-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtransfer_matrix.py
602 lines (502 loc) · 25.1 KB
/
transfer_matrix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# This file is part of pyFresnel.
# Copyright (c) 2012-2016, Robert Steed
# Author: Robert Steed (rjsteed@talk21.com)
# License: GPL
# last modified 15.08.2016
"""A simple Optical Transfer Matrix code (there are so many out there).
It takes a description of the layers and calculates the transmission and reflection.
I will include a very special anisotropic/uniaxial case where the dielectric is
different along the perpendicular/ layer stack axis than to the in-plane directions;
this is so I can describe quantum well intersubband absorptions. If I have time,
I will include code to calculate the intensity for each layer (for modelling
saturation of structures)."""
"""
##Summary of maths
##Implementation
#Transfer matrix involves 2x2 matrices and multiplication but this needs to be
#done for each frequency/wavelength.
#numpy method 1
#A = N.empty((numpts,),dtype=object) #this creates an array of objects that can be filled with anything, including matrices
#numpy method2
#A = N.zeros((numpts,2,2)) #creates a 3d array
#Trick from http://jameshensman.wordpress.com/2010/06/14/multiple-matrix-multiplication-in-numpy/
#C = N.sum(np.transpose(A,(0,2,1)).reshape(100,2,2,1)*B.reshape(100,2,1,2),-3)#this can be used to matrix multiply 2 such arrays (very ugly isn't it)
#C = N.dot(A,B) #does this work? not quite.
#use
#N.diagonal(N.dot(A,B),axis1=0,axis2=2).swapawes(1,2).swapaxes(0,1)
#or
#N.rollaxis(N.diagonal(N.dot(A,B),axis1=0,axis2=2),2)
#or
#N.transpose(N.diagonal(N.dot(A,B),axis1=0,axis2=2),(2,0,1))
#but unecessary calculations are carried out by N.dot() so it is better to do
# N.sum(N.transpose(A,(0,2,1))[:,:,:,N.newaxis]*B[:,:,N.newaxis,:],axis=-3)
# see also einsum() and tensordot()
##Describing layers
#Can describe system as
#
#f1 = filter([Layer(eps0,d0),
# Layer(eps1,d1),
# Layer(eps3,d2),
# ...
# ],w,pol,theta)
# but can use any python list operation required to make the process more efficient, i.e. f1*3 will repeat the structure 3 times.
# F1.append(Layer(epsn,dn)) will append a layer.
"""
import numpy as N
from numpy.random import random_sample
print ("numpy imported")
from numbers import Number
import copy
c=299792458 #m/s - speed of light
pi=N.pi
def param_check(param,w):
if hasattr(param,'n'): #this case is so that we are able to use the material classes defined in materials.py.
param=param.n()
if hasattr(param,'__call__'):
x = param(w)
elif hasattr(param,'__len__'): #Is n an array with the same length as w?
if len(param)!=len(w):
raise NameError("w and parameter array are not compatible")
else:
x = param
elif isinstance(param,Number): #Is self.eps a number (integer/float/complex)
x = N.repeat(param,len(w))
else:
raise TypeError("Don't know how to handle this input")
return x
#add code to deal with classes from materials.py
class Layer():
def __init__(self,n,d,coh=True):
self._n = n # can be a function or array (if it has the same length as the spectral axis)
self.d = d # thickness of the layer (m)
self.coh = coh # is layer coherent or incoherent, could also be a number between 0 and pi to decribe a partially coherent layer
def n(self,w):
return param_check(self._n,w)
def __repr__(self):
return "Layer"+"("+repr(self._n)+", "+repr(self.d)+", coh="+repr(self.coh)+" )"
class LayerUniaxial():
def __init__(self,nxx,nzz,d,coh=True):
self._nxx = nxx # can be a function or array (if it has the same length as the spectral axis)
self._nzz = nzz # can be a function or array (if it has the same length as the spectral axis)
self.d = d
self.coh = coh
def n(self,w):
return param_check(self._nxx,w)
def nzz(self,w):
return param_check(self._nzz,w)
def __repr__(self):
return "LayerUniaxial"+"("+repr(self._nxx)+", "+repr(self._nzz)+", "+repr(self.d)+", coh="+repr(self.coh)+" )"
class Layer_eps():
def __init__(self,eps,d,coh=True):
