Skip to content
Chris Fregly edited this page Oct 16, 2017 · 243 revisions

PipelineAI Home

PipelineAI Home

PipelineAI Products

Community Edition, Standalone Edition, Enterprise Edition

PipelineAI Core Features

Consistent, Immutable, Reproducible Model Runtimes

Consistent Model Environments

Each model is built into a separate Docker image with the appropriate Python, C++, and Java/Scala Runtime Libraries for training or prediction.

Use the same Docker Image from Local Laptop to Production to avoid dependency surprises.

Supported Model Types

scikit, tensorflow, python, keras, pmml, spark, java, xgboost, R

More model samples coming soon (ie. R).

Nvidia GPU TensorFlow

Spark ML Scikit-Learn

R PMML

Xgboost Ensembles

Pre-Requisites

Docker

Python3 (Conda is Optional)

Install PipelineCLI

Note: This command line interface requires Python3 and Docker as detailed above.

pip install cli-pipeline==1.3.2 --ignore-installed --no-cache -U

Verify Successful PipelineCLI Installation

pipeline version

### EXPECTED OUTPUT ###
cli_version: 1.3.2
api_version: v1
capabilities_enabled: ['predict', 'server', 'version']
capabilities_disabled: ['train', 'cluster', 'optimize']

Review CLI Functionality

pipeline

### EXPECTED OUTPUT ###
Usage:       pipeline                    <-- This CLI Command

(Enterprise) pipeline cluster-describe   <-- Describe Model Cluster
             pipeline cluster-logs       <-- View Cluster Logs 
             pipeline cluster-proxy      <-- Secure Tunnel into Cluster 
             pipeline cluster-quarantine <-- Remove Instance from Cluster for Forensics
             pipeline cluster-rollback   <-- Rollback Cluster
             pipeline cluster-route      <-- Route Traffic across Model Versions (ie. Canary)
             pipeline cluster-scale      <-- Scale Cluster
             pipeline cluster-shell      <-- Shell into Cluster
             pipeline cluster-start      <-- Start Cluster 
             pipeline cluster-stop       <-- Stop Model Cluster
             pipeline cluster-upgrade    <-- Upgrade Cluster

(Standalone) pipeline optimize-model     <-- Optimize Model for Prediction

(Community)  pipeline predict-model      <-- Predict with Model
 
(Community)  pipeline server-build       <-- Build Model Server
             pipeline server-logs        <-- View Server Logs
             pipeline server-shell       <-- Shell into Server
             pipeline server-start       <-- Start Model Server
             pipeline server-stop        <-- Stop Model Server

(Standalone) pipeline train-model        <-- Train Model

(Community)  pipeline version            <-- View CLI Version

Prepare Model Samples

Clone the PipelineAI Models Repo

git clone https://github.com/PipelineAI/predict

Change into predict Directory

cd predict 

Model Predictions

Inspect Model Directory

ls -l ./models/tensorflow/mnist

### EXPECTED OUTPUT ###
pipeline_conda_environment.yml <-- Required.  Sets up the conda environment.
pipeline_install.sh            <-- Optional.  If file exists, we run it.
pipeline_predict.py            <-- Required.  `predict(request: bytes) -> bytes` is required.
versions/                      <-- Optional.  If directory exists, we start TensorFlow Serving.

Inspect ./models/tensorflow/mnist/pipeline_predict.py

cat ./models/tensorflow/mnist/pipeline_predict.py

### EXPECTED OUTPUT ###
import os
import logging
from pipeline_model import TensorFlowServingModel
from pipeline_monitor import prometheus_monitor as monitor
from pipeline_logger import log

...

