Skip to content

Latest commit

 

History

History
122 lines (82 loc) · 3.89 KB

README.md

File metadata and controls

122 lines (82 loc) · 3.89 KB

PhotosynQ | R

CRAN/METACRAN

This package allows to download Project data from the PhotosynQ online platform right into RStudio or R, providing a data frame that can be used for a subsequent advanced analysis.

Installation

If you don't already have, install RStudio and R first.

R-Studio (CRAN)

The easiest way to install PhotosynQ for R is through R-Studio using the CRAN network that is hosting the repository for R Packages.

  1. Open RStudio
  2. Select Tools from the menu and click on Install Packages
  3. Select Install from: Repository (CRAN)
  4. Type PhotosynQ into the Packages input field
  5. Make sure the Install dependencies checkbox is checked
  6. Click on Install to finish the installation and close the dialog

Note: If you are not using CRAN to install the PhotosynQ Package you might have to install the Packages httr and getPass it depends on manually using the command: install.packages(c("httr","getPass")).

From Package Archive File

Download the latest release of the PhotosynQ R package. Select the file indicated as Source code (tar.gz). This is the format required by RStudio.

  1. Open RStudio
  2. Select Tools from the menu and click on Install Packages.
  3. Select Install from: Package Archive File (.tgz; .tar-gz)
  4. Package archive: Click on Browse... and select the downloaded file.
  5. Click on Install to finish the installation and close the dialog.

Development version with devtools

For users that already have a development environment, devtools provides an easy installation from the GitHub repository.

  1. Open RStudio
  2. Install the release version of devtools from CRAN with install.packages("devtools")
  3. Make sure you have a working development environment.
    • Windows: Install Rtools.
    • Mac: Install Xcode from the Mac App Store.
    • Linux: Install a compiler and various development libraries (details vary across different flavors of Linux).
  4. Install the development version of PhotosynQ-R: devtools::install_github("PhotosynQ/PhotosynQ-R")

Getting started

Create a list of data frames in a single step from the data of a Project. Each frame in the list represents one measurement protocol. A user account for PhotosynQ is required to access the data. You will find the ID of your project on the project page.

PhotosynQ::login("john.doe@domain.com")
ID <- 1556
dfs <- PhotosynQ::getProject(ID)

Preparing the data for analysis

The flagged measurements are included in the dataset and most likely needs to be removed for further analysis. You can use the filter() function of the dplyr library to remove the flagged measurement from the data frame. You might want to use the same function to select a subset of measurement from your data frame.

# Select a Protocol from the List of Data Frames
df <- dfs$`Protocol Name`

# View the Protocol Output
View(df)

# Filter out flagged data
library(dplyr)
df_filtered <- filter(df, status == "submitted")

Separate Functions

Login

email <- "john.doe@domain.com"
login <- PhotosynQ::login(email)

Logout

PhotosynQ::logout()

Get Project Information

ID <- 1556
project_info <- PhotosynQ::getProjectInfo(ID)

Get Project Data

ID <- 1556
project_data <- PhotosynQ::getProjectData(ID)

# Use raw data
processed_data <- FALSE
project_data <- PhotosynQ::getProjectData(ID, processed_data)

Create a Data frame

dataframe <- PhotosynQ::createDataframe(project_info, project_data)