diff --git a/doc/releases/changelog-dev.md b/doc/releases/changelog-dev.md
index ce5485e68e4..39d788b4f1a 100644
--- a/doc/releases/changelog-dev.md
+++ b/doc/releases/changelog-dev.md
@@ -152,9 +152,13 @@
* ``qml.QutritDepolarizingChannel`` has been added, allowing for depolarizing noise to be simulated on the `default.qutrit.mixed` device.
[(#5502)](https://github.com/PennyLaneAI/pennylane/pull/5502)
+* `qml.QutritAmplitudeDamping` channel has been added, allowing for noise processes modelled by amplitude damping to be simulated on the `default.qutrit.mixed` device.
+ [(#5503)](https://github.com/PennyLaneAI/pennylane/pull/5503)
+ [(#5757)](https://github.com/PennyLaneAI/pennylane/pull/5757)
+
* It is now possible to build Hamiltonians in a parallel fashion. It would greatly speed up VQE, especially when optimizing for the coordinates
of a molecule [(#5792)](https://github.com/PennyLaneAI/pennylane/pull/5792)
-
+
Breaking changes 💔
* A custom decomposition can no longer be provided to `QDrift`. Instead, apply the operations in your custom
@@ -180,9 +184,6 @@
* `Controlled.wires` does not include `self.work_wires` anymore. That can be accessed separately through `Controlled.work_wires`.
Consequently, `Controlled.active_wires` has been removed in favour of the more common `Controlled.wires`.
[(#5728)](https://github.com/PennyLaneAI/pennylane/pull/5728)
-
-* `qml.QutritAmplitudeDamping` channel has been added, allowing for noise processes modelled by amplitude damping to be simulated on the `default.qutrit.mixed` device.
- [(#5503)](https://github.com/PennyLaneAI/pennylane/pull/5503)
Deprecations 👋
diff --git a/pennylane/__init__.py b/pennylane/__init__.py
index 80419832ae0..139ebc29222 100644
--- a/pennylane/__init__.py
+++ b/pennylane/__init__.py
@@ -218,6 +218,9 @@ def device(name, *args, **kwargs):
* :mod:`'default.qutrit' `: a simple
state simulator of qutrit-based quantum circuit architectures.
+ * :mod:`'default.qutrit.mixed' `: a
+ mixed-state simulator of qutrit-based quantum circuit architectures.
+
* :mod:`'default.gaussian' `: a simple simulator
of Gaussian states and operations on continuous-variable circuit architectures.
diff --git a/pennylane/ops/qutrit/channel.py b/pennylane/ops/qutrit/channel.py
index c50572cf206..82f5d9c4407 100644
--- a/pennylane/ops/qutrit/channel.py
+++ b/pennylane/ops/qutrit/channel.py
@@ -235,8 +235,10 @@ class QutritAmplitudeDamping(Channel):
K_0 = \begin{bmatrix}
1 & 0 & 0\\
0 & \sqrt{1-\gamma_1} & 0 \\
- 0 & 0 & \sqrt{1-\gamma_2}
- \end{bmatrix}, \quad
+ 0 & 0 & \sqrt{1-(\gamma_2+\gamma_3)}
+ \end{bmatrix}
+
+ .. math::
K_1 = \begin{bmatrix}
0 & \sqrt{\gamma_1} & 0 \\
0 & 0 & 0 \\
@@ -246,70 +248,95 @@ class QutritAmplitudeDamping(Channel):
0 & 0 & \sqrt{\gamma_2} \\
0 & 0 & 0 \\
0 & 0 & 0
+ \end{bmatrix}, \quad
+ K_3 = \begin{bmatrix}
+ 0 & 0 & 0 \\
+ 0 & 0 & \sqrt{\gamma_3} \\
+ 0 & 0 & 0
\end{bmatrix}
- where :math:`\gamma_1 \in [0, 1]` and :math:`\gamma_2 \in [0, 1]` are the amplitude damping
- probabilities for subspaces (0,1) and (0,2) respectively.