self.eps = eps # can be a function or array (if it has the same length as the spectral axis)
self.d = d
self.coh = coh
def n(self,w):
return N.sqrt(param_check(self.eps,w))
def __repr__(self):
return "Layer_eps"+"("+repr(self.eps)+", "+repr(self.d)+", coh="+repr(self.coh)+" )"
class LayerUniaxial_eps():
def __init__(self,epsxx,epszz,d,coh=True):
self.epsxx = epsxx # can be a function or array (if it has the same length as the spectral axis)
self.epszz = epszz # can be a function or array (if it has the same length as the spectral axis)
self.d = d
self.coh = coh
def n(self,w):
return N.sqrt(param_check(self.epsxx,w))
def nzz(self,w):
return N.sqrt(param_check(self.epszz,w))
def __repr__(self):
return "LayerUniaxial_eps"+"("+repr(self.epsxx)+", "+repr(self.epszz)+", "+repr(self.d)+", coh="+repr(self.coh)+" )"
def interactive(func):
"""This allows us to change the objects parameters temporarily during a calculation
which is more convenient when calling the class methods. However, it will only
work if the function does not require an input parameter with the same name as
an object data attribute"""
def wrapping(self,*args,**kwargs):
#I'm using self.__dict__ to be general but I could always use a custom defined dictionary/list like ['pol','w','angles'].
kwargsA = {k:kwargs[k] for k in kwargs if k not in self.__dict__}
kwargsB = {k:kwargs[k] for k in kwargs if k in self.__dict__}
SaveState = copy.copy(self.__dict__)
try:
for k in kwargsB:
print(('Temporarily changing %s for this calculation' %k))
setattr(self,k,kwargsB[k])
self._checks_n_axis()
self.n0sinth2=(self[0].n(self.w) * N.sin(self.theta))**2
return func(self,*args,**kwargsA)
finally:
self.__dict__=SaveState
return wrapping
class Filter_base(list):
def __init__(self,fltrlst,w=None,pol='TE',theta=0.0,*args,**kwargs):
"""Object to describe a stack of dielectric layers. fltrlist is a list of
Layer objects (any object that has a method n(w) for the refractive index and
and a property d for the layer thickness will be suitable). The order of the
list is from front to back. w is the frequency (natural), pol is the
polarisation and should be either 'TE' or 'TM'. theta is the angle of
incidence (radians)."""
list.__init__(self,fltrlst,*args,**kwargs)
self.w=w
self.pol=pol
self.theta=theta
self._checks_n_axis() # makes sure that w and theta are numpy arrays
self.n0sinth2=(fltrlst[0].n(self.w) * N.sin(self.theta))**2
def _checks_n_axis(self):
w=self.w
theta=self.theta
# Some checks
if w is None:
w=N.array([1.0])
elif isinstance(w,Number):
w=N.array([w])
elif hasattr(w,'__iter__'):
w=N.array(w)
self.w=w
# Some checks
if isinstance(theta,Number):
theta=N.array([theta])
elif hasattr(theta,'__iter__'):
theta=N.array(theta)
self.theta=theta
#decide whether axis is frequency or angle of incidence
if hasattr(theta,'__iter__') and len(theta)>1:
if len(theta)==len(w):
self.axis=w
print ('Exceptionally both angle and frequency are arrays with the same length')
print ('but setting self.axis to frequency')
else:
assert len(w)==1, "Can not vary both frequency and angle at the same time"
self.axis=theta
else:
self.axis=w
def __repr__(self):
return repr(self[:]) + ", w= "+repr(self.w)+", pol= "+repr(self.pol)+", theta (radians) = "+repr(self.theta)+", theta (degrees) = "+repr(self.theta*180/pi)
def __str__(self):
globals = "w : %s\npol : %s\ntheta : %s theta(deg): %s" %(repr(self.w),repr(self.pol),repr(self.theta),repr(self.theta*180/pi))
stack = "[\n"+",\n".join([repr(l) for l in self ])+"\n]"
return globals + '\n' +stack
def _lambda(self,layer_pair):
"""Calculates a variable needed to create the interface matrices"""
# Special code to account for a special case of anisotropic medium
if hasattr(layer_pair[1],'nzz') and self.pol=='TM':
n1 = layer_pair[1].nzz
else:
n1 = layer_pair[1].n
if hasattr(layer_pair[0],'nzz') and self.pol=='TM':
n0 = layer_pair[0].nzz
else:
n0 = layer_pair[0].n
w = self.w
cos_ratio = N.sqrt(1+0j - self.n0sinth2 / n1(w)**2 ) # uses 1+0j to cast argument to complex so that we can describe totoal internal reflection.