__all__ = ['predict'] <-- Optional.  Nice to have as a good Python citizen.

...

def _initialize_upon_import() -> TensorFlowServingModel:    <-- Optional.  Called once upon server startup.
    return TensorFlowServingModel(host='localhost',         <-- Optional.  TensorFlow Serving.
                                  port=9000,
                                  model_name='mnist',
                                  inputs_name='inputs',
                                  outputs_name='outputs',
                                  timeout=100)

_model = _initialize_upon_import()  <-- Optional.  Called once upon server startup. 

_labels = {'model_type': os.environ['PIPELINE_MODEL_TYPE'], <-- Optional.  Tag metrics.
           'model_name': os.environ['PIPELINE_MODEL_NAME'],
           'model_tag': os.environ['PIPELINE_MODEL_TAG']}

_logger = logging.getLogger('predict-logger')               <-- Optional.  Standard Python logging.

@log(labels=_labels, logger=_logger)                          <-- Optional.  Sample and compare predictions.
def predict(request: bytes) -> bytes:                         <-- Required.  Called on every prediction.

    with monitor(labels=_labels, name="transform_request"):   <-- Optional.  Expose fine-grained metrics.
        transformed_request = _transform_request(request)     <-- Optional.  Transform input (json) into TensorFlow (tensor).

    with monitor(labels=_labels, name="predict"):
        predictions = _model.predict(transformed_request)     <-- Optional.  Call predict() function.

    with monitor(labels=_labels, name="transform_response"):
        return _transform_response(predictions)               <-- Optional.  Transform TensorFlow (tensor) into output (json).
...

Build Example Model into Docker Image

pipeline server-build --model-type=tensorflow --model-name=mnist --model-tag=v1.3.0 --model-path=./models/tensorflow/mnist

model-path must be a relative path.

Start the Model Server

pipeline server-start --model-type=tensorflow --model-name=mnist --model-tag=v1.3.0 --memory-limit=4G

If the port is already allocated, run docker ps, then docker rm -f <container-id>.

Monitor Runtime Logs

Wait for the model runtime to settle...

pipeline server-logs --model-type=tensorflow --model-name=mnist --model-tag=v1.3.0

### EXPECTED OUTPUT ###
...
2017-10-10 03:56:00.695  INFO 121 --- [     run-main-0] i.p.predict.jvm.PredictionServiceMain$   : Started PredictionServiceMain. in 7.566 seconds (JVM running for 20.739)
[debug] 	Thread run-main-0 exited.
[debug] Waiting for thread container-0 to terminate.
...
INFO[0050] Completed initial partial maintenance sweep through 4 in-memory fingerprints in 40.002264633s.  source="storage.go:1398"
...

You need to ctrl-c out of the log viewing before proceeding.

PipelineAI Prediction CLI

Perform 100 Predictions in Parallel

The first call takes 10-20x longer than subsequent calls (and may timeout causing a "fallback" message) due to lazy initialization and warm-up.

Try the call again if you see a "fallback" message.

Before proceeding, make sure you hit ctrl-c after viewing the logs in the command above.

pipeline predict-model --model-type=tensorflow --model-name=mnist --model-tag=v1.3.0 --predict-server-url=http://localhost:6969 --test-request-path=./models/tensorflow/mnist/data/test_request.json

### Expected Output ###
{"outputs": [0.0022526539396494627, 2.63791100074684e-10, 0.4638307988643646, 0.21909376978874207, 3.2985670372909226e-07, 0.29357224702835083, 0.00019597385835368186, 5.230629176367074e-05, 0.020996594801545143, 5.426473762781825e-06]}

### Formatted Output ###
Digit  Confidence
=====  ==========
0      0.0022526539396494627
1      2.63791100074684e-10
2      0.4638307988643646      <-- Prediction
3      0.21909376978874207
4      3.2985670372909226e-07
5      0.29357224702835083 
6      0.00019597385835368186
7      5.230629176367074e-05
8      0.020996594801545143
9      5.426473762781825e-06

Perform 100 Predictions in Parallel (Mini Load Test)

pipeline predict-model --model-type=tensorflow --model-name=mnist --model-tag=v1.3.0 --predict-server-url=http://localhost:6969 --test-request-path=./models/tensorflow/mnist/data/test_request.json --test-request-concurrency=100

PipelineAI Prediction REST API

Use the REST API to POST a JSON document representing the number 2.

