forked from mingxingtan/efficientnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
efficientnet_model.py
429 lines (365 loc) · 14.5 KB
/
efficientnet_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Contains definitions for EfficientNet model.
[1] Mingxing Tan, Quoc V. Le
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks.
ICML'19, https://arxiv.org/abs/1905.11946
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import math
import numpy as np
import six
from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf
import utils
GlobalParams = collections.namedtuple('GlobalParams', [
'batch_norm_momentum', 'batch_norm_epsilon', 'dropout_rate', 'data_format',
'num_classes', 'width_coefficient', 'depth_coefficient',
'depth_divisor', 'min_depth', 'drop_connect_rate',
])
GlobalParams.__new__.__defaults__ = (None,) * len(GlobalParams._fields)
# batchnorm = tf.layers.BatchNormalization
batchnorm = utils.TpuBatchNormalization # TPU-specific requirement.
relu_fn = tf.nn.swish
BlockArgs = collections.namedtuple('BlockArgs', [
'kernel_size', 'num_repeat', 'input_filters', 'output_filters',
'expand_ratio', 'id_skip', 'strides', 'se_ratio'
])
# defaults will be a public argument for namedtuple in Python 3.7
# https://docs.python.org/3/library/collections.html#collections.namedtuple
BlockArgs.__new__.__defaults__ = (None,) * len(BlockArgs._fields)
def conv_kernel_initializer(shape, dtype=None, partition_info=None):
"""Initialization for convolutional kernels.
The main difference with tf.variance_scaling_initializer is that
tf.variance_scaling_initializer uses a truncated normal with an uncorrected
standard deviation, whereas here we use a normal distribution. Similarly,
tf.contrib.layers.variance_scaling_initializer uses a truncated normal with
a corrected standard deviation.
Args:
shape: shape of variable
dtype: dtype of variable
partition_info: unused
Returns:
an initialization for the variable
"""
del partition_info
kernel_height, kernel_width, _, out_filters = shape
fan_out = int(kernel_height * kernel_width * out_filters)
return tf.random_normal(
shape, mean=0.0, stddev=np.sqrt(2.0 / fan_out), dtype=dtype)
def dense_kernel_initializer(shape, dtype=None, partition_info=None):
"""Initialization for dense kernels.
This initialization is equal to
tf.variance_scaling_initializer(scale=1.0/3.0, mode='fan_out',
distribution='uniform').
It is written out explicitly here for clarity.
Args:
shape: shape of variable
dtype: dtype of variable
partition_info: unused
Returns:
an initialization for the variable
"""
del partition_info
init_range = 1.0 / np.sqrt(shape[1])
return tf.random_uniform(shape, -init_range, init_range, dtype=dtype)
def round_filters(filters, global_params):
"""Round number of filters based on depth multiplier."""
orig_f = filters
multiplier = global_params.width_coefficient
divisor = global_params.depth_divisor
min_depth = global_params.min_depth
if not multiplier:
return filters
filters *= multiplier
min_depth = min_depth or divisor
new_filters = max(min_depth, int(filters + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_filters < 0.9 * filters:
new_filters += divisor
tf.logging.info('round_filter input={} output={}'.format(orig_f, new_filters))
return int(new_filters)
def round_repeats(repeats, global_params):
"""Round number of filters based on depth multiplier."""
multiplier = global_params.depth_coefficient
if not multiplier:
return repeats
return int(math.ceil(multiplier * repeats))
class MBConvBlock(object):
"""A class of MBConv: Mobile Inveretd Residual Bottleneck.
Attributes:
has_se: boolean. Whether the block contains a Squeeze and Excitation layer
inside.
endpoints: dict. A list of internal tensors.
"""
def __init__(self, block_args, global_params):
"""Initializes a MBConv block.
Args:
block_args: BlockArgs, arguments to create a Block.
global_params: GlobalParams, a set of global parameters.