cos_ratio = cos_ratio/N.sqrt(1+0j - self.n0sinth2 / n0(w)**2 )
n_ratio = layer_pair[1].n(w) / layer_pair[0].n(w)
if self.pol=='TE':
lmda = cos_ratio * n_ratio
elif self.pol=='TM':
lmda = cos_ratio / n_ratio
else:
raise NameError("_lambda(): pol should be 'TE' or 'TM'")
return lmda
def _k_z(self,layer):
"""z component of k vector for a layer. Returns a 1d array of phase vs frequency."""
#special code to account for a special case of anisotropic medium
if hasattr(layer,'nzz') and self.pol=='TM':
n1 = layer.nzz
else:
n1 = layer.n
w = self.w
k = layer.n(w) * w / c
costh = N.sqrt(1+0j - self.n0sinth2 / n1(w)**2 )
return k * costh
def _phase(self,layer):
"""Phase change for a layer. Returns a 1d array of phase vs frequency."""
return self._k_z(layer)* layer.d
def _mat_mult(self,A,B):
"""Multiplies two arrays of 2x2 matrices together using matrix multiplication.
A & B are arrays nx2x2 where n is the frequency axis of the calculation"""
#Trick from http://jameshensman.wordpress.com/2010/06/14/multiple-matrix-multiplication-in-numpy/
return N.sum(N.transpose(A,(0,2,1))[:,:,:,N.newaxis]*B[:,:,N.newaxis,:],axis=-3)
class Filter(Filter_base):
def __init__(self,fltrlst,w=None,pol='TE',theta=0.0,*args,**kwargs):
"""Object to describe a stack of dielectric layers. fltrlist is a list of
Layer objects (any object that has a method n(w) for the refractive index and
and a property d for the layer thickness will be suitable). The order of the
list is from front to back. w is the frequency (natural), pol is the
polarisation and should be either 'TE' or 'TM'. theta is the angle of
incidence (radians)."""
Filter_base.__init__(self,fltrlst,w=w,pol=pol,theta=theta,*args,**kwargs)
def _layer_array(self,layer):
"""array of 'matrices' describing the phase change across the layer wrt frequency"""
phase=self._k_z(layer)*layer.d
if hasattr(layer,'coh') and type(layer.coh)==float:
coh=layer.coh
nph=N.exp(-1j*(phase + coh*(2*random_sample(self.axis.shape)-1) ))
pph=N.exp( 1j*(phase + coh*(2*random_sample(self.axis.shape)-1) ))
else:
nph=N.exp(-1j*phase)
pph=N.exp(1j*phase)
matrix = N.column_stack((nph,N.zeros_like(self.axis),N.zeros_like(self.axis),pph))
matrix.shape = (len(self.axis),2,2)
return matrix
def _interface_array(self,layer_pair):
"""array of 'matrices' describing the interface between 2 layers wrt frequency"""
lmda=self._lambda(layer_pair)
matrix = 0.5*N.column_stack(((1+lmda),(1-lmda),(1-lmda),(1+lmda)))
matrix.shape = (len(self.axis),2,2)
return matrix
def _layer_array2(self,layer_pair):
"""array of 'matrices' describing the interface and also phase change for the layer wrt frequency"""
phase=self._k_z(layer_pair[1])*layer_pair[1].d
if hasattr(layer_pair[1],'coh') and type(layer_pair[1].coh)==float:
coh=layer_pair[1].coh
nph=N.exp(-1j*(phase + coh*(2*random_sample(self.axis.shape)-1) ))
pph=N.exp( 1j*(phase + coh*(2*random_sample(self.axis.shape)-1) ))
else:
nph=N.exp(-1j*phase)
pph=N.exp(1j*phase)
lmda=self._lambda(layer_pair)
matrix = 0.5*N.column_stack(((1+lmda)*nph,(1-lmda)*pph,(1-lmda)*nph,(1+lmda)*pph))
matrix.shape = (len(self.axis),2,2)
return matrix
@interactive
def _calculate_M(self):
"""Calculates the system matrix"""
I = N.array(((1.0,0.0),(0.0,1.0)))
tmp = N.array( (I,)*len(self.axis) ) # running variable to hold the calculation results. Starts as an array of identity 'matrices'
ziplist = list(zip(self,self[1:]))
for layer_pair in ziplist[:-1]:
nl = self._layer_array2(layer_pair)
tmp = self._mat_mult(tmp,nl)
#final interface before substrate/end of filter
layer_pair=(self[-2],self[-1])
tmp = self._mat_mult(tmp,self._interface_array(layer_pair))
return tmp
@interactive
def calculate_r_t(self):
"""Calculates the reflection and transmission coefficients"""
axis = self.axis
w = self.w
M = self._calculate_M()
t = 1.0/M[:,0,0]
if self.pol=='TM': #extra polarisation sensitive term for t
t*=self[0].n(w)/self[-1].n(w)
r = M[:,1,0]/M[:,0,0]
return (axis,r,t)
@interactive
def calculate_pol_phaseshift(self,deg=False):
axis,rs,ts =self.calculate_r_t(pol='TE')
axis,rp,tp =self.calculate_r_t(pol='TM')
r_phase=N.angle(rs,deg) - N.angle(rp,deg)
t_phase=N.angle(ts,deg) - N.angle(tp,deg)
return (axis,r_phase,t_phase)
@interactive
def calculate_R_T(self):
"""Calculates the Reflectivity and Transmission of the stack"""
axis = self.axis
M = self._calculate_M()
t = 1.0/M[:,0,0]
T = t*t.conjugate()*self._lambda((self[0],self[-1]))
r = M[:,1,0]/M[:,0,0]
R = r*r.conjugate()
return (axis,R.real,T.real)
def _mat_vec_mult(self,A,v):
"""Multiplies an array of 2x2 matrices to an array of 2x1 vectors using matrix multiplication.
A is an arrays nx2x2 where n is the frequency axis of the calculation.
v is a vector nx2x1."""
return N.sum(A*v[:,N.newaxis,:],axis=-1)
def _calculate_UV(self):
"""In the transfer matrix model, each layer's electric field can be described
as the summation of two waves, one travelling in each direction. I call the
waves U & V in my derivation, hence the method name. This method calculates
the amplitudes of these waves for each layer. However, to calculate the total
electric field within the layer, we would need to take account of the wave's
directions as well."""
w=self.w
#It's quite easy to get the wave amplitudes, we just need to cache the results
#of our matrix calculation at each step and then normalise the results at the end.
#Compared to calculate_M(), we have to do the calculation backwards though.
# The final state vector is given by one wave travelling away from the system.
Uf = N.array((1,0)) #unnormalised solution.
Ufw = N.array( (Uf,)*len(self.axis) ) # An array of vectors to describe different frequencies.
# Treat last interface separately.
last_interface = self._interface_array((self[-2],self[-1])) #remember that this class is derived from a list
current_UV = self._mat_vec_mult(last_interface,Ufw)
if self.pol=='TM': current_UV*=(self[-1].n(w)/self[-2].n(w))[:,N.newaxis] #Most transfer matrix calculation's
#drop this term and shift its effect into the calculation of the transmissivity but here we have to remember it.
allUV= [Ufw,current_UV] #list to hold results.
# Main Loop
reverse_layer_order = self[-2::-1] # we are doing are calculation in reverse.
for layer_pair in list(zip(reverse_layer_order[1:],reverse_layer_order)):
layer_matrix = self._layer_array2(layer_pair)
current_UV = self._mat_vec_mult(layer_matrix,current_UV)
if self.pol=='TM': current_UV*=(layer_pair[1].n(w)/layer_pair[0].n(w))[:,N.newaxis]
allUV.append(current_UV)
# Checking final matrix against normal calculation
M = self._calculate_M()
S = self._mat_vec_mult(M,Ufw)
if self.pol=='TM': S*=(self[-1].n(w)/self[0].n(w))[:,N.newaxis]
assert N.allclose(current_UV,S)
# Normalise Results
A = current_UV[:,0]
allUVnormed = [uv/A[:,N.newaxis] for uv in allUV]
return allUVnormed
def _Eangle(self,layer):
"""Calculates the angle of the Efield within each layer"""
w = self.w
if self.pol=='TE':
angles = 0.0+0.0j
elif hasattr(layer,'nzz') and self.pol=='TM': #because the Evector is not perpendicular to the k-vector
nzz = layer.nzz
angles = N.arcsin(N.sqrt(self.n0sinth2)/nzz(w)+0j) #allow for complex angles with 0j
#there will be an extra factor for Ez of n_xx/n_zz that I will have to fit in somewhere.
