Benchmark for optimizations to scikit-learn in the Intel(R) Distribution for Python*. See benchmark results here.
- python and scikit-learn to run python versions
- pandas when using its DataFrame as input data format
icc
,ifort
,mkl
,daal
to compile and run native benchmarks
conda create -n skl_bench -c intel python=3.7 scikit-learn pandas
python runner.py --config config_example.json [--output-format json --verbose]
- Run
make
. This will generate data, compile benchmarks, and run them.- To run only scikit-learn benchmarks, use
make sklearn
. - To run only native benchmarks, use
make native
. - To run only daal4py benchmarks, use
make daal4py
. - To run a specific implementation of a specific benchmark,
directly request the corresponding file:
make output/<impl>/<bench>.out
. - If you have activated a conda environment, the build will use daal from the conda environment, if available.
- To run only scikit-learn benchmarks, use