(简体中文|English)
低精度部署, 在Intel CPU上支持int8、bfloat16模型,Nvidia TensorRT支持int8、float16模型。
详细见PaddleSlim量化
首先下载Resnet50 PaddleSlim量化模型,并转换为Paddle Serving支持的部署模型格式。
wget https://paddle-inference-dist.bj.bcebos.com/inference_demo/python/resnet50/ResNet50_quant.tar.gz
tar zxvf ResNet50_quant.tar.gz
python -m paddle_serving_client.convert --dirname ResNet50_quant
启动rpc服务, 设定所选GPU id、部署模型精度
python -m paddle_serving_server.serve --model serving_server --port 9393 --gpu_ids 0 --use_trt --precision int8
使用client进行请求
from paddle_serving_client import Client
from paddle_serving_app.reader import Sequential, File2Image, Resize, CenterCrop
from paddle_serving_app.reader import RGB2BGR, Transpose, Div, Normalize
client = Client()
client.load_client_config(
"resnet_v2_50_imagenet_client/serving_client_conf.prototxt")
client.connect(["127.0.0.1:9393"])
seq = Sequential([
File2Image(), Resize(256), CenterCrop(224), RGB2BGR(), Transpose((2, 0, 1)),
Div(255), Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225], True)
])
image_file = "daisy.jpg"
img = seq(image_file)
fetch_map = client.predict(feed={"image": img}, fetch=["score"])
print(fetch_map["score"].reshape(-1))
- PaddleSlim
- PaddleInference Intel CPU部署量化模型文档
- PaddleInference NV GPU部署量化模型文档