-
Notifications
You must be signed in to change notification settings - Fork 0
/
patch3dol.py
456 lines (425 loc) · 17.1 KB
/
patch3dol.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
__all__ = [
"patch3d_design",
"Patch3D",
]
import logging
from typing import Optional, Sequence, Tuple
import numpy as np
from pylops import LinearOperator
from pylops.basicoperators import BlockDiag, Diagonal, HStack, Restriction
from pylops.signalprocessing.sliding2d import _slidingsteps
from pylops.utils.tapers import tapernd
from pylops.utils.typing import InputDimsLike, NDArray
logging.basicConfig(format="%(levelname)s: %(message)s", level=logging.WARNING)
def patch3d_design(
dimsd: InputDimsLike,
nwin: Tuple[int, int, int],
nover: Tuple[int, int, int],
nop: Tuple[int, int, int],
) -> Tuple[
Tuple[int, int, int],
Tuple[int, int, int],
Tuple[Tuple[NDArray, NDArray], Tuple[NDArray, NDArray], Tuple[NDArray, NDArray]],
Tuple[Tuple[NDArray, NDArray], Tuple[NDArray, NDArray], Tuple[NDArray, NDArray]],
]:
"""Design Patch3D operator
This routine can be used prior to creating the :class:`pylops.signalprocessing.Patch3D`
operator to identify the correct number of windows to be used based on the dimension of the data (``dimsd``),
dimension of the window (``nwin``), overlap (``nover``),a and dimension of the operator acting in the model
space.
Parameters
----------
dimsd : :obj:`tuple`
Shape of 3-dimensional data.
nwin : :obj:`tuple`
Number of samples of window.
nover : :obj:`tuple`
Number of samples of overlapping part of window.
nop : :obj:`tuple`
Size of model in the transformed domain.
Returns
-------
nwins : :obj:`tuple`
Number of windows.
dims : :obj:`tuple`
Shape of 3-dimensional model.
mwins_inends : :obj:`tuple`
Start and end indices for model patches (stored as tuple of tuples).
dwins_inends : :obj:`tuple`
Start and end indices for data patches (stored as tuple of tuples).
"""
# data windows
dwin0_ins, dwin0_ends = _slidingsteps(dimsd[0], nwin[0], nover[0])
dwin1_ins, dwin1_ends = _slidingsteps(dimsd[1], nwin[1], nover[1])
dwin2_ins, dwin2_ends = _slidingsteps(dimsd[2], nwin[2], nover[2])
dwins_inends = (
(dwin0_ins, dwin0_ends),
(dwin1_ins, dwin1_ends),
(dwin2_ins, dwin2_ends),
)
nwins0 = len(dwin0_ins)
nwins1 = len(dwin1_ins)
nwins2 = len(dwin2_ins)
nwins = (nwins0, nwins1, nwins2)
# model windows
dims = (nwins0 * nop[0], nwins1 * nop[1], nwins2 * nop[2])
mwin0_ins, mwin0_ends = _slidingsteps(dims[0], nop[0], 0)
mwin1_ins, mwin1_ends = _slidingsteps(dims[1], nop[1], 0)
mwin2_ins, mwin2_ends = _slidingsteps(dims[2], nop[2], 0)
mwins_inends = (
(mwin0_ins, mwin0_ends),
(mwin1_ins, mwin1_ends),
(mwin2_ins, mwin2_ends),
)
# print information about patching
logging.warning("%d-%d-%d windows required...", nwins0, nwins1, nwins2)
logging.warning(
"data wins - start:%s, end:%s / start:%s, end:%s / start:%s, end:%s",
dwin0_ins,
dwin0_ends,
dwin1_ins,
dwin1_ends,
dwin2_ins,
dwin2_ends,
)
logging.warning(
"model wins - start:%s, end:%s / start:%s, end:%s / start:%s, end:%s",
mwin0_ins,
mwin0_ends,
mwin1_ins,
mwin1_ends,
mwin2_ins,
mwin2_ends,
)
return nwins, dims, mwins_inends, dwins_inends
def Patch3D(
Op,
dims: InputDimsLike,
dimsd: InputDimsLike,
nwin: Tuple[int, int, int],
nover: Tuple[int, int, int],
nop: Tuple[int, int, int],
tapertype: str = "hanning",
scalings: Optional[Sequence[float]] = None,
name: str = "P",
) -> LinearOperator:
"""3D Patch transform operator.
