-
Notifications
You must be signed in to change notification settings - Fork 0
/
files.py
50 lines (36 loc) · 1.71 KB
/
files.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import re
_dataset_root = r'C:\Users\emanu\OneDrive\Desktop\UniLM\Tesi\DATASETS'
_differential_couples_root = r'C:\Users\emanu\OneDrive\Desktop\UniLM\Tesi\couples'
def transformation_root_path(feature_name):
return r'{0}\{1}'.format(_dataset_root, feature_name)
######### PMDB #########
def train_data_path(feature_name):
return r'{0}\{1}\dlib20\PMDB_cropped_20'.format(_dataset_root, feature_name)
# Single image
single_image_filename_train_filter = (lambda fullname: bool(re.search('morph.*0[.]55|.*.TestImages.*', fullname)))
# Differential
differential_train_couples_paths = [
r"{0}\couples_pmdb_morphed_criminal_0.55.txt".format(_differential_couples_root),
r"{0}\couples_pmdb_bona_fine.txt".format(_differential_couples_root),
]
######### MorphDB ##########
"""
def test_data_path(feature_name):
return r'{0}\{1}\dlib20\MorphDB_cropped_20'.format(_dataset_root, feature_name)
# Single image MorphDB
single_image_filename_test_filter = (lambda fullname: bool(re.search('.*_D.*', fullname)))
# Differential MorphDB
differential_test_couples_paths = [
r"{0}\couples_morphdb_bona_fide_ALL.txt".format(_differential_couples_root),
r"{0}\couples_morphdb_morphed_criminal.txt".format(_differential_couples_root), #accomplice
]"""
######### LondonDB ##########
def test_data_path(feature_name):
return r'{0}\{1}\inner'.format(_dataset_root, feature_name)
# Single image londonDB
single_image_filename_test_filter = (lambda fullname: bool(re.search('.*', fullname)))
# Differential londonDB
differential_test_couples_paths = [
r"{0}\couples_londondb_bona_fide.txt".format(_differential_couples_root),
r"{0}\couples_londondb_morphed_criminal.txt".format(_differential_couples_root), #accomplice
]