-
Notifications
You must be signed in to change notification settings - Fork 0
/
AESCommon.cpp
363 lines (328 loc) · 13.4 KB
/
AESCommon.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
/*
* Copyright (C) 2015 Southern Storm Software, Pty Ltd.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "AES.h"
#include "Crypto.h"
#include "utility/ProgMemUtil.h"
#if defined(CRYPTO_AES_DEFAULT) || defined(CRYPTO_DOC)
/**
* \class AESCommon AES.h <AES.h>
* \brief Abstract base class for AES block ciphers.
*
* This class is abstract. The caller should instantiate AES128,
* AES192, or AES256 to create an AES block cipher with a specific
* key size.
*
* \note This AES implementation does not have constant cache behaviour due
* to the use of table lookups. It may not be safe to use this implementation
* in an environment where the attacker can observe the timing of encryption
* and decryption operations. Unless AES compatibility is required,
* it is recommended that the ChaCha stream cipher be used instead.
*
* Reference: http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
*
* \sa ChaCha, AES128, AES192, AES256
*/
/** @cond sbox */
// AES S-box (http://en.wikipedia.org/wiki/Rijndael_S-box)
static uint8_t const sbox[256] PROGMEM = {
0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5, // 0x00
0x30, 0x01, 0x67, 0x2B, 0xFE, 0xD7, 0xAB, 0x76,
0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0, // 0x10
0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0,
0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7, 0xCC, // 0x20
0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15,
0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A, // 0x30
0x07, 0x12, 0x80, 0xE2, 0xEB, 0x27, 0xB2, 0x75,
0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0, // 0x40
0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84,
0x53, 0xD1, 0x00, 0xED, 0x20, 0xFC, 0xB1, 0x5B, // 0x50
0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF,
0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85, // 0x60
0x45, 0xF9, 0x02, 0x7F, 0x50, 0x3C, 0x9F, 0xA8,
0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5, // 0x70
0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2,
0xCD, 0x0C, 0x13, 0xEC, 0x5F, 0x97, 0x44, 0x17, // 0x80
0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73,
0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88, // 0x90
0x46, 0xEE, 0xB8, 0x14, 0xDE, 0x5E, 0x0B, 0xDB,
0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C, // 0xA0
0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79,
0xE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5, 0x4E, 0xA9, // 0xB0
0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08,
0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6, // 0xC0
0xE8, 0xDD, 0x74, 0x1F, 0x4B, 0xBD, 0x8B, 0x8A,
0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E, // 0xD0
0x61, 0x35, 0x57, 0xB9, 0x86, 0xC1, 0x1D, 0x9E,
0xE1, 0xF8, 0x98, 0x11, 0x69, 0xD9, 0x8E, 0x94, // 0xE0
0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF,
0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68, // 0xF0
0x41, 0x99, 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16