Apply a transform operator ``Op`` repeatedly to patches of the model
vector in forward mode and patches of the data vector in adjoint mode.
More specifically, in forward mode the model vector is divided into
patches, each patch is transformed, and patches are then recombined
together. Both model and data are internally reshaped and
interpreted as 3-dimensional arrays: each patch contains a portion
of the array in every axis.
This operator can be used to perform local, overlapping transforms (e.g.,
:obj:`pylops.signalprocessing.FFTND`
or :obj:`pylops.signalprocessing.Radon3D`) on 3-dimensional arrays.
.. note:: The shape of the model has to be consistent with
the number of windows for this operator not to return an error. As the
number of windows depends directly on the choice of ``nwin`` and
``nover``, it is recommended to first run ``patch3d_design`` to obtain
the corresponding ``dims`` and number of windows.
.. warning:: Depending on the choice of `nwin` and `nover` as well as the
size of the data, sliding windows may not cover the entire data.
The start and end indices of each window will be displayed and returned
with running ``patch3d_design``.
Parameters
----------
Op : :obj:`pylops.LinearOperator`
Transform operator
dims : :obj:`tuple`
Shape of 3-dimensional model. Note that ``dims[0]``, ``dims[1]``
and ``dims[2]`` should be multiple of the model size of the
transform in their respective dimensions
dimsd : :obj:`tuple`
Shape of 3-dimensional data
nwin : :obj:`tuple`
Number of samples of window
nover : :obj:`tuple`
Number of samples of overlapping part of window
nop : :obj:`tuple`
Size of model in the transformed domain
tapertype : :obj:`str`, optional
Type of taper (``hanning``, ``cosine``, ``cosinesquare`` or ``None``)
scalings : :obj:`tuple` or :obj:`list`, optional
Set of scalings to apply to each patch. If ``None``, no scale will be
applied
name : :obj:`str`, optional
Name of operator (to be used by :func:`pylops.utils.describe.describe`)
Returns
-------
Sop : :obj:`pylops.LinearOperator`
Sliding operator
Raises
------
ValueError
Identified number of windows is not consistent with provided model
shape (``dims``).
See Also
--------
Sliding1D: 1D Sliding transform operator.
Sliding2D: 2D Sliding transform operator.
Sliding3D: 3D Sliding transform operator.
Patch2D: 2D Patching transform operator.
"""
# data windows
dwin0_ins, dwin0_ends = _slidingsteps(dimsd[0], nwin[0], nover[0])
dwin1_ins, dwin1_ends = _slidingsteps(dimsd[1], nwin[1], nover[1])
dwin2_ins, dwin2_ends = _slidingsteps(dimsd[2], nwin[2], nover[2])
nwins0 = len(dwin0_ins)
nwins1 = len(dwin1_ins)
nwins2 = len(dwin2_ins)
nwins = nwins0 * nwins1 * nwins2
# check patching
if (
nwins0 * nop[0] != dims[0]
or nwins1 * nop[1] != dims[1]
or nwins2 * nop[2] != dims[2]
):
raise ValueError(
f"Model shape (dims={dims}) is not consistent with chosen "
f"number of windows. Run patch3d_design to identify the "
f"correct number of windows for the current "
"model size..."