MNIST 2

curl -X POST -H "Content-Type: application/json" \
  -d '{"image": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05098039656877518, 0.529411792755127, 0.3960784673690796, 0.572549045085907, 0.572549045085907, 0.847058892250061, 0.8156863451004028, 0.9960784912109375, 1.0, 1.0, 0.9960784912109375, 0.5960784554481506, 0.027450982481241226, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.32156863808631897, 0.9921569228172302, 0.9921569228172302, 0.9921569228172302, 0.9921569228172302, 0.9921569228172302, 0.9921569228172302, 0.9921569228172302, 0.9921569228172302, 0.9921569228172302, 0.9921569228172302, 0.7882353663444519, 0.11764706671237946, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.32156863808631897, 0.9921569228172302, 0.988235354423523, 0.7921569347381592, 0.9450981020927429, 0.545098066329956, 0.21568629145622253, 0.3450980484485626, 0.45098042488098145, 0.125490203499794, 0.125490203499794, 0.03921568766236305, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.32156863808631897, 0.9921569228172302, 0.803921639919281, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6352941393852234, 0.9921569228172302, 0.803921639919281, 0.24705883860588074, 0.3490196168422699, 0.6509804129600525, 0.32156863808631897, 0.32156863808631897, 0.1098039299249649, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.007843137718737125, 0.7529412508010864, 0.9921569228172302, 0.9725490808486938, 0.9686275124549866, 0.9921569228172302, 0.9921569228172302, 0.9921569228172302, 0.9921569228172302, 0.8274510502815247, 0.29019609093666077, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.2549019753932953, 0.9921569228172302, 0.9921569228172302, 0.9921569228172302, 0.9921569228172302, 0.9921569228172302, 0.9921569228172302, 0.9921569228172302, 0.9921569228172302, 0.9921569228172302, 0.847058892250061, 0.027450982481241226, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.5921568870544434, 0.9921569228172302, 0.9921569228172302, 0.9921569228172302, 0.7333333492279053, 0.44705885648727417, 0.23137256503105164, 0.23137256503105164, 0.4784314036369324, 0.9921569228172302, 0.9921569228172302, 0.03921568766236305, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.5568627715110779, 0.9568628072738647, 0.7098039388656616, 0.08235294371843338, 0.019607843831181526, 0.0, 0.0, 0.0, 0.08627451211214066, 0.9921569228172302, 0.9921569228172302, 0.43137258291244507, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.15294118225574493, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.08627451211214066, 0.9921569228172302, 0.9921569228172302, 0.46666669845581055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.08627451211214066, 0.9921569228172302, 0.9921569228172302, 0.46666669845581055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.08627451211214066, 0.9921569228172302, 0.9921569228172302, 0.46666669845581055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.1882353127002716, 0.9921569228172302, 0.9921569228172302, 0.46666669845581055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6705882549285889, 0.9921569228172302, 0.9921569228172302, 0.12156863510608673, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.2392157018184662, 0.9647059440612793, 0.9921569228172302, 0.6274510025978088, 0.003921568859368563, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.08235294371843338, 0.44705885648727417, 0.16470588743686676, 0.0, 0.0, 0.2549019753932953, 0.9294118285179138, 0.9921569228172302, 0.9333333969116211, 0.27450981736183167, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.4941176772117615, 0.9529412388801575, 0.0, 0.0, 0.5803921818733215, 0.9333333969116211, 0.9921569228172302, 0.9921569228172302, 0.4078431725502014, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.7411764860153198, 0.9764706492424011, 0.5529412031173706, 0.8784314393997192, 0.9921569228172302, 0.9921569228172302, 0.9490196704864502, 0.43529415130615234, 0.007843137718737125, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6235294342041016, 0.9921569228172302, 0.9921569228172302, 0.9921569228172302, 0.9764706492424011, 0.6274510025978088, 0.1882353127002716, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.18431372940540314, 0.5882353186607361, 0.729411780834198, 0.5686274766921997, 0.3529411852359772, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]}' \
  http://localhost:6969/api/v1/model/predict/tensorflow/mnist/v1.3.0 \
  -w "\n\n"

### Expected Output ###
{"outputs": [0.0022526539396494627, 2.63791100074684e-10, 0.4638307988643646, 0.21909376978874207, 3.2985670372909226e-07, 0.29357224702835083, 0.00019597385835368186, 5.230629176367074e-05, 0.020996594801545143, 5.426473762781825e-06]}

### Formatted Output
Digit  Confidence
=====  ==========
0      0.0022526539396494627
1      2.63791100074684e-10
2      0.4638307988643646      <-- Prediction
3      0.21909376978874207
4      3.2985670372909226e-07
5      0.29357224702835083 
6      0.00019597385835368186
7      5.230629176367074e-05
8      0.020996594801545143
9      5.426473762781825e-06

Monitor Real-Time Prediction Metrics

Re-run the Prediction REST API while watching the following dashboard URL:

http://localhost:6969/hystrix-dashboard/monitor/monitor.html?streams=%5B%7B%22name%22%3A%22%22%2C%22stream%22%3A%22http%3A%2F%2Flocalhost%3A6969%2Fhystrix.stream%22%2C%22auth%22%3A%22%22%2C%22delay%22%3A%22%22%7D%5D

Real-Time Throughput and Response Time

Monitor Detailed Prediction Metrics

Re-run the Prediction REST API while watching the following detailed metrics dashboard URL:

http://localhost:3000/

Prediction Dashboard

Username/Password: admin/admin Set Type to Prometheues.

Set Url to http://localhost:9090.

Set Access to direct.

Click Save & Test.

Click Dashboards -> Import upper-left menu drop-down.

Copy and Paste THIS raw json file into the paste JSON box.

Select the Prometheus-based data source that you setup above and click Import.

Create additional PipelineAI Prediction widgets using THIS guide to the Prometheus Syntax.

Stop Model Server

pipeline server-stop --model-type=tensorflow --model-name=mnist --model-tag=v1.3.0

Click HERE to compare PipelineAI Products.

Drag N' Drop Model Deploy

PipelineAI Drag n' Drop Model Deploy UI

Generate Optimize Model Versions Upon Upload

Automatic Model Optimization and Native Code Generation

Distributed Model Training and Hyper-Parameter Tuning

PipelineAI Advanced Model Training UI

PipelineAI Advanced Model Training UI 2

Continuously Deploy Models to Clusters of PipelineAI Servers

PipelineAI Weavescope Kubernetes Cluster

View Real-Time Prediction Stream

Live Stream Predictions

Compare Both Offline (Batch) and Real-Time Model Performance

PipelineAI Model Comparison

Compare Response Time, Throughput, and Cost-Per-Prediction

PipelineAI Compare Performance and Cost Per Prediction

Shift Live Traffic to Maximize Revenue and Minimize Cost

PipelineAI Traffic Shift Multi-armed Bandit Maxmimize Revenue Minimize Cost

Continuously Fix Borderline Predictions through Crowd Sourcing

Borderline Prediction Fixing and Crowd Sourcing

Useful PipelineAI Resources

Click HERE for more info on PipelineAI Open Source.

Click HERE for more info on PipelineAI + Kubernetes.

Click HERE for 24x7 PipelineAI Support.

Click HERE for our TensorFlow, Spark, and GPU workshops.

Click HERE to setup AWS + GPUs.

Click HERE to setup Google Cloud + GPUs.

Clone this wiki locally