-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathcontinuousVariableMethods.R
278 lines (212 loc) · 11.3 KB
/
continuousVariableMethods.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
# Simulating retailer data
set.seed(21821)
ncust<-1000
# CUSTOMER DATA
cust.df<-data.frame(cust.id=as.factor(c(1:ncust)))
cust.df$age<-rnorm(n=ncust, mean=35, sd=5) # set age to be a normal distribution with mean 35 and sd 5
cust.df$credit.score<-rnorm(n=ncust, mean=3*cust.df$age+620, sd=50) # set credit score to be normal distribution linked to age & with SD 50
cust.df$email<-factor(sample(c("yes", "no"), size=ncust, replace=TRUE, prob=c(0.8, 0.2))) # set email to be a factor of random yes/no, with probability weighted favourably to yes
cust.df$distance.to.store<-exp(rnorm(n=ncust, mean=2, sd=1.2)) # set distance to store to be an exponential normal distribution - i.e. more customers will be close than far
# hist(cust.df$distance.to.store) # to see the distribution of distances
# SALES DATA
# Online data
cust.df$online.visits<-rnbinom(ncust, size=0.3,
mu=15 + ifelse(cust.df$email=="yes", 15, 0) # model the mean of the negative binomial with baseline value 15
- 0.7 * (cust.df$age-median(cust.df$age))) # age deviation from mean influences the number of visits
cust.df$online.trans<-rbinom(ncust, size=cust.df$online.visits, prob=0.3)
cust.df$online.spend<-exp(rnorm(ncust, mean=3, sd=0.1)) * cust.df$online.trans
# In-store data
cust.df$store.trans<-rnbinom(ncust, size=5,
mu=3 / sqrt(cust.df$distance.to.store))
cust.df$store.spend<-exp(rnorm(ncust, mean=3.5, sd=0.4)) * cust.df$store.trans
# Customer satisfaction
sat.overall<-rnorm(ncust, mean=3.1, sd=0.7) # Set the overall satisfaction - a psychological construct
sat.service<-floor(sat.overall + rnorm(ncust, mean=0.5, sd=0.4)) # derive service satisfaction from overall sat + random numbers with mean 0.5
sat.selection<-floor(sat.overall + rnorm(ncust, mean=-0.2, sd=0.6)) # Set the selection satisfaction to overall sat + random num, mean -0.2
sat.service[sat.service>5]<-5 # set all values > 5 to be 5
sat.service[sat.service<1]<-1 # set all values < 1 to be 1
sat.selection[sat.selection>5]<-5
sat.selection[sat.selection<1]<-1
# modelling non-responses. Create a subset of non-reponders, with older individuals less likely to respond.
no.response<-as.logical(rbinom(ncust, size=1, prob=cust.df$age/100))
sat.service[no.response]<-NA
sat.selection[no.response]<-NA
summary(cbind(sat.service, sat.selection))
cust.df$sat.service<-sat.service
cust.df$sat.selection<-sat.selection
# PLOT THAT DATA!
plot(cust.df$age, cust.df$credit.score,
col="blue",
xlim=c(15,55), ylim=c(500,900),
main="Active Customers as of June 2014",
xlab="Customer Age (Years)", ylab="Customer Credit Score")
abline(h=mean(cust.df$credit.score), col="dark blue", lty="dotted")
abline(v=mean(cust.df$age), col="dark blue", lty="dotted")
# Other useful commands to add after plot
# points() - add specific points
# abline() - add a line by slope
# lines() - add a set of lines by coordinates
# legend() - add a legend
# Plotting store spend vs online spend
plot(cust.df$store.spend, cust.df$online.spend,
main="Customers as of June 2014",
xlab="Prior 12 months in-store sales ($)",
ylab="Prior 12 months of online sales ($)",
cex=0.7) # not sure what cex is
# histogram of just in-store sales
hist(cust.df$store.spend,
breaks=(0:ceiling(max(cust.df$store.spend)/10)*10),
main="Customers as of June 2014",
xlab="Prior 12 months in-store sales ($)",
ylab="count of customers")
# Do the same for online sales
hist(cust.df$online.spend,
breaks=(0:ceiling(max(cust.df$online.spend)/10))*10,
main="Customers as of June 2014",
xlab="Prior 12 months online sales",
ylab="count of customers")
# Colour coding the scatter (lines 59-64) to identify cusomers who have opted in
# Setting up colour vectors
my.col<-c("black", "green3")
my.pch<-c(1,19) # 1 and 19 are the symbols for solid / open circles (?points)
# Setting up the plot
plot(cust.df$store.spend, cust.df$online.spend,
main="Customers as of June 2014",
col=my.col[cust.df$email], pch=my.pch[cust.df$email],
xlab="Prior 12 months in-store sales ($)",
ylab="Prior 12 months of online sales ($)",
cex=0.7)
# Adding a legend
legend(x="topright", legend=paste("email on file: ", levels(cust.df$email)),
col=my.col, pch=my.pch)
# Adding a log-scale to make the plot easier to read (repeats lines 85-95, but full code added below. Only lines 99 & 100 are new.)
# Setting up the plot
plot(cust.df$store.spend + 1, cust.df$online.spend + 1, # +1 is added to avoid the log error because the log of 0 does not pass.
log="xy",
main="Customers as of June 2014",
col=my.col[cust.df$email], pch=my.pch[cust.df$email],
xlab="Prior 12 months in-store sales ($)",
ylab="Prior 12 months of online sales ($)",
cex=0.7)
# Adding a legend
legend(x="topright", legend=paste("email on file: ", levels(cust.df$email)),
col=my.col, pch=my.pch)
# Multiple plots in the same vis
par(mfrow=c(2,2)) # tells R that you want a 2x2 graphics space.
# Plotting store/online Vs distance to store
plot(cust.df$store.spend, cust.df$distance.to.store, main="store")
plot(cust.df$online.spend, cust.df$distance.to.store, main="online")
plot(cust.df$store.spend+1, cust.df$distance.to.store + 1, log="xy")
plot(cust.df$store.spend+1, cust.df$distance.to.store + 1, log="xy")
# Making a megaplot, specifying the variables
pairs(formula = ~ age + credit.score + email +
distance.to.store + online.visits + online.trans + online.spend + store.trans + store.spend,
data=cust.df)
# Using the car library for better scatterplots
library(car)
scatterplotMatrix(formula = ~ age + credit.score + email +
distance.to.store + online.visits + online.trans + online.spend +
store.trans + store.spend,
data=cust.df, diagonal="histogram")
# Visualising factorial variables vs continuous using gpairs
library(gpairs)
gpairs(cust.df[,2:10])
# Understanding correlations
# Covariance: 1 = x and y tend to go up together. -1 = x goes up, y goes down. 0 = no linear association
cov(cust.df$age,cust.df$credit.score)
# Pearson's product-moment correlation
# -1 = perfect negative linear correlation, +1 = perfect positive, 0=no correlation.
# Cohen's rule of thumb for data involving people: (Cohen, J (1988) Statistical power analysis for the behavioural sciences (2nd ed.). Hillsdale: Lawrence Erlbaum Associates)
# 0.1 = weak correlation
# 0.3 = medium correlation
# 0.5 = strong correlation
# N.B. - these correlations apply only to normal distribution - i.e. neither of the scales are logarithmic. To judge correlation, first convert your data to normal scales.
cor(cust.df$age, cust.df$credit.score)
# Testing the statistical significance of the correlation
cor.test(cust.df$age,cust.df$credit.score)
# When running the above, since the confidence interval is 95%, giving p-values of 0.1955974 - 0.3115816, the association is significant (since the lowest interval is > 0.05)
# Creating a correlation matrix
# Pass multiple vectors to the cor() function.
cor(cust.df[,c(2,3,5:12)])
# Optional - you can pass the argument use="complete.obs" to the function above and R will only compare cases without NA values.
# Plotting the correlation using gplots/corrplot
library(corrplot)
library(gplots)
corrplot.mixed(corr=cor(cust.df[,c(2,3,5:12)], use="complete.obs", ),
upper="ellipse", tl.pos="lt",
col=colorpanel(50,"red","gray60","blue4"))
# switching display back to 1x1 in the plot area
par(mfrow=c(1,1))
# Transforming variables before computing correlations
print("There is a perfect linear relationship between x and x^2 when we plot the following, but correlation with cor() shows no correlation")
x<-runif(1000,min=-10, max=10)
plot(x, x^2)
cor(x,x^2)
# Tracking the linear correlation between distance to store and store spend reveals a small linear correlation
cor(cust.df$distance.to.store, cust.df$store.spend)
# But if you track the correlation between store spend and the inverse of distance to store, there's a much stronger correlation
cor(1/cust.df$distance.to.store, cust.df$store.spend)
# Showing the difference between plotting normal and inverse square representations
par(mfrow=c(2,1))
plot(cust.df$distance.to.store, cust.df$store.trans)
plot(1/sqrt(cust.df$distance.to.store), cust.df$store.trans)
# Commonly-used data transformations for marketing
# Unit sales, revenue, household income, price
log(x)
# distance
1/x, 1/x^2, log(x)
# Market or preference share based on a utility value
e^x / 1 + e^x (see later section)
# Right-tailed distributions (generally)
sqrt(x) or log(x)
# Left-tailed distributions
x^2
# Box-Cox transformations
# Useful for finding relationships between variables with skewed distributions
library(car)
# Find the best value of lambda to make distance to store the most normal distribution.
# If powerTransform returns a value close to 1, this suggests that the original distribution is already close to normal.
powerTransform(cust.df$distance.to.store)
# Extract the value of lambda using coef()
lambda<-coef(powerTransform(1/cust.df$distance.to.store))
# Transform the distance to store variable using bcPower
bcPower(cust.df$distance.to.store, lambda)
# See how this now affects the distance variable in a couple of plots
par(mfrow=c(1,2))
# Histogram for the original variable
hist(cust.df$distance.to.store,
xlab="Distance to Nearest Store", ylab="Count of customers",
main="Count of original customers")
# Histogram for the transformed Box-Cox variable
hist(bcPower(cust.df$distance.to.store, lambda),
xlab="Distance to Nearest Store", ylab="Count of customers",
main="Count of lambda'd customers")
# Using Box-Cox to find associations between distance and spend
# Transform both variables using the same process as line 218
l.dist<-coef(powerTransform(cust.df$distance.to.store))
l.spend<-coef(powerTransform(cust.df$store.spend+1)) # +1 because some of the spend values will be 0
# Check the correlation with cor()
cor(bcPower(cust.df$distance.to.store,l.dist), bcPower(cust.df$store.spend+1, l.spend))
# Plot the two transformed variables
plot(bcPower(cust.df$distance.to.store,l.dist), bcPower(cust.df$store.spend+1, l.spend))
# Exploring associations in survey responses (ordinal variables, on an ordinal scale)
# Plotting as below demonstrates that the only information that can be gathered as-is is that among the population, most of the possible scale variations were used. It doesn't tell us about the density of given combinations.
plot(cust.df$sat.service, cust.df$sat.selection,
xlab="Service Satisfaction", ylab="Selection satisfaction",
main="Customers as of June 2014")
# To fix this, use jitter() to add random noise to the plots so you can see intensity.
plot(jitter(cust.df$sat.service), jitter(cust.df$sat.selection),
xlab="Service Satisfaction", ylab="Selection satisfaction",
main="Jittery customers as of June 2014")
# polychloric() - this can wait, save for later. Page 107
# Plots ticklist
# xlab, ylab, main
# legend
# cex= argument adjusts point sizes on the plot
# When plots don't look as you expect, check the variable type with str()
# For skewed distributions, consider log scales or common transformations (lines 193-228)
# Correlation ticklist
# cor() to understand the correlation
# cor.test() to gauge the statistical significance
# corrplot pacakge to plot the correlations
#