+ where :math:`\gamma_1, \gamma_2, \gamma_3 \in [0, 1]` are the amplitude damping
+ probabilities for subspaces (0,1), (0,2), and (1,2) respectively.
.. note::
- The Kraus operators :math:`\{K_0, K_1, K_2\}` are adapted from [`1 `_] (Eq. 8).
+ When :math:`\gamma_3=0` then Kraus operators :math:`\{K_0, K_1, K_2\}` are adapted from
+ [`1 `_] (Eq. 8).
+
+ The Kraus operator :math:`K_3` represents the :math:`|2 \rangle \rightarrow |1 \rangle` transition which is more
+ likely on some devices [`2 `_] (Sec II.A).
+
+ To maintain normalization :math:`\gamma_2 + \gamma_3 \leq 1`.
+
**Details:**
* Number of wires: 1
- * Number of parameters: 2
+ * Number of parameters: 3
Args:
gamma_1 (float): :math:`|1 \rangle \rightarrow |0 \rangle` amplitude damping probability.
gamma_2 (float): :math:`|2 \rangle \rightarrow |0 \rangle` amplitude damping probability.
+ gamma_3 (float): :math:`|2 \rangle \rightarrow |1 \rangle` amplitude damping probability.
wires (Sequence[int] or int): the wire the channel acts on
id (str or None): String representing the operation (optional)
"""
- num_params = 2
+ num_params = 3
num_wires = 1
grad_method = "F"
- def __init__(self, gamma_1, gamma_2, wires, id=None):
- # Verify gamma_1 and gamma_2
- for gamma in (gamma_1, gamma_2):
- if not (math.is_abstract(gamma_1) or math.is_abstract(gamma_2)):
+ def __init__(self, gamma_1, gamma_2, gamma_3, wires, id=None):
+ # Verify input
+ for gamma in (gamma_1, gamma_2, gamma_3):
+ if not math.is_abstract(gamma):
if not 0.0 <= gamma <= 1.0:
raise ValueError("Each probability must be in the interval [0,1]")
- super().__init__(gamma_1, gamma_2, wires=wires, id=id)
+ if not (math.is_abstract(gamma_2) or math.is_abstract(gamma_3)):
+ if not 0.0 <= gamma_2 + gamma_3 <= 1.0:
+ raise ValueError(r"\gamma_2+\gamma_3 must be in the interval [0,1]")
+ super().__init__(gamma_1, gamma_2, gamma_3, wires=wires, id=id)
@staticmethod
- def compute_kraus_matrices(gamma_1, gamma_2): # pylint:disable=arguments-differ
+ def compute_kraus_matrices(gamma_1, gamma_2, gamma_3): # pylint:disable=arguments-differ
r"""Kraus matrices representing the ``QutritAmplitudeDamping`` channel.
Args:
gamma_1 (float): :math:`|1\rangle \rightarrow |0\rangle` amplitude damping probability.
gamma_2 (float): :math:`|2\rangle \rightarrow |0\rangle` amplitude damping probability.
+ gamma_3 (float): :math:`|2\rangle \rightarrow |1\rangle` amplitude damping probability.
Returns:
list(array): list of Kraus matrices
**Example**
- >>> qml.QutritAmplitudeDamping.compute_kraus_matrices(0.5, 0.25)
+ >>> qml.QutritAmplitudeDamping.compute_kraus_matrices(0.5, 0.25, 0.36)
[
array([ [1. , 0. , 0. ],
[0. , 0.70710678, 0. ],
- [0. , 0. , 0.8660254 ]]),
+ [0. , 0. , 0.6244998 ]]),
array([ [0. , 0.70710678, 0. ],
[0. , 0. , 0. ],
[0. , 0. , 0. ]]),
array([ [0. , 0. , 0.5 ],
[0. , 0. , 0. ],
[0. , 0. , 0. ]])
+ array([ [0. , 0. , 0. ],
+ [0. , 0. , 0.6 ],
+ [0. , 0. , 0. ]])
]
"""
- K0 = math.diag([1, math.sqrt(1 - gamma_1 + math.eps), math.sqrt(1 - gamma_2 + math.eps)])
+ K0 = math.diag(
+ [1, math.sqrt(1 - gamma_1 + math.eps), math.sqrt(1 - gamma_2 - gamma_3 + math.eps)]
+ )
K1 = math.sqrt(gamma_1 + math.eps) * math.convert_like(
math.cast_like(math.array([[0, 1, 0], [0, 0, 0], [0, 0, 0]]), gamma_1), gamma_1
)
K2 = math.sqrt(gamma_2 + math.eps) * math.convert_like(
math.cast_like(math.array([[0, 0, 1], [0, 0, 0], [0, 0, 0]]), gamma_2), gamma_2
)
- return [K0, K1, K2]
+ K3 = math.sqrt(gamma_3 + math.eps) * math.convert_like(
+ math.cast_like(math.array([[0, 0, 0], [0, 0, 1], [0, 0, 0]]), gamma_3), gamma_3
+ )
+ return [K0, K1, K2, K3]
diff --git a/tests/devices/qutrit_mixed/test_qutrit_mixed_preprocessing.py b/tests/devices/qutrit_mixed/test_qutrit_mixed_preprocessing.py
index 9574fdbec25..0d80adf2943 100644
--- a/tests/devices/qutrit_mixed/test_qutrit_mixed_preprocessing.py
+++ b/tests/devices/qutrit_mixed/test_qutrit_mixed_preprocessing.py
@@ -126,6 +126,7 @@ def test_measurement_is_swapped_out(self, mp_fn, mp_cls, shots):
(qml.Snapshot(), True),
(qml.TRX(1.1, 0), True),
(qml.QutritDepolarizingChannel(0.4, 0), True),
+ (qml.QutritAmplitudeDamping(0.1, 0.2, 0.12, 0), True),
],
)
def test_accepted_operator(self, op, expected):
diff --git a/tests/ops/qutrit/test_qutrit_channel_ops.py b/tests/ops/qutrit/test_qutrit_channel_ops.py
index 585f623f499..4b2612815ce 100644
--- a/tests/ops/qutrit/test_qutrit_channel_ops.py
+++ b/tests/ops/qutrit/test_qutrit_channel_ops.py
@@ -176,15 +176,15 @@ class TestQutritAmplitudeDamping:
def test_gamma_zero(self, tol):
"""Test gamma_1=gamma_2=0 gives correct Kraus matrices"""
- kraus_mats = qml.QutritAmplitudeDamping(0, 0, wires=0).kraus_matrices()
+ kraus_mats = qml.QutritAmplitudeDamping(0, 0, 0, wires=0).kraus_matrices()
assert np.allclose(kraus_mats[0], np.eye(3), atol=tol, rtol=0)
- assert np.allclose(kraus_mats[1], np.zeros((3, 3)), atol=tol, rtol=0)
- assert np.allclose(kraus_mats[2], np.zeros((3, 3)), atol=tol, rtol=0)
+ for kraus_mat in kraus_mats[1:]:
+ assert np.allclose(kraus_mat, np.zeros((3, 3)), atol=tol, rtol=0)
- @pytest.mark.parametrize("gamma1,gamma2", ((0.1, 0.2), (0.75, 0.75)))
- def test_gamma_arbitrary(self, gamma1, gamma2, tol):
- """Test the correct Kraus matrices are returned, also ensures that the sum of gammas can be over 1."""
- K_0 = np.diag((1, np.sqrt(1 - gamma1), np.sqrt(1 - gamma2)))
+ @pytest.mark.parametrize("gamma1,gamma2,gamma3", ((0.1, 0.2, 0.3), (0.75, 0.75, 0.25)))
+ def test_gamma_arbitrary(self, gamma1, gamma2, gamma3, tol):
+ """Test the correct Kraus matrices are returned."""