)
# create tapers
if tapertype is not None:
tap = tapernd(nwin, nover, tapertype=tapertype).astype(Op.dtype)
taps = {itap: tap for itap in range(nwins)}
# 1, sides
# topmost tapers
taptop = tap.copy()
taptop[: nover[0]] = tap[nwin[0] // 2]
for itap in range(0, nwins1 * nwins2):
taps[itap] = taptop
# bottommost tapers
tapbottom = tap.copy()
tapbottom[-nover[0] :] = tap[nwin[0] // 2]
for itap in range(nwins - nwins1 * nwins2, nwins):
taps[itap] = tapbottom
# frontmost tapers
tapfront = tap.copy()
tapfront[:, :, : nover[2]] = tap[:, :, nwin[2] // 2][:, :, np.newaxis]
for itap in range(0, nwins, nwins2):
taps[itap] = tapfront
# backmost tapers
tapback = tap.copy()
tapback[:, :, -nover[2] :] = tap[:, :, nwin[2] // 2][:, :, np.newaxis]
for itap in range(nwins2 - 1, nwins, nwins2):
taps[itap] = tapback
# leftmost tapers
tapleft = tap.copy()
tapleft[:, : nover[1]] = tap[:, nwin[1] // 2][:, np.newaxis, :]
for itap in range(0, nwins, nwins1 * nwins2):
for i in range(nwins2):
taps[itap + i] = tapleft
# rightmost tapers
tapright = tap.copy()
tapright[:, -nover[1] :] = tap[:, nwin[1] // 2][:, np.newaxis, :]
for itap in range(nwins2 * (nwins1 - 1), nwins, nwins2 * nwins1):
for i in range(nwins2):
taps[itap + i] = tapright
# 2. pillars
# topleftmost tapers
taplefttop = tap.copy()
taplefttop[:, : nover[1]] = tap[:, nwin[1] // 2][:, np.newaxis, :]
taplefttop[: nover[0]] = taplefttop[nwin[0] // 2]
for itap in range(nwins2):
taps[itap] = taplefttop
# toprightmost tapers
taprighttop = tap.copy()
taprighttop[:, -nover[1] :] = tap[:, nwin[1] // 2][:, np.newaxis, :]
taprighttop[: nover[0]] = taprighttop[nwin[0] // 2]
for itap in range(nwins2):
taps[nwins2 * (nwins1 - 1) + itap] = taprighttop
# topfrontmost tapers
tapfronttop = tap.copy()
tapfronttop[:, :, : nover[2]] = tap[:, :, nwin[2] // 2][:, :, np.newaxis]
tapfronttop[: nover[0]] = tapfronttop[nwin[0] // 2]
for itap in range(0, nwins1 * nwins2, nwins2):
taps[itap] = tapfronttop
# topbackmost tapers
tapbacktop = tap.copy()
tapbacktop[:, :, -nover[2] :] = tap[:, :, nwin[2] // 2][:, :, np.newaxis]
tapbacktop[: nover[0]] = tapbacktop[nwin[0] // 2]
for itap in range(nwins2 - 1, nwins1 * nwins2, nwins2):
taps[itap] = tapbacktop
# bottomleftmost tapers
tapleftbottom = tap.copy()
tapleftbottom[:, : nover[1]] = tap[:, nwin[1] // 2][:, np.newaxis, :]
tapleftbottom[-nover[0] :] = tapleftbottom[nwin[0] // 2]
for itap in range(nwins2):
taps[(nwins0 - 1) * nwins1 * nwins2 + itap] = tapleftbottom
# bottomrightmost tapers
taprightbottom = tap.copy()
taprightbottom[:, -nover[1] :] = tap[:, nwin[1] // 2][:, np.newaxis, :]
taprightbottom[-nover[0] :] = taprightbottom[nwin[0] // 2]
for itap in range(nwins2):
taps[
(nwins0 - 1) * nwins1 * nwins2 + (nwins1 - 1) * nwins2 + itap
] = taprightbottom
# bottomfrontmost tapers
tapfrontbottom = tap.copy()
tapfrontbottom[:, :, : nover[2]] = tap[:, :, nwin[2] // 2][:, :, np.newaxis]
tapfrontbottom[-nover[0] :] = tapfrontbottom[nwin[0] // 2]
for itap in range(0, nwins1 * nwins2, nwins2):
taps[(nwins0 - 1) * nwins1 * nwins2 + itap] = tapfrontbottom
# bottombackmost tapers
tapbackbottom = tap.copy()
tapbackