0*float(state.step));
save_image(img, img_d, "output/R" + pad_number(f+1) + ".ppm");
for (int st=0; st<1; st++) {
simulate_fluid(state);
state.step++;
}
}
delete[] img;
printf("CUDA: %s\n", cudaGetErrorString( cudaGetLastError() ) );
cudaThreadExit();
return 0;
}