forked from huletlab/apparatus3-seq
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pwlinterpolate.py
211 lines (157 loc) · 6.9 KB
/
pwlinterpolate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
""" Classes for interpolating values.
"""
from numpy import shape, sometrue, array, transpose, searchsorted, \
ones, logical_or, atleast_1d, atleast_2d, meshgrid, ravel, \
dot, poly1d, asarray, intp
import numpy as np
import scipy.special as spec
import math
import errormsg
class interp1d(object):
"""
This class was copied and modified from the scipy.interpolate.interp1d class.
see the scipy documentation or source code for more details.
Parameters
----------
x : array_like
A 1-D array of monotonically increasing or decreasing real values.
y : array_like
A N-D array of real values. The length of `y` along the interpolation
axis must be equal to the length of `x`.
"""
def __init__(self, x, y, name = 'unnamed',
copy=True, bounds_error=True, fill_value=np.nan):
""" Initialize a 1D linear interpolation class."""
self.name = name
self.copy = copy
self.bounds_error = bounds_error
self.fill_value = fill_value
if x.ndim != 1:
raise ValueError("the x array must have exactly one dimension.")
if y.ndim != 1:
raise ValueError("the y array must have exactly one dimension.")
# Force-cast y to a floating-point type, if it's not yet one
if not issubclass(y.dtype.type, np.inexact):
y = y.astype(np.float_)
minval = 2
self._call = self._call_linear
len_y = len(y)
len_x = len(x)
if len_x != len_y:
raise ValueError("x and y arrays must be equal in length along "
"interpolation axis.")
if len_x < minval:
raise ValueError("x and y arrays must have at "
"least %d entries" % minval)
order = x.argsort()
x = array(x[order] , copy=self.copy)
y = array(y[order], copy=self.copy)
self.x = x
self.y = y
def _call_linear(self, x_new):
# 2. Find where in the orignal data, the values to interpolate
# would be inserted.
# Note: If x_new[n] == x[m], then m is returned by searchsorted.
x_new_indices = searchsorted(self.x, x_new)
# 3. Clip x_new_indices so that they are within the range of
# self.x indices and at least 1. Removes mis-interpolation
# of x_new[n] = x[0]
x_new_indices = x_new_indices.clip(1, len(self.x)-1).astype(int)
# 4. Calculate the slope of regions that each x_new value falls in.
lo = x_new_indices - 1
hi = x_new_indices
x_lo = self.x[lo]
x_hi = self.x[hi]
y_lo = self.y[..., lo]
y_hi = self.y[..., hi]
# Note that the following two expressions rely on the specifics of the
# broadcasting semantics.
slope = (y_hi-y_lo) / (x_hi-x_lo)
# 5. Calculate the actual value for each entry in x_new.
y_new = slope*(x_new-x_lo) + y_lo
return y_new
def __call__(self, x_new):
"""Find interpolated y_new = f(x_new).
Parameters
----------
x_new : number or array
New independent variable(s).
Returns
-------
y_new : ndarray
Interpolated value(s) corresponding to x_new.
"""
# 1. Handle values in x_new that are outside of x. Throw error,
# or return a list of mask array indicating the outofbounds values.
# The behavior is set by the bounds_error variable.
x_new = asarray(x_new)
out_of_bounds = self._check_bounds(x_new)
y_new = self._call(x_new)
# Rotate the values of y_new back so that they correspond to the
# correct x_new values. For N-D x_new, take the last (for linear)
# or first (for other splines) N axes
# from y_new and insert them where self.axis was in the list of axes.
nx = x_new.ndim
ny = y_new.ndim
# 6. Fill any values that were out of bounds with fill_value.
# and
# 7. Rotate the values back to their proper place.
if nx == 0:
# special case: x is a scalar
if out_of_bounds:
if ny == 0:
return asarray(self.fill_value)
else:
y_new[...] = self.fill_value
return asarray(y_new)
else:
y_new[..., out_of_bounds] = self.fill_value
return y_new
def _check_bounds(self, x_new):
"""Check the inputs for being in the bounds of the interpolated data.
Parameters
----------
x_new : array
Returns
-------
out_of_bounds : bool array
The mask on x_new of values that are out of the bounds.
"""
# If self.bounds_error is True, we raise an error if any x_new values
# fall outside the range of x. Otherwise, we return an array indicating
# which values are outside the boundary region.
below_bounds = x_new < self.x[0]
above_bounds = x_new > self.x[-1]
# !! Could provide more information about which values are out of bounds
if self.bounds_error and below_bounds.any():
out_of_bounds_below = None
msg = "Interpolation range = (%.4g,%.4g)\n" % (self.x[0], self.x[-1] )
msg += "The following values are below the interpolation range: "
if x_new.ndim < 1:
out_of_bounds_below = x_new
msg = msg + '\n\t' + str(out_of_bounds_below)
else:
out_of_bounds_below = x_new[ np.where( x_new < self.x[0] ) ]
msg = msg + '\n\t' + str(out_of_bounds_below)
print msg
errormsg.box('INTERPOLATION :: ' + self.name, msg)
raise ValueError("A value in x_new is below the interpolation "
"range.")
if self.bounds_error and above_bounds.any():
out_of_bounds_above = None
msg = "Interpolation range = (%.4g,%.4g)\n" % (self.x[0], self.x[-1] )
msg += "The following values are above the interpolation range: "
if x_new.ndim < 1:
out_of_bounds_above = x_new
msg = msg + '\n\t' + str(out_of_bounds_above)
else:
out_of_bounds_above = x_new[ np.where( x_new < self.x[0] ) ]
msg = msg + '\n\t' + str(out_of_bounds_above)
print msg
errormsg.box('INTERPOLATION :: ' + self.name, msg)
raise ValueError("A value in x_new is above the interpolation "
"range.")
# !! Should we emit a warning if some values are out of bounds?
# !! matlab does not.
out_of_bounds = logical_or(below_bounds, above_bounds)
return out_of_bounds