"""
self._block_args = block_args
self._batch_norm_momentum = global_params.batch_norm_momentum
self._batch_norm_epsilon = global_params.batch_norm_epsilon
if global_params.data_format == 'channels_first':
self._channel_axis = 1
self._spatial_dims = [2, 3]
else:
self._channel_axis = -1
self._spatial_dims = [1, 2]
self.has_se = (self._block_args.se_ratio is not None) and (
self._block_args.se_ratio > 0) and (self._block_args.se_ratio <= 1)
self.endpoints = None
# Builds the block accordings to arguments.
self._build()
def block_args(self):
return self._block_args
def _build(self):
"""Builds block according to the arguments."""
filters = self._block_args.input_filters * self._block_args.expand_ratio
if self._block_args.expand_ratio != 1:
# Expansion phase:
self._expand_conv = tf.layers.Conv2D(
filters,
kernel_size=[1, 1],
strides=[1, 1],
kernel_initializer=conv_kernel_initializer,
padding='same',
use_bias=False)
self._bn0 = batchnorm(
axis=self._channel_axis,
momentum=self._batch_norm_momentum,
epsilon=self._batch_norm_epsilon)
kernel_size = self._block_args.kernel_size
# Depth-wise convolution phase:
self._depthwise_conv = utils.DepthwiseConv2D(
[kernel_size, kernel_size],
strides=self._block_args.strides,
depthwise_initializer=conv_kernel_initializer,
padding='same',
use_bias=False)
self._bn1 = batchnorm(
axis=self._channel_axis,
momentum=self._batch_norm_momentum,
epsilon=self._batch_norm_epsilon)
if self.has_se:
num_reduced_filters = max(
1, int(self._block_args.input_filters * self._block_args.se_ratio))
# Squeeze and Excitation layer.
self._se_reduce = tf.layers.Conv2D(
num_reduced_filters,
kernel_size=[1, 1],
strides=[1, 1],
kernel_initializer=conv_kernel_initializer,
padding='same',
use_bias=True)
self._se_expand = tf.layers.Conv2D(
filters,
kernel_size=[1, 1],
strides=[1, 1],
kernel_initializer=conv_kernel_initializer,
padding='same',
use_bias=True)
# Output phase:
filters = self._block_args.output_filters
self._project_conv = tf.layers.Conv2D(
filters,
kernel_size=[1, 1],
strides=[1, 1],
kernel_initializer=conv_kernel_initializer,
padding='same',
use_bias=False)
self._bn2 = batchnorm(
axis=self._channel_axis,
momentum=self._batch_norm_momentum,
epsilon=self._batch_norm_epsilon)
def _call_se(self, input_tensor):
"""Call Squeeze and Excitation layer.
Args:
input_tensor: Tensor, a single input tensor for Squeeze/Excitation layer.
Returns:
A output tensor, which should have the same shape as input.
"""
se_tensor = tf.reduce_mean(input_tensor, self._spatial_dims, keepdims=True)
se_tensor = self._se_expand(relu_fn(self._se_reduce(se_tensor)))
tf.logging.info('Built Squeeze and Excitation with tensor shape: %s' %
(se_tensor.shape))
return tf.sigmoid(se_tensor) * input_tensor
def call(self, inputs, training=True, drop_connect_rate=None):
"""Implementation of call().
Args:
inputs: the inputs tensor.
training: boolean, whether the model is constructed for training.
drop_connect_rate: float, between 0 to 1, drop connect rate.
Returns:
A output tensor.
"""
tf.logging.info('Block input: %s shape: %s' % (inputs.name, inputs.shape))
if self._block_args.expand_ratio != 1:
x = relu_fn(self._bn0(self._expand_conv(inputs), training=training))
else:
x = inputs
tf.logging.info('Expand: %s shape: %s' % (x.name, x.shape))
x = relu_fn(self._bn1(self._depthwise_conv(x), training=training))
tf.logging.info('DWConv: %s shape: %s' % (x.name, x.shape))
if self.has_se:
with tf.variable_scope('se'):
x = self._call_se(x)
self.endpoints = {'expansion_output': x}
x = self._bn2(self._project_conv(x), training=training)
if self._block_args.id_skip:
if all(
s == 1 for s in self._block_args.strides
) and self._block_args.input_filters == self._block_args.output_filters:
# only apply drop_connect if skip presents.
if drop_connect_rate:
x = utils.drop_connect(x, training, drop_connect_rate)
x = tf.add(x, inputs)
tf.logging.info('Project: %s shape: %s' % (x.name, x.shape))
return x
class Model(tf.keras.Model):
"""A class implements tf.keras.Model for MNAS-like model.
Reference: https://arxiv.org/abs/1807.11626
"""
def __init__(self, blocks_args=None, global_params=None):
"""Initializes an `Model` instance.
Args:
blocks_args: A list of BlockArgs to construct block modules.
global_params: GlobalParams, a set of global parameters.
Raises:
ValueError: when blocks_args is not specified as a list.
