-
Notifications
You must be signed in to change notification settings - Fork 3
/
confi_chart.py
185 lines (122 loc) · 4.79 KB
/
confi_chart.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
from pyzbar import pyzbar
from datetime import datetime
import argparse
import cv2
import sys
import time
import os
import sys
import subprocess
import signal
import numpy as np
import shutil
import pandas as pd
#test0
global search1
search1 = "folder_a"
if os.path.exists(search1):
shutil.rmtree(search1)
os.makedirs(search1)
global counter_a
counter_a = 0
global dir_coco
dir_coco = "cfg/custom.names"
global class_data
class_data = []
global max_counter
max_counter = 30
start2 = 0
net = cv2.dnn.readNet("working2.weights", "cfg/yolov4.cfg")
classes = []
with open(dir_coco, "r") as f:
classes = [line.strip() for line in f.readlines()]
layer_names = net.getLayerNames()
output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()]
colors = np.random.uniform(0, 255, size=(len(classes), 3))
with open(dir_coco, "r") as f:
for line in f.readlines():
class_data.append(line[0:len(line) - 1])
# vc0 = cv2.VideoCapture(0)
#VideoCapture vc(0)
vc = cv2.VideoCapture(2) # 0은 노트북 웹캠 2는 usb로 연결된 웹캠
width, height = 1920, 1024
#vc.set(CV_CAP_PROP_FRAME_WIDTH,1920);
#vc.set(CV_CAP_PROP_FRAME_HEIGHT,1024);
#vc.set(CV_CAP_PROP_MODE, CV_CAP_MODE_YUYV);
#vc.set(CV_CAP_PROP_FPS, 60);
while counter_a < max_counter :
#time.sleep(0.1)
print("waiting...")
if cv2.waitKey(1) & 0xFF == ord('q'):
break
if True:
print("webcam start!")
start = time.time()
chk = 0
vc.set(10,0.5)
while counter_a <= max_counter :
# ret0, frame0 = vc0.read()
#cv2.imshow("Video Window0", frame0)
ret, frame = vc.read()
cv2.imshow("Video Window", frame)
cv2.imwrite('image.jpg',frame)
image = cv2.imread('image.jpg')
# image = cv2.resize(image, None, fx=0.4, fy=0.4)
height, width, channels = image.shape
barcodes = pyzbar.decode(image)
blob = cv2.dnn.blobFromImage(image, 0.00392, (416, 416), (0, 0, 0), True, crop=False)
net.setInput(blob)
outs = net.forward(output_layers)
class_ids = []
confidences = []
boxes = []
for out in outs:
for detection in out:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > 0.5:
class_data[class_id] += "," + str(confidence)
# Object detected
center_x = int(detection[0] * width)
center_y = int(detection[1] * height)
w = int(detection[2] * width)
h = int(detection[3] * height)
# 좌표
x = int(center_x - w / 2)
y = int(center_y - h / 2)
boxes.append([x, y, w, h])
confidences.append(float(confidence))
class_ids.append(class_id)
indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
font = cv2.FONT_HERSHEY_PLAIN
for i in range(len(boxes)):
if i in indexes:
x, y, w, h = boxes[i]
label = str(classes[class_ids[i]])
color = colors[0]
cv2.rectangle(image, (x, y), (x + w, y + h), color, 2)
cv2.putText(image, label, (x, y + 30), font, 3, color, 3)
cv2.imshow("Image", image)
cv2.imwrite(search1 + "/image" + str(counter_a) + ".jpg",image)
counter_a += 1
# os.system('./darknet detector test cfg/coco.data cfg/yolov4.cfg yolov4.weights image.jpg')
# process = subprocess.Popen(..) # pass cmd and args to the function
# process.send_signal(signal.SIGINT)
#global counter_a
if cv2.waitKey(1) & 0xFF == ord('q'):
break
#print(str(len(class_data)))
df0 = open("export.txt" ,"w+")
string_t = "yolo confidence data collection"
for i in range(1,10*(max_counter + 1)):
string_t += ",seq " + str(i)
string_t += "\n"
df0.write(string_t)
for i in range(0,len(class_data)):
df0.write(class_data[i] + "\n")
vc.release()
cv2.destroyAllWindows()
df0.close();
df2_2 = pd.read_csv("export.txt",sep=",",encoding='utf-8')
df2_2.to_excel('yolo_data.xlsx',index=False)