};
// AES inverse S-box (http://en.wikipedia.org/wiki/Rijndael_S-box)
static uint8_t const sbox_inverse[256] PROGMEM = {
0x52, 0x09, 0x6A, 0xD5, 0x30, 0x36, 0xA5, 0x38, // 0x00
0xBF, 0x40, 0xA3, 0x9E, 0x81, 0xF3, 0xD7, 0xFB,
0x7C, 0xE3, 0x39, 0x82, 0x9B, 0x2F, 0xFF, 0x87, // 0x10
0x34, 0x8E, 0x43, 0x44, 0xC4, 0xDE, 0xE9, 0xCB,
0x54, 0x7B, 0x94, 0x32, 0xA6, 0xC2, 0x23, 0x3D, // 0x20
0xEE, 0x4C, 0x95, 0x0B, 0x42, 0xFA, 0xC3, 0x4E,
0x08, 0x2E, 0xA1, 0x66, 0x28, 0xD9, 0x24, 0xB2, // 0x30
0x76, 0x5B, 0xA2, 0x49, 0x6D, 0x8B, 0xD1, 0x25,
0x72, 0xF8, 0xF6, 0x64, 0x86, 0x68, 0x98, 0x16, // 0x40
0xD4, 0xA4, 0x5C, 0xCC, 0x5D, 0x65, 0xB6, 0x92,
0x6C, 0x70, 0x48, 0x50, 0xFD, 0xED, 0xB9, 0xDA, // 0x50
0x5E, 0x15, 0x46, 0x57, 0xA7, 0x8D, 0x9D, 0x84,
0x90, 0xD8, 0xAB, 0x00, 0x8C, 0xBC, 0xD3, 0x0A, // 0x60
0xF7, 0xE4, 0x58, 0x05, 0xB8, 0xB3, 0x45, 0x06,
0xD0, 0x2C, 0x1E, 0x8F, 0xCA, 0x3F, 0x0F, 0x02, // 0x70
0xC1, 0xAF, 0xBD, 0x03, 0x01, 0x13, 0x8A, 0x6B,
0x3A, 0x91, 0x11, 0x41, 0x4F, 0x67, 0xDC, 0xEA, // 0x80
0x97, 0xF2, 0xCF, 0xCE, 0xF0, 0xB4, 0xE6, 0x73,
0x96, 0xAC, 0x74, 0x22, 0xE7, 0xAD, 0x35, 0x85, // 0x90
0xE2, 0xF9, 0x37, 0xE8, 0x1C, 0x75, 0xDF, 0x6E,
0x47, 0xF1, 0x1A, 0x71, 0x1D, 0x29, 0xC5, 0x89, // 0xA0
0x6F, 0xB7, 0x62, 0x0E, 0xAA, 0x18, 0xBE, 0x1B,
0xFC, 0x56, 0x3E, 0x4B, 0xC6, 0xD2, 0x79, 0x20, // 0xB0
0x9A, 0xDB, 0xC0, 0xFE, 0x78, 0xCD, 0x5A, 0xF4,
0x1F, 0xDD, 0xA8, 0x33, 0x88, 0x07, 0xC7, 0x31, // 0xC0
0xB1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xEC, 0x5F,
0x60, 0x51, 0x7F, 0xA9, 0x19, 0xB5, 0x4A, 0x0D, // 0xD0
0x2D, 0xE5, 0x7A, 0x9F, 0x93, 0xC9, 0x9C, 0xEF,
0xA0, 0xE0, 0x3B, 0x4D, 0xAE, 0x2A, 0xF5, 0xB0, // 0xE0
0xC8, 0xEB, 0xBB, 0x3C, 0x83, 0x53, 0x99, 0x61,
0x17, 0x2B, 0x04, 0x7E, 0xBA, 0x77, 0xD6, 0x26, // 0xF0
0xE1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0C, 0x7D
};
/** @endcond */
/**
* \brief Constructs an AES block cipher object.
*/
AESCommon::AESCommon()
: rounds(0), schedule(0)
{
}
/**
* \brief Destroys this AES block cipher object after clearing
* sensitive information.
*/
AESCommon::~AESCommon()
{
}
/**
* \brief Size of an AES block in bytes.
* \return Always returns 16.
*/
size_t AESCommon::blockSize() const
{
return 16;
}
// Constants to correct Galois multiplication for the high bits
// that are shifted out when multiplying by powers of two.
static uint8_t const K[8] = {
0x00,
0x1B,
(0x1B << 1),
(0x1B << 1) ^ 0x1B,
(0x1B << 2),
(0x1B << 2) ^ 0x1B,
(0x1B << 2) ^ (0x1B << 1),
(0x1B << 2) ^ (0x1B << 1) ^ 0x1B
};
// Multiply x by 2 in the Galois field, to achieve the effect of the following:
//
// if (x & 0x80)
// return (x << 1) ^ 0x1B;
// else
// return (x << 1);
//
// However, we don't want to use runtime conditionals if we can help it
// to avoid leaking timing information from the implementation.
// In this case, multiplication is slightly faster than table lookup on AVR.
#define gmul2(x) (t = ((uint16_t)(x)) << 1, \
((uint8_t)t) ^ (uint8_t)(0x1B * ((uint8_t)(t >> 8))))
// Multiply x by 4 in the Galois field.
#define gmul4(x) (t = ((uint16_t)(x)) << 2, ((uint8_t)t) ^ K[t >> 8])
// Multiply x by 8 in the Galois field.
#define gmul8(x) (t = ((uint16_t)(x)) << 3, ((uint8_t)t) ^ K[t >> 8])
#define OUT(col, row) output[(col) * 4 + (row)]
#define IN(col, row) input[(col) * 4 + (row)]
/** @cond aes_funcs */
void AESCommon::subBytesAndShiftRows(uint8_t *output, const uint8_t *input)
{
OUT(0, 0) = pgm_read_byte(sbox + IN(0, 0));
OUT(0, 1) = pgm_read_byte(sbox + IN(1, 1));
OUT(0, 2) = pgm_read_byte(sbox + IN(2, 2));
OUT(0, 3) = pgm_read_byte(sbox + IN(3, 3));
OUT(1, 0) = pgm_read_byte(sbox + IN(1, 0));
OUT(1, 1) = pgm_read_byte(sbox + IN(2, 1));
OUT(1, 2) = pgm_read_byte(sbox + IN(3, 2));
OUT(1, 3) = pgm_read_byte(sbox + IN(0, 3));
OUT(2, 0) = pgm_read_byte(sbox + IN(2, 0));
OUT(2, 1) = pgm_read_byte(sbox + IN(3, 1));
OUT(2, 2) = pgm_read_byte(sbox + IN(0, 2));
OUT(2, 3) = pgm_read_byte(sbox + IN(1, 3));
OUT(3, 0) = pgm_read_byte(sbox + IN(3, 0));
OUT(3, 1) = pgm_read_byte(sbox + IN(0, 1));
OUT(3, 2) = pgm_read_byte(sbox + IN(1, 2));
OUT(3, 3) = pgm_read_byte(sbox + IN(2, 3));
}
void AESCommon::inverseShiftRowsAndSubBytes(uint8_t *output, const uint8_t *input)
{
OUT(0, 0) = pgm_read_byte(sbox_inverse + IN(0, 0));
OUT(0, 1) = pgm_read_byte(sbox_inverse + IN(3, 1));
OUT(0, 2) = pgm_read_byte(sbox_inverse + IN(2, 2));
OUT(0, 3) = pgm_read_byte(sbox_inverse + IN(1, 3));
OUT(1, 0) = pgm_read_byte(sbox_inverse + IN(1, 0));
OUT(1, 1) = pgm_read_byte(sbox_inverse + IN(0, 1));
OUT(1, 2) = pgm_read_byte(sbox_inverse + IN(3, 2));
OUT(1, 3) = pgm_read_byte(sbox_inverse + IN(2, 3));
OUT(2, 0) = pgm_read_byte(sbox_inverse + IN(2, 0));
OUT(2, 1) = pgm_read_byte(sbox_inverse + IN(1, 1));
OUT(2, 2) = pgm_read_byte(sbox_inverse + IN(0, 2));
OUT(2, 3) = pgm_read_byte(sbox_inverse + IN(3, 3));
OUT(3, 0) = pgm_read_byte(sbox_inverse + IN(3, 0));
OUT(3, 1) = pgm_read_byte(sbox_inverse + IN(2, 1));
OUT(3, 2) = pgm_read_byte(sbox_inverse + IN(1, 2));
OUT(3, 3) = pgm_read_byte(sbox_inverse + IN(0, 3));
}
void AESCommon::mixColumn(uint8_t *output, uint8_t *input)
{
uint16_t t; // Needed by the gmul2 macro.
uint8_t a = input[0];
uint8_t b = input[1];
uint8_t c = input[2];
uint8_t d = input[3];
uint8_t a2 = gmul2(a);
uint8_t b2 = gmul2(b);
uint8_t c2 = gmul2(c);
uint8_t d2 = gmul2(d);
output[0] = a2 ^ b2 ^ b ^ c ^ d;
output[1] = a ^ b2 ^ c2 ^ c ^ d;
output[2] = a ^ b ^ c2 ^ d2 ^ d;
output[3] = a2 ^ a ^ b ^ c ^ d2;
}
void AESCommon::inverseMixColumn(uint8_t *output, const uint8_t *input)
{
uint16_t t; // Needed by the gmul2, gmul4, and gmul8 macros.
