diff --git a/doc/releases/changelog-dev.md b/doc/releases/changelog-dev.md index ce5485e68e4..39d788b4f1a 100644 --- a/doc/releases/changelog-dev.md +++ b/doc/releases/changelog-dev.md @@ -152,9 +152,13 @@ * ``qml.QutritDepolarizingChannel`` has been added, allowing for depolarizing noise to be simulated on the `default.qutrit.mixed` device. [(#5502)](https://github.com/PennyLaneAI/pennylane/pull/5502) +* `qml.QutritAmplitudeDamping` channel has been added, allowing for noise processes modelled by amplitude damping to be simulated on the `default.qutrit.mixed` device. + [(#5503)](https://github.com/PennyLaneAI/pennylane/pull/5503) + [(#5757)](https://github.com/PennyLaneAI/pennylane/pull/5757) + * It is now possible to build Hamiltonians in a parallel fashion. It would greatly speed up VQE, especially when optimizing for the coordinates of a molecule [(#5792)](https://github.com/PennyLaneAI/pennylane/pull/5792) - +

Breaking changes 💔

* A custom decomposition can no longer be provided to `QDrift`. Instead, apply the operations in your custom @@ -180,9 +184,6 @@ * `Controlled.wires` does not include `self.work_wires` anymore. That can be accessed separately through `Controlled.work_wires`. Consequently, `Controlled.active_wires` has been removed in favour of the more common `Controlled.wires`. [(#5728)](https://github.com/PennyLaneAI/pennylane/pull/5728) - -* `qml.QutritAmplitudeDamping` channel has been added, allowing for noise processes modelled by amplitude damping to be simulated on the `default.qutrit.mixed` device. - [(#5503)](https://github.com/PennyLaneAI/pennylane/pull/5503)

Deprecations 👋

diff --git a/pennylane/__init__.py b/pennylane/__init__.py index 80419832ae0..139ebc29222 100644 --- a/pennylane/__init__.py +++ b/pennylane/__init__.py @@ -218,6 +218,9 @@ def device(name, *args, **kwargs): * :mod:`'default.qutrit' `: a simple state simulator of qutrit-based quantum circuit architectures. + * :mod:`'default.qutrit.mixed' `: a + mixed-state simulator of qutrit-based quantum circuit architectures. + * :mod:`'default.gaussian' `: a simple simulator of Gaussian states and operations on continuous-variable circuit architectures. diff --git a/pennylane/ops/qutrit/channel.py b/pennylane/ops/qutrit/channel.py index c50572cf206..82f5d9c4407 100644 --- a/pennylane/ops/qutrit/channel.py +++ b/pennylane/ops/qutrit/channel.py @@ -235,8 +235,10 @@ class QutritAmplitudeDamping(Channel): K_0 = \begin{bmatrix} 1 & 0 & 0\\ 0 & \sqrt{1-\gamma_1} & 0 \\ - 0 & 0 & \sqrt{1-\gamma_2} - \end{bmatrix}, \quad + 0 & 0 & \sqrt{1-(\gamma_2+\gamma_3)} + \end{bmatrix} + + .. math:: K_1 = \begin{bmatrix} 0 & \sqrt{\gamma_1} & 0 \\ 0 & 0 & 0 \\ @@ -246,70 +248,95 @@ class QutritAmplitudeDamping(Channel): 0 & 0 & \sqrt{\gamma_2} \\ 0 & 0 & 0 \\ 0 & 0 & 0 + \end{bmatrix}, \quad + K_3 = \begin{bmatrix} + 0 & 0 & 0 \\ + 0 & 0 & \sqrt{\gamma_3} \\ + 0 & 0 & 0 \end{bmatrix} - where :math:`\gamma_1 \in [0, 1]` and :math:`\gamma_2 \in [0, 1]` are the amplitude damping - probabilities for subspaces (0,1) and (0,2) respectively. + where :math:`\gamma_1, \gamma_2, \gamma_3 \in [0, 1]` are the amplitude damping + probabilities for subspaces (0,1), (0,2), and (1,2) respectively. .. note:: - The Kraus operators :math:`\{K_0, K_1, K_2\}` are adapted from [`1 `_] (Eq. 8). + When :math:`\gamma_3=0` then Kraus operators :math:`\{K_0, K_1, K_2\}` are adapted from + [`1 `_] (Eq. 8). + + The Kraus operator :math:`K_3` represents the :math:`|2 \rangle \rightarrow |1 \rangle` transition which is more + likely on some devices [`2 `_] (Sec II.A). + + To maintain normalization :math:`\gamma_2 + \gamma_3 \leq 1`. + **Details:** * Number of wires: 1 - * Number of parameters: 2 + * Number of parameters: 3 Args: gamma_1 (float): :math:`|1 \rangle \rightarrow |0 \rangle` amplitude damping probability. gamma_2 (float): :math:`|2 \rangle \rightarrow |0 \rangle` amplitude damping probability. + gamma_3 (float): :math:`|2 \rangle \rightarrow |1 \rangle` amplitude damping probability. wires (Sequence[int] or int): the wire the channel acts on id (str or None): String representing the operation (optional) """ - num_params = 2 + num_params = 3 num_wires = 1 grad_method = "F" - def __init__(self, gamma_1, gamma_2, wires, id=None): - # Verify gamma_1 and gamma_2 - for gamma in (gamma_1, gamma_2): - if not (math.is_abstract(gamma_1) or math.is_abstract(gamma_2)): + def __init__(self, gamma_1, gamma_2, gamma_3, wires, id=None): + # Verify input + for gamma in (gamma_1, gamma_2, gamma_3): + if not math.is_abstract(gamma): if not 0.0 <= gamma <= 1.0: raise ValueError("Each probability must be in the interval [0,1]") - super().__init__(gamma_1, gamma_2, wires=wires, id=id) + if not (math.is_abstract(gamma_2) or math.is_abstract(gamma_3)): + if not 0.0 <= gamma_2 + gamma_3 <= 1.0: + raise ValueError(r"\gamma_2+\gamma_3 must be in the interval [0,1]") + super().__init__(gamma_1, gamma_2, gamma_3, wires=wires, id=id) @staticmethod - def compute_kraus_matrices(gamma_1, gamma_2): # pylint:disable=arguments-differ + def compute_kraus_matrices(gamma_1, gamma_2, gamma_3): # pylint:disable=arguments-differ r"""Kraus matrices representing the ``QutritAmplitudeDamping`` channel. Args: gamma_1 (float): :math:`|1\rangle \rightarrow |0\rangle` amplitude damping probability. gamma_2 (float): :math:`|2\rangle \rightarrow |0\rangle` amplitude damping probability. + gamma_3 (float): :math:`|2\rangle \rightarrow |1\rangle` amplitude damping probability. Returns: list(array): list of Kraus matrices **Example** - >>> qml.QutritAmplitudeDamping.compute_kraus_matrices(0.5, 0.25) + >>> qml.QutritAmplitudeDamping.compute_kraus_matrices(0.5, 0.25, 0.36) [ array([ [1. , 0. , 0. ], [0. , 0.70710678, 0. ], - [0. , 0. , 0.8660254 ]]), + [0. , 0. , 0.6244998 ]]), array([ [0. , 0.70710678, 0. ], [0. , 0. , 0. ], [0. , 0. , 0. ]]), array([ [0. , 0. , 0.5 ], [0. , 0. , 0. ], [0. , 0. , 0. ]]) + array([ [0. , 0. , 0. ], + [0. , 0. , 0.6 ], + [0. , 0. , 0. ]]) ] """ - K0 = math.diag([1, math.sqrt(1 - gamma_1 + math.eps), math.sqrt(1 - gamma_2 + math.eps)]) + K0 = math.diag( + [1, math.sqrt(1 - gamma_1 + math.eps), math.sqrt(1 - gamma_2 - gamma_3 + math.eps)] + ) K1 = math.sqrt(gamma_1 + math.eps) * math.convert_like( math.cast_like(math.array([[0, 1, 0], [0, 0, 0], [0, 0, 0]]), gamma_1), gamma_1 ) K2 = math.sqrt(gamma_2 + math.eps) * math.convert_like( math.cast_like(math.array([[0, 0, 1], [0, 0, 0], [0, 0, 0]]), gamma_2), gamma_2 ) - return [K0, K1, K2] + K3 = math.sqrt(gamma_3 + math.eps) * math.convert_like( + math.cast_like(math.array([[0, 0, 0], [0, 0, 1], [0, 0, 0]]), gamma_3), gamma_3 + ) + return [K0, K1, K2, K3] diff --git a/tests/devices/qutrit_mixed/test_qutrit_mixed_preprocessing.py b/tests/devices/qutrit_mixed/test_qutrit_mixed_preprocessing.py index 9574fdbec25..0d80adf2943 100644 --- a/tests/devices/qutrit_mixed/test_qutrit_mixed_preprocessing.py +++ b/tests/devices/qutrit_mixed/test_qutrit_mixed_preprocessing.py @@ -126,6 +126,7 @@ def test_measurement_is_swapped_out(self, mp_fn, mp_cls, shots): (qml.Snapshot(), True), (qml.TRX(1.1, 0), True), (qml.QutritDepolarizingChannel(0.4, 0), True), + (qml.QutritAmplitudeDamping(0.1, 0.2, 0.12, 0), True), ], ) def test_accepted_operator(self, op, expected): diff --git a/tests/ops/qutrit/test_qutrit_channel_ops.py b/tests/ops/qutrit/test_qutrit_channel_ops.py index 585f623f499..4b2612815ce 100644 --- a/tests/ops/qutrit/test_qutrit_channel_ops.py +++ b/tests/ops/qutrit/test_qutrit_channel_ops.py @@ -176,15 +176,15 @@ class TestQutritAmplitudeDamping: def test_gamma_zero(self, tol): """Test gamma_1=gamma_2=0 gives correct Kraus matrices""" - kraus_mats = qml.QutritAmplitudeDamping(0, 0, wires=0).kraus_matrices() + kraus_mats = qml.QutritAmplitudeDamping(0, 0, 0, wires=0).kraus_matrices() assert np.allclose(kraus_mats[0], np.eye(3), atol=tol, rtol=0) - assert np.allclose(kraus_mats[1], np.zeros((3, 3)), atol=tol, rtol=0) - assert np.allclose(kraus_mats[2], np.zeros((3, 3)), atol=tol, rtol=0) + for kraus_mat in kraus_mats[1:]: + assert np.allclose(kraus_mat, np.zeros((3, 3)), atol=tol, rtol=0) - @pytest.mark.parametrize("gamma1,gamma2", ((0.1, 0.2), (0.75, 0.75))) - def test_gamma_arbitrary(self, gamma1, gamma2, tol): - """Test the correct Kraus matrices are returned, also ensures that the sum of gammas can be over 1.""" - K_0 = np.diag((1, np.sqrt(1 - gamma1), np.sqrt(1 - gamma2))) + @pytest.mark.parametrize("gamma1,gamma2,gamma3", ((0.1, 0.2, 0.3), (0.75, 0.75, 0.25))) + def test_gamma_arbitrary(self, gamma1, gamma2, gamma3, tol): + """Test the correct Kraus matrices are returned.""" + K_0 = np.diag((1, np.sqrt(1 - gamma1), np.sqrt(1 - gamma2 - gamma3))) K_1 = np.zeros((3, 3)) K_1[0, 1] = np.sqrt(gamma1) @@ -192,33 +192,48 @@ def test_gamma_arbitrary(self, gamma1, gamma2, tol): K_2 = np.zeros((3, 3)) K_2[0, 2] = np.sqrt(gamma2) - expected = [K_0, K_1, K_2] - damping_channel = qml.QutritAmplitudeDamping(gamma1, gamma2, wires=0) + K_3 = np.zeros((3, 3)) + K_3[1, 2] = np.sqrt(gamma3) + + expected = [K_0, K_1, K_2, K_3] + damping_channel = qml.QutritAmplitudeDamping(gamma1, gamma2, gamma3, wires=0) assert np.allclose(damping_channel.kraus_matrices(), expected, atol=tol, rtol=0) - @pytest.mark.parametrize("gamma1,gamma2", ((1.5, 0.0), (0.0, 1.0 + math.eps))) - def test_gamma_invalid_parameter(self, gamma1, gamma2): - """Ensures that error is thrown when gamma_1 or gamma_2 are outside [0,1]""" - with pytest.raises(ValueError, match="Each probability must be in the interval"): - channel.QutritAmplitudeDamping(gamma1, gamma2, wires=0).kraus_matrices() + @pytest.mark.parametrize( + "gamma1,gamma2,gamma3", + ( + (1.5, 0.0, 0.0), + (0.0, 1.0 + math.eps, 0.0), + (0.0, 0.0, 1.1), + (0.0, 0.33, 0.67 + math.eps), + ), + ) + def test_gamma_invalid_parameter(self, gamma1, gamma2, gamma3): + """Ensures that error is thrown when gamma_1, gamma_2, gamma_3, or (gamma_2 + gamma_3) are outside [0,1]""" + with pytest.raises(ValueError, match="must be in the interval"): + channel.QutritAmplitudeDamping(gamma1, gamma2, gamma3, wires=0).kraus_matrices() @staticmethod - def expected_jac_fn(gamma_1, gamma_2): + def expected_jac_fn(gamma_1, gamma_2, gamma_3): """Gets the expected Jacobian of Kraus matrices""" - partial_1 = [math.zeros((3, 3)) for _ in range(3)] + partial_1 = [math.zeros((3, 3)) for _ in range(4)] partial_1[0][1, 1] = -1 / (2 * math.sqrt(1 - gamma_1)) partial_1[1][0, 1] = 1 / (2 * math.sqrt(gamma_1)) - partial_2 = [math.zeros((3, 3)) for _ in range(3)] - partial_2[0][2, 2] = -1 / (2 * math.sqrt(1 - gamma_2)) + partial_2 = [math.zeros((3, 3)) for _ in range(4)] + partial_2[0][2, 2] = -1 / (2 * math.sqrt(1 - gamma_2 - gamma_3)) partial_2[2][0, 2] = 1 / (2 * math.sqrt(gamma_2)) - return [partial_1, partial_2] + partial_3 = [math.zeros((3, 3)) for _ in range(4)] + partial_3[0][2, 2] = -1 / (2 * math.sqrt(1 - gamma_2 - gamma_3)) + partial_3[3][1, 2] = 1 / (2 * math.sqrt(gamma_3)) + + return [partial_1, partial_2, partial_3] @staticmethod - def kraus_fn(gamma_1, gamma_2): + def kraus_fn(gamma_1, gamma_2, gamma_3): """Gets the Kraus matrices of QutritAmplitudeDamping channel, used for differentiation.""" - damping_channel = qml.QutritAmplitudeDamping(gamma_1, gamma_2, wires=0) + damping_channel = qml.QutritAmplitudeDamping(gamma_1, gamma_2, gamma_3, wires=0) return math.stack(damping_channel.kraus_matrices()) @pytest.mark.autograd @@ -226,8 +241,10 @@ def test_kraus_jac_autograd(self): """Tests Jacobian of Kraus matrices using autograd.""" gamma_1 = pnp.array(0.43, requires_grad=True) gamma_2 = pnp.array(0.12, requires_grad=True) - jac = qml.jacobian(self.kraus_fn)(gamma_1, gamma_2) - assert math.allclose(jac, self.expected_jac_fn(gamma_1, gamma_2)) + gamma_3 = pnp.array(0.35, requires_grad=True) + + jac = qml.jacobian(self.kraus_fn)(gamma_1, gamma_2, gamma_3) + assert math.allclose(jac, self.expected_jac_fn(gamma_1, gamma_2, gamma_3)) @pytest.mark.torch def test_kraus_jac_torch(self): @@ -236,11 +253,15 @@ def test_kraus_jac_torch(self): gamma_1 = torch.tensor(0.43, requires_grad=True) gamma_2 = torch.tensor(0.12, requires_grad=True) + gamma_3 = torch.tensor(0.35, requires_grad=True) - jac = torch.autograd.functional.jacobian(self.kraus_fn, (gamma_1, gamma_2)) - expected = self.expected_jac_fn(gamma_1.detach().numpy(), gamma_2.detach().numpy()) - assert math.allclose(jac[0].detach().numpy(), expected[0]) - assert math.allclose(jac[1].detach().numpy(), expected[1]) + jac = torch.autograd.functional.jacobian(self.kraus_fn, (gamma_1, gamma_2, gamma_3)) + expected = self.expected_jac_fn( + gamma_1.detach().numpy(), gamma_2.detach().numpy(), gamma_3.detach().numpy() + ) + + for res_partial, exp_partial in zip(jac, expected): + assert math.allclose(res_partial.detach().numpy(), exp_partial) @pytest.mark.tf def test_kraus_jac_tf(self): @@ -249,10 +270,12 @@ def test_kraus_jac_tf(self): gamma_1 = tf.Variable(0.43) gamma_2 = tf.Variable(0.12) + gamma_3 = tf.Variable(0.35) + with tf.GradientTape() as tape: - out = self.kraus_fn(gamma_1, gamma_2) - jac = tape.jacobian(out, (gamma_1, gamma_2)) - assert math.allclose(jac, self.expected_jac_fn(gamma_1, gamma_2)) + out = self.kraus_fn(gamma_1, gamma_2, gamma_3) + jac = tape.jacobian(out, (gamma_1, gamma_2, gamma_3)) + assert math.allclose(jac, self.expected_jac_fn(gamma_1, gamma_2, gamma_3)) @pytest.mark.jax def test_kraus_jac_jax(self): @@ -261,5 +284,7 @@ def test_kraus_jac_jax(self): gamma_1 = jax.numpy.array(0.43) gamma_2 = jax.numpy.array(0.12) - jac = jax.jacobian(self.kraus_fn, argnums=[0, 1])(gamma_1, gamma_2) - assert math.allclose(jac, self.expected_jac_fn(gamma_1, gamma_2)) + gamma_3 = jax.numpy.array(0.35) + + jac = jax.jacobian(self.kraus_fn, argnums=[0, 1, 2])(gamma_1, gamma_2, gamma_3) + assert math.allclose(jac, self.expected_jac_fn(gamma_1, gamma_2, gamma_3))