-
Notifications
You must be signed in to change notification settings - Fork 31
/
train.py
291 lines (233 loc) · 11.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
import argparse
import os
import time
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import torchvision.transforms as transforms
import numpy as np
from models import API_Net
from datasets import RandomDataset, BatchDataset, BalancedBatchSampler
from utils import accuracy, AverageMeter, save_checkpoint
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('--exp_name', default=None, type=str,
help='name of experiment')
parser.add_argument('--data', metavar='DIR',default='',
help='path to dataset')
parser.add_argument('-j', '--workers', default=10, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=100, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=100, type=int,
metavar='N', help='mini-batch size (default: 256)')
parser.add_argument('--lr', '--learning-rate', default=0.01, type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--weight-decay', '--wd', default=5e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument('--print-freq', '-p', default=1, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--evaluate-freq', default=10, type=int,
help='the evaluation frequence')
parser.add_argument('--resume', default='./checkpoint.pth.tar', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
help='evaluate model on validation set')
parser.add_argument('--pretrained', dest='pretrained', action='store_true',
help='use pre-trained model')
parser.add_argument('--n_classes', default=30, type=int,
help='the number of classes')
parser.add_argument('--n_samples', default=4, type=int,
help='the number of samples per class')
best_prec1 = 0
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def main():
global args, best_prec1
args = parser.parse_args()
torch.manual_seed(2)
torch.cuda.manual_seed_all(2)
np.random.seed(2)
# create model
model = API_Net()
model = model.to(device)
model.conv = nn.DataParallel(model.conv)
# define loss function (criterion) and optimizer
criterion = nn.CrossEntropyLoss().to(device)
optimizer_conv = torch.optim.SGD(model.conv.parameters(), args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
fc_parameters = [value for name, value in model.named_parameters() if 'conv' not in name]
optimizer_fc = torch.optim.SGD(fc_parameters, args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
if args.resume:
if os.path.isfile(args.resume):
print 'loading checkpoint {}'.format(args.resume)
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
best_prec1 = checkpoint['best_prec1']
model.load_state_dict(checkpoint['state_dict'])
optimizer_conv.load_state_dict(checkpoint['optimizer_conv'])
optimizer_fc.load_state_dict(checkpoint['optimizer_fc'])
print 'loaded checkpoint {}(epoch {})'.format(args.resume, checkpoint['epoch'])
else:
print 'no checkpoint found at {}'.format(args.resume)
cudnn.benchmark = True
# Data loading code
train_dataset = BatchDataset(transform=transforms.Compose([
transforms.Resize([512,512]),
transforms.RandomCrop([448,448]),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(
mean=(0.485, 0.456, 0.406),
std=(0.229, 0.224, 0.225)
)]))
train_sampler = BalancedBatchSampler(train_dataset, args.n_classes, args.n_samples)
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_sampler=train_sampler,
num_workers=args.workers, pin_memory=True)
scheduler_conv = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer_conv, 100*len(train_loader))
scheduler_fc = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer_fc, 100*len(train_loader))
step = 0
print 'START TIME:', time.asctime(time.localtime(time.time()))
for epoch in range(args.start_epoch, args.epochs):
step = train(train_loader, model, criterion, optimizer_conv, scheduler_conv, optimizer_fc, scheduler_fc, epoch, step)
def train(train_loader, model, criterion, optimizer_conv,scheduler_conv, optimizer_fc, scheduler_fc, epoch, step):
global best_prec1
batch_time = AverageMeter()
data_time = AverageMeter()
softmax_losses = AverageMeter()
rank_losses = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to train mode
end = time.time()
rank_criterion = nn.MarginRankingLoss(margin=0.05)