+ K_0 = np.diag((1, np.sqrt(1 - gamma1), np.sqrt(1 - gamma2 - gamma3)))
K_1 = np.zeros((3, 3))
K_1[0, 1] = np.sqrt(gamma1)
@@ -192,33 +192,48 @@ def test_gamma_arbitrary(self, gamma1, gamma2, tol):
K_2 = np.zeros((3, 3))
K_2[0, 2] = np.sqrt(gamma2)
- expected = [K_0, K_1, K_2]
- damping_channel = qml.QutritAmplitudeDamping(gamma1, gamma2, wires=0)
+ K_3 = np.zeros((3, 3))
+ K_3[1, 2] = np.sqrt(gamma3)
+
+ expected = [K_0, K_1, K_2, K_3]
+ damping_channel = qml.QutritAmplitudeDamping(gamma1, gamma2, gamma3, wires=0)
assert np.allclose(damping_channel.kraus_matrices(), expected, atol=tol, rtol=0)
- @pytest.mark.parametrize("gamma1,gamma2", ((1.5, 0.0), (0.0, 1.0 + math.eps)))
- def test_gamma_invalid_parameter(self, gamma1, gamma2):
- """Ensures that error is thrown when gamma_1 or gamma_2 are outside [0,1]"""
- with pytest.raises(ValueError, match="Each probability must be in the interval"):
- channel.QutritAmplitudeDamping(gamma1, gamma2, wires=0).kraus_matrices()
+ @pytest.mark.parametrize(
+ "gamma1,gamma2,gamma3",
+ (
+ (1.5, 0.0, 0.0),
+ (0.0, 1.0 + math.eps, 0.0),
+ (0.0, 0.0, 1.1),
+ (0.0, 0.33, 0.67 + math.eps),
+ ),
+ )
+ def test_gamma_invalid_parameter(self, gamma1, gamma2, gamma3):
+ """Ensures that error is thrown when gamma_1, gamma_2, gamma_3, or (gamma_2 + gamma_3) are outside [0,1]"""
+ with pytest.raises(ValueError, match="must be in the interval"):
+ channel.QutritAmplitudeDamping(gamma1, gamma2, gamma3, wires=0).kraus_matrices()
@staticmethod
- def expected_jac_fn(gamma_1, gamma_2):
+ def expected_jac_fn(gamma_1, gamma_2, gamma_3):
"""Gets the expected Jacobian of Kraus matrices"""
- partial_1 = [math.zeros((3, 3)) for _ in range(3)]
+ partial_1 = [math.zeros((3, 3)) for _ in range(4)]
partial_1[0][1, 1] = -1 / (2 * math.sqrt(1 - gamma_1))
partial_1[1][0, 1] = 1 / (2 * math.sqrt(gamma_1))
- partial_2 = [math.zeros((3, 3)) for _ in range(3)]
- partial_2[0][2, 2] = -1 / (2 * math.sqrt(1 - gamma_2))
+ partial_2 = [math.zeros((3, 3)) for _ in range(4)]
+ partial_2[0][2, 2] = -1 / (2 * math.sqrt(1 - gamma_2 - gamma_3))
partial_2[2][0, 2] = 1 / (2 * math.sqrt(gamma_2))
- return [partial_1, partial_2]
+ partial_3 = [math.zeros((3, 3)) for _ in range(4)]
+ partial_3[0][2, 2] = -1 / (2 * math.sqrt(1 - gamma_2 - gamma_3))
+ partial_3[3][1, 2] = 1 / (2 * math.sqrt(gamma_3))
+
+ return [partial_1, partial_2, partial_3]
@staticmethod
- def kraus_fn(gamma_1, gamma_2):
+ def kraus_fn(gamma_1, gamma_2, gamma_3):
"""Gets the Kraus matrices of QutritAmplitudeDamping channel, used for differentiation."""
- damping_channel = qml.QutritAmplitudeDamping(gamma_1, gamma_2, wires=0)
+ damping_channel = qml.QutritAmplitudeDamping(gamma_1, gamma_2, gamma_3, wires=0)
return math.stack(damping_channel.kraus_matrices())
@pytest.mark.autograd
@@ -226,8 +241,10 @@ def test_kraus_jac_autograd(self):
"""Tests Jacobian of Kraus matrices using autograd."""
gamma_1 = pnp.array(0.43, requires_grad=True)
gamma_2 = pnp.array(0.12, requires_grad=True)
- jac = qml.jacobian(self.kraus_fn)(gamma_1, gamma_2)
- assert math.allclose(jac, self.expected_jac_fn(gamma_1, gamma_2))
+ gamma_3 = pnp.array(0.35, requires_grad=True)
+
+ jac = qml.jacobian(self.kraus_fn)(gamma_1, gamma_2, gamma_3)
+ assert math.allclose(jac, self.expected_jac_fn(gamma_1, gamma_2, gamma_3))
@pytest.mark.torch
def test_kraus_jac_torch(self):
@@ -236,11 +253,15 @@ def test_kraus_jac_torch(self):
gamma_1 = torch.tensor(0.43, requires_grad=True)
gamma_2 = torch.tensor(0.12, requires_grad=True)
+ gamma_3 = torch.tensor(0.35, requires_grad=True)
- jac = torch.autograd.functional.jacobian(self.kraus_fn, (gamma_1, gamma_2))
- expected = self.expected_jac_fn(gamma_1.detach().numpy(), gamma_2.detach().numpy())
- assert math.allclose(jac[0].detach().numpy(), expected[0])
- assert math.allclose(jac[1].detach().numpy(), expected[1])
+ jac = torch.autograd.functional.jacobian(self.kraus_fn, (gamma_1, gamma_2, gamma_3))
+ expected = self.expected_jac_fn(
+ gamma_1.detach().numpy(), gamma_2.detach().numpy(), gamma_3.detach().numpy()
+ )
+
+ for res_partial, exp_partial in zip(jac, expected):
+ assert math.allclose(res_partial.detach().numpy(), exp_partial)
@pytest.mark.tf
def test_kraus_jac_tf(self):
@@ -249,10 +270,12 @@ def test_kraus_jac_tf(self):
gamma_1 = tf.Variable(0.43)
gamma_2 = tf.Variable(0.12)
+ gamma_3 = tf.Variable(0.35)
+
with tf.GradientTape() as tape:
- out = self.kraus_fn(gamma_1, gamma_2)
- jac = tape.jacobian(out, (gamma_1, gamma_2))
- assert math.allclose(jac, self.expected_jac_fn(gamma_1, gamma_2))
+ out = self.kraus_fn(gamma_1, gamma_2, gamma_3)
+ jac = tape.jacobian(out, (gamma_1, gamma_2, gamma_3))
+ assert math.allclose(jac, self.expected_jac_fn(gamma_1, gamma_2, gamma_3))
@pytest.mark.jax
def test_kraus_jac_jax(self):
@@ -261,5 +284,7 @@ def test_kraus_jac_jax(self):
gamma_1 = jax.numpy.array(0.43)
gamma_2 = jax.numpy.array(0.12)
- jac = jax.jacobian(self.kraus_fn, argnums=[0, 1])(gamma_1, gamma_2)
- assert math.allclose(jac, self.expected_jac_fn(gamma_1, gamma_2))
+ gamma_3 = jax.numpy.array(0.35)
+
+ jac = jax.jacobian(self.kraus_fn, argnums=[0, 1, 2])(gamma_1, gamma_2, gamma_3)
+ assert math.allclose(jac, self.expected_jac_fn(gamma_1, gamma_2, gamma_3))