forked from dusty-nv/jetson-inference
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhomographyNet.h
145 lines (121 loc) · 5.11 KB
/
homographyNet.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
/*
* Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#ifndef __HOMOGRAPHY_NET_H__
#define __HOMOGRAPHY_NET_H__
#include "tensorNet.h"
/**
* @note homographyNet is only supported with TensorRT 5.0 and newer,
* as it uses ONNX models and requires ONNX import support in TensorRT.
*/
#if NV_TENSORRT_MAJOR >= 5
#define HAS_HOMOGRAPHY_NET
#endif
/**
* Name of default input blob for homographyNet ONNX models.
* @ingroup deepVision
*/
#define HOMOGRAPHY_NET_DEFAULT_INPUT "input_0"
/**
* Name of default output blob for homographyNet ONNX models.
* @ingroup deepVision
*/
#define HOMOGRAPHY_NET_DEFAULT_OUTPUT "output_0"
/**
* Homography estimation networks with TensorRT support.
* @ingroup deepVision
*/
class homographyNet : public tensorNet
{
public:
/**
* Network choice enumeration.
*/
enum NetworkType
{
CUSTOM = 0, /**< Custom model from user */
COCO_128, /**< Synthetically-warped COCO (128x128 input) */
WEBCAM_320 /**< Sequences collected from webcam (320x240 input) */
};
/**
* Parse a string to one of the built-in pretrained models.
* Valid names are "coco", "coco_128", "coco-128", "webcam", "webcam_320", and "webcam-320".
* @returns one of the homographyNet::NetworkType enums, or homographyNet::CUSTOM on invalid string.
*/
static NetworkType NetworkTypeFromStr( const char* model_name );
/**
* Load a new network instance
* @param networkType type of pre-supported network to load
* @param maxBatchSize The maximum batch size that the network will support and be optimized for.
*/
static homographyNet* Create( NetworkType networkType=WEBCAM_320, uint32_t maxBatchSize=1,
precisionType precision=TYPE_FASTEST, deviceType device=DEVICE_GPU,
bool allowGPUFallback=true );
/**
* Load a custom network instance
* @param model_path File path to the ONNX model.
* @param input Name of the input layer blob.
* @param output Name of the output layer blob.
* @param maxBatchSize The maximum batch size that the network will support and be optimized for.
*/
static homographyNet* Create( const char* model_path,
const char* input = HOMOGRAPHY_NET_DEFAULT_INPUT,
const char* output = HOMOGRAPHY_NET_DEFAULT_OUTPUT,
uint32_t maxBatchSize=1, precisionType precision=TYPE_FASTEST,
deviceType device=DEVICE_GPU, bool allowGPUFallback=true );
/**
* Load a new network instance by parsing the command line.
*/
static homographyNet* Create( int argc, char** argv );
/**
* Destroy
*/
virtual ~homographyNet();
/**
* Find the displacement from imageA to imageB.
* @returns True if the image was processed without error, false if an error was encountered.
*/
bool FindDisplacement( float* imageA, float* imageB, uint32_t width, uint32_t height, float displacement[8] );
/**
* Find the homography that warps imageA to imageB.
* @returns True if the image was processed without error, false if an error was encountered.
*/
bool FindHomography( float* imageA, float* imageB, uint32_t width, uint32_t height, float H[3][3] );
/**
* Find the homography (and it's inverse) that warps imageA to imageB.
* @returns True if the image was processed without error, false if an error was encountered.
*/
bool FindHomography( float* imageA, float* imageB, uint32_t width, uint32_t height, float H[3][3], float H_inv[3][3] );
/**
* Given the displacement from FindDisplacement(), compute the homography.
* @returns True if the image was processed without error, false if an error was encountered.
*/
bool ComputeHomography( const float displacement[8], float H[3][3] );
/**
* Given the displacement from FindDisplacement(), compute the homography and it's inverse.
* @returns True if the image was processed without error, false if an error was encountered.
*/
bool ComputeHomography( const float displacement[8], float H[3][3], float H_inv[3][3] );
protected:
// constructor
homographyNet();
};
#endif