elif self.pol=='TM':
n1 = layer.n
angles = N.arcsin(N.sqrt(self.n0sinth2)/n1(w)+0j) #allow for complex angles with 0j
else:
raise NameError("pol should be 'TE' or 'TM'")
return angles
@interactive
def calculate_E(self,z):
"""Calculate the electric field within the thin film filter.
z is the position vector, the origin is located at the end of the filter."""
# As we are definining the origin at the end of the filter, we need to reverse things
flist=list(reversed(self))
# In this calculation, the 0th layer is the final semi-infinite medium/substrate.
# Likewise the last layer is the semi-infinite initial medium of the problem.
# Wave amplitudes for each layer.
allUV_list = self._calculate_UV() #nb. already in reverse order
# k_z and angle of Electric field to stack direction
k_z_list = [self._k_z(layer) for layer in flist]
angles_list = [self._Eangle(layer) for layer in flist]
# Calculate Electric Field
#using numpy arrays in order to do some indexing tricks
allUV = N.array(allUV_list) # allUV[layer no.,w,U/V] i.e. U = allUV[:,:,0],V = allUV[:,:,1]
k_z = N.array(k_z_list)
angles = N.array(angles_list)
#find layer number and relative position within layer for each z
#This is the thickness of each layer (the 0th layer is in fact the final semi-infinte medium and here is assigned a zero thickness).
thicknesses=[0.0]+[layer.d for layer in flist if layer.d!=None]#+[0.0]
interfaces=N.cumsum(thicknesses) # the positions of the interfaces.
zlayers = N.searchsorted(interfaces,z) #the layer number for each z position,
#however, the distance is defined from the back of the filter stack and the layer numbers are reversed relative to 'normal' but not compared to everything else in this calculation.
#find relative positions within layers.
#Since the final(0th) layer is normally infinite, it is defined differently from the others and so we need to treat it differently
offsets = zlayers.copy()
offsets[zlayers!=0]-=1
dz = z - interfaces[offsets]
#
Uz = allUV[zlayers,:,0]*N.exp(-1j*k_z[zlayers,:]*dz[:,N.newaxis])
Vz = allUV[zlayers,:,1]*N.exp(1j*k_z[zlayers,:]*dz[:,N.newaxis])
if self.pol=='TE':
Ey = Uz+Vz
return {'Ey':Ey,'Ez':0.0,'Ex':0,'Dz':0.0}
elif self.pol=='TM':
epszz = N.array([getattr(layer,'nzz',layer.n)(self.w)**2 for layer in flist])
epszzz = epszz[zlayers]
nzz = N.array([getattr(layer,'nzz',layer.n)(self.w) for layer in flist])
nzzz = nzz[zlayers]
nxx = N.array([layer.n(self.w) for layer in flist])
nxxz = nxx[zlayers]
ratio=nxxz/nzzz # this ratio is needed to get the Ez field correct within the uniaxial layers.
anglesz = angles[zlayers]
Ez = (Uz+Vz)*N.sin(anglesz)*ratio
Ex = (Uz-Vz)*N.cos(anglesz)
Dz = epszzz*Ez
return {'Ey':0.0,'Ez':Ez,'Ex':Ex,'Dz':Dz}
else:
raise NameError("calculate_E(): pol should be 'TE' or 'TM'")
@interactive
def calculate_Abs(self,z):
mod2=lambda a : a*a.conj() #modulus squared
Efields=self.calculate_E(z)
if self.pol=='TM':
Fz =mod2(Efields['Ez']) + mod2(Efields['Ex'])
elif self.pol=='TE':
Fz = mod2(Efields['Ey'])
else:
raise Exception("Absorption(): pol should be 'TE' or 'TM'")
#
# As we are definining the origin at the end of the filter, we need to reverse things
flist=list(reversed(self))
# In this calculation, the 0th layer is the final semi-infinite medium/substrate.
# Likewise the last layer is the semi-infinite initial medium of the problem.
layer0=self[0]
#However layer0 will be the initial layer of the problem where the light starts from.
tmp=self.pol
self.pol='TE' #need this so _lambda() calculates the correct form of the obliqueness factor
lmdas=[self._lambda((layer0,layer)) for layer in flist]
self.pol=tmp #return polarisation to previous state.
#
kzs = [self._k_z(layer) for layer in flist]
#
qs = [lmda.real*2*kz.imag for lmda,kz in list(zip(lmdas,kzs))]
#using numpy arrays in order to do some indexing tricks
qs = N.array(qs)
#find layer number and relative position within layer for each z
#This is the thickness of each layer (the 0th layer is in fact the final semi-infinte medium and here is assigned a zero thickness).
thicknesses=[0.0]+[layer.d for layer in flist if layer.d!=None]#+[0.0]
interfaces=N.cumsum(thicknesses) # the positions of the interfaces.
zlayers = N.searchsorted(interfaces,z) #the layer number for each z position,
qsz=qs[zlayers,:] #change q for each layer into q relative to z array.
dA = qsz * Fz #Absorption per dz.
return dA
if __name__ == "__main__":
pi=N.pi
f=N.linspace(1.0e10,10e12,200)
########Define interference filter##########
f1 = Filter([Layer_eps(1.0,None),
Layer_eps(3.50+0.5j,8.6e-6),
Layer_eps(12.25,None)],
w=2*pi*f,
pol='TM',
theta=pi/4)
#print f1
#print repr(f1)
#print len(f1)
#print f1.calculate_M()[0]
#print f1._lambda((f1[0],f1[-1]))
#print f1.calculate_r_t()[0]
########Calculate Reflection/Transmission###
w,R,T=f1.calculate_R_T(pol='TM')
w,R2,T2=f1.calculate_R_T(pol='TE')
import matplotlib.pyplot as P
ax1 = P.subplot(111)
ax1.plot(f,R,label="TM Reflection")
ax1.plot(f,T,label="TM Transmission")
ax1.plot(f,R2,label="TE Reflection")
ax1.plot(f,T2,label="TE Transmission")
ax1.set_xlabel("Frequency (Hz)")
ax1.set_title("Antireflection coating for GaAS or Silicon")
ax1.legend()
########Calculate E field###################
mod2=lambda a : a*a.conj() #modulus squared
z = N.linspace(-30.0e-6,60e-6,400) #(m)
zaxis = z*1e6 #(um)
fi = 100 #choose index for frequency (this is equiv. to 5.5THz for this script).
Efields=f1.calculate_E(z=z,pol='TM')
Efields2=f1.calculate_E(z,pol='TE')
Absorption=f1.calculate_Abs(z,pol='TM')
Absorption2=f1.calculate_Abs(z,pol='TE')
#check TM transmission coefficient
f1.pol='TE' #this is so we calculate the n2cos(theta2)/(n1cos(theta1)) factor (rather than the n1cos(theta2)/(n2cos(theta1))
print(('TM Transmission at %g THz = ' %(f[fi]*1e-12), f1._lambda((f1[0],f1[-1]))[fi]*(mod2(Efields['Ez'][0,fi])+mod2(Efields['Ex'][0,fi]))))
#check TE transmission coefficient
print(('TE Transmission at %g THz = ' %(f[fi]*1e-12), f1._lambda((f1[0],f1[-1]))[fi]*mod2(Efields2['Ey'][0,fi])))
#######
f2 = P.figure(2)
ax2 = P.subplot(111)
ax2.plot(zaxis,mod2(Efields['Ex'][:,fi]),label="|Ex|**2")
ax2.plot(zaxis,mod2(Efields['Ez'][:,fi]),label="|Ez|**2")
ax2.plot(zaxis,mod2(Efields['Dz'][:,fi]),label="|Dz|**2")
ax2.plot(zaxis,mod2(Efields2['Ey'][:,fi]),label="|Ey|**2")
ax3 = P.twinx(ax2)
ax3.plot(zaxis,Absorption[:,fi],label="Absorption (TM)")
ax3.plot(zaxis,Absorption2[:,fi],label="Absorption (TE)")
ax2.set_xlabel("distance (um)")
ax2.set_ylabel("|E|**2")
ax2.legend()
ax3.legend(loc=4)
P.show()