"""
super(Model, self).__init__()
if not isinstance(blocks_args, list):
raise ValueError('blocks_args should be a list.')
self._global_params = global_params
self._blocks_args = blocks_args
self.endpoints = None
self._build()
def _build(self):
"""Builds a model."""
self._blocks = []
# Builds blocks.
for block_args in self._blocks_args:
assert block_args.num_repeat > 0
# Update block input and output filters based on depth multiplier.
block_args = block_args._replace(
input_filters=round_filters(block_args.input_filters,
self._global_params),
output_filters=round_filters(block_args.output_filters,
self._global_params),
num_repeat=round_repeats(block_args.num_repeat, self._global_params))
# The first block needs to take care of stride and filter size increase.
self._blocks.append(MBConvBlock(block_args, self._global_params))
if block_args.num_repeat > 1:
# pylint: disable=protected-access
block_args = block_args._replace(
input_filters=block_args.output_filters, strides=[1, 1])
# pylint: enable=protected-access
for _ in xrange(block_args.num_repeat - 1):
self._blocks.append(MBConvBlock(block_args, self._global_params))
batch_norm_momentum = self._global_params.batch_norm_momentum
batch_norm_epsilon = self._global_params.batch_norm_epsilon
if self._global_params.data_format == 'channels_first':
channel_axis = 1
else:
channel_axis = -1
# Stem part.
self._conv_stem = tf.layers.Conv2D(
filters=round_filters(32, self._global_params),
kernel_size=[3, 3],
strides=[2, 2],
kernel_initializer=conv_kernel_initializer,
padding='same',
use_bias=False)
self._bn0 = batchnorm(
axis=channel_axis,
momentum=batch_norm_momentum,
epsilon=batch_norm_epsilon)
# Head part.
self._conv_head = tf.layers.Conv2D(
filters=round_filters(1280, self._global_params),
kernel_size=[1, 1],
strides=[1, 1],
kernel_initializer=conv_kernel_initializer,
padding='same',
use_bias=False)
self._bn1 = batchnorm(
axis=channel_axis,
momentum=batch_norm_momentum,
epsilon=batch_norm_epsilon)
self._avg_pooling = tf.keras.layers.GlobalAveragePooling2D(
data_format=self._global_params.data_format)
self._fc = tf.layers.Dense(
self._global_params.num_classes,
kernel_initializer=dense_kernel_initializer)
if self._global_params.dropout_rate > 0:
self._dropout = tf.keras.layers.Dropout(self._global_params.dropout_rate)
else:
self._dropout = None
def call(self, inputs, training=True, features_only=None):
"""Implementation of call().
Args:
inputs: input tensors.
training: boolean, whether the model is constructed for training.
features_only: build the base feature network only.
Returns:
output tensors.
"""
outputs = None
self.endpoints = {}
# Calls Stem layers
with tf.variable_scope('stem'):
outputs = relu_fn(
self._bn0(self._conv_stem(inputs), training=training))
tf.logging.info('Built stem layers with output shape: %s' % outputs.shape)
self.endpoints['stem'] = outputs
# Calls blocks.
reduction_idx = 0
for idx, block in enumerate(self._blocks):
is_reduction = False
if ((idx == len(self._blocks) - 1) or
self._blocks[idx + 1].block_args().strides[0] > 1):
is_reduction = True
reduction_idx += 1
with tf.variable_scope('blocks_%s' % idx):
drop_rate = self._global_params.drop_connect_rate
if drop_rate:
drop_rate *= float(idx) / len(self._blocks)
tf.logging.info('block_%s drop_connect_rate: %s' % (idx, drop_rate))
outputs = block.call(outputs, training=training)
self.endpoints['block_%s' % idx] = outputs
if is_reduction:
self.endpoints['reduction_%s' % reduction_idx] = outputs
if block.endpoints:
for k, v in six.iteritems(block.endpoints):
self.endpoints['block_%s/%s' % (idx, k)] = v
if is_reduction:
self.endpoints['reduction_%s/%s' % (reduction_idx, k)] = v
self.endpoints['global_pool'] = outputs
if not features_only:
# Calls final layers and returns logits.
with tf.variable_scope('head'):
outputs = relu_fn(
self._bn1(self._conv_head(outputs), training=training))
outputs = self._avg_pooling(outputs)
if self._dropout:
outputs = self._dropout(outputs, training=training)
outputs = self._fc(outputs)
self.endpoints['head'] = outputs
return outputs