softmax_layer = nn.Softmax(dim=1).to(device)
for i, (input, target) in enumerate(train_loader):
model.train()
# measure data loading time
data_time.update(time.time() - end)
input_var = input.to(device)
target_var = target.to(device).squeeze()
# compute output
logit1_self, logit1_other, logit2_self, logit2_other, labels1, labels2 = model(input_var, target_var, flag='train')
batch_size = logit1_self.shape[0]
labels1 = labels1.to(device)
labels2 = labels2.to(device)
self_logits = torch.zeros(2*batch_size, 200).to(device)
other_logits= torch.zeros(2*batch_size, 200).to(device)
self_logits[:batch_size] = logit1_self
self_logits[batch_size:] = logit2_self
other_logits[:batch_size] = logit1_other
other_logits[batch_size:] = logit2_other
# compute loss
logits = torch.cat([self_logits, other_logits], dim=0)
targets = torch.cat([labels1, labels2, labels1, labels2], dim=0)
softmax_loss = criterion(logits, targets)
self_scores = softmax_layer(self_logits)[torch.arange(2*batch_size).to(device).long(),
torch.cat([labels1, labels2], dim=0)]
other_scores = softmax_layer(other_logits)[torch.arange(2*batch_size).to(device).long(),
torch.cat([labels1, labels2], dim=0)]
flag = torch.ones([2*batch_size, ]).to(device)
rank_loss = rank_criterion(self_scores, other_scores, flag)
loss = softmax_loss + rank_loss
# measure accuracy and record loss
prec1 = accuracy(logits, targets, 1)
prec5 = accuracy(logits, targets, 5)
losses.update(loss.item(), 2*batch_size)
softmax_losses.update(softmax_loss.item(), 4*batch_size)
rank_losses.update(rank_loss.item(), 2*batch_size)
top1.update(prec1, 4*batch_size)
top5.update(prec5, 4*batch_size)
# compute gradient and do SGD step
optimizer_conv.zero_grad()
optimizer_fc.zero_grad()
loss.backward()
if epoch >= 8:
optimizer_conv.step()
optimizer_fc.step()
scheduler_conv.step()
scheduler_fc.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Time: {time}\nStep: {step}\t Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'SoftmaxLoss {softmax_loss.val:.4f} ({softmax_loss.avg:.4f})\t'
'RankLoss {rank_loss.val:.4f} ({rank_loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
epoch, i, len(train_loader), batch_time=batch_time,
data_time=data_time, loss=losses, softmax_loss=softmax_losses, rank_loss=rank_losses,
top1=top1, top5=top5, step=step, time= time.asctime(time.localtime(time.time()))))
if i== len(train_loader) - 1:
val_dataset = RandomDataset(transform=transforms.Compose([
transforms.Resize([512,512]),
transforms.CenterCrop([448,448]),
transforms.ToTensor(),
transforms.Normalize(
mean=(0.485, 0.456, 0.406),
std=(0.229, 0.224, 0.225)
)]))
val_loader = torch.utils.data.DataLoader(
val_dataset, batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True)
prec1 = validate(val_loader, model, criterion)
# remember best prec@1 and save checkpoint
is_best = prec1 > best_prec1
best_prec1 = max(prec1, best_prec1)
save_checkpoint({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'best_prec1': best_prec1,
'optimizer_conv': optimizer_conv.state_dict(),
'optimizer_fc': optimizer_fc.state_dict(),
}, is_best)
step = step +1
return step
def validate(val_loader, model, criterion):
batch_time = AverageMeter()
softmax_losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to evaluate mode
model.eval()
end = time.time()
with torch.no_grad():
for i, (input, target) in enumerate(val_loader):
input_var = input.to(device)
target_var = target.to(device).squeeze()
# compute output
logits = model(input_var, targets=None, flag='val')
softmax_loss = criterion(logits, target_var)
prec1= accuracy(logits, target_var, 1)
prec5 = accuracy(logits, target_var, 5)
softmax_losses.update(softmax_loss.item(), logits.size(0))
top1.update(prec1, logits.size(0))
top5.update(prec5, logits.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Time: {time}\nTest: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'SoftmaxLoss {softmax_loss.val:.4f} ({softmax_loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
i, len(val_loader), batch_time=batch_time, softmax_loss=softmax_losses,
top1=top1, top5=top5, time=time.asctime(time.localtime(time.time()))))
print(' * Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f}'.format(top1=top1, top5=top5))
return top1.avg
if __name__ == '__main__':
main()