uint8_t a = input[0];
uint8_t b = input[1];
uint8_t c = input[2];
uint8_t d = input[3];
uint8_t a2 = gmul2(a);
uint8_t b2 = gmul2(b);
uint8_t c2 = gmul2(c);
uint8_t d2 = gmul2(d);
uint8_t a4 = gmul4(a);
uint8_t b4 = gmul4(b);
uint8_t c4 = gmul4(c);
uint8_t d4 = gmul4(d);
uint8_t a8 = gmul8(a);
uint8_t b8 = gmul8(b);
uint8_t c8 = gmul8(c);
uint8_t d8 = gmul8(d);
output[0] = a8 ^ a4 ^ a2 ^ b8 ^ b2 ^ b ^ c8 ^ c4 ^ c ^ d8 ^ d;
output[1] = a8 ^ a ^ b8 ^ b4 ^ b2 ^ c8 ^ c2 ^ c ^ d8 ^ d4 ^ d;
output[2] = a8 ^ a4 ^ a ^ b8 ^ b ^ c8 ^ c4 ^ c2 ^ d8 ^ d2 ^ d;
output[3] = a8 ^ a2 ^ a ^ b8 ^ b4 ^ b ^ c8 ^ c ^ d8 ^ d4 ^ d2;
}
/** @endcond */
void AESCommon::encryptBlock(uint8_t *output, const uint8_t *input)
{
const uint8_t *roundKey = schedule;
uint8_t posn;
uint8_t round;
uint8_t state1[16];
uint8_t state2[16];
// Copy the input into the state and XOR with the first round key.
for (posn = 0; posn < 16; ++posn)
state1[posn] = input[posn] ^ roundKey[posn];
roundKey += 16;
// Perform all rounds except the last.
for (round = rounds; round > 1; --round) {
subBytesAndShiftRows(state2, state1);
mixColumn(state1, state2);
mixColumn(state1 + 4, state2 + 4);
mixColumn(state1 + 8, state2 + 8);
mixColumn(state1 + 12, state2 + 12);
for (posn = 0; posn < 16; ++posn)
state1[posn] ^= roundKey[posn];
roundKey += 16;
}
// Perform the final round.
subBytesAndShiftRows(state2, state1);
for (posn = 0; posn < 16; ++posn)
output[posn] = state2[posn] ^ roundKey[posn];
}
void AESCommon::decryptBlock(uint8_t *output, const uint8_t *input)
{
const uint8_t *roundKey = schedule + rounds * 16;
uint8_t round;
uint8_t posn;
uint8_t state1[16];
uint8_t state2[16];
// Copy the input into the state and reverse the final round.
for (posn = 0; posn < 16; ++posn)
state1[posn] = input[posn] ^ roundKey[posn];
inverseShiftRowsAndSubBytes(state2, state1);
// Perform all other rounds in reverse.
for (round = rounds; round > 1; --round) {
roundKey -= 16;
for (posn = 0; posn < 16; ++posn)
state2[posn] ^= roundKey[posn];
inverseMixColumn(state1, state2);
inverseMixColumn(state1 + 4, state2 + 4);
inverseMixColumn(state1 + 8, state2 + 8);
inverseMixColumn(state1 + 12, state2 + 12);
inverseShiftRowsAndSubBytes(state2, state1);
}
// Reverse the initial round and create the output words.
roundKey -= 16;
for (posn = 0; posn < 16; ++posn)
output[posn] = state2[posn] ^ roundKey[posn];
}
void AESCommon::clear()
{
clean(schedule, (rounds + 1) * 16);
}
/** @cond aes_keycore */
void AESCommon::keyScheduleCore(uint8_t *output, const uint8_t *input, uint8_t iteration)
{
// Rcon(i), 2^i in the Rijndael finite field, for i = 0..10.
// http://en.wikipedia.org/wiki/Rijndael_key_schedule
static uint8_t const rcon[11] PROGMEM = {
0x00, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, // 0x00
0x80, 0x1B, 0x36
};
output[0] = pgm_read_byte(sbox + input[1]) ^ pgm_read_byte(rcon + iteration);
output[1] = pgm_read_byte(sbox + input[2]);
output[2] = pgm_read_byte(sbox + input[3]);
output[3] = pgm_read_byte(sbox + input[0]);
}
void AESCommon::applySbox(uint8_t *output, const uint8_t *input)
{
output[0] = pgm_read_byte(sbox + input[0]);
output[1] = pgm_read_byte(sbox + input[1]);
output[2] = pgm_read_byte(sbox + input[2]);
output[3] = pgm_read_byte(sbox + input[3]);
}
/** @endcond */
#endif // CRYPTO_AES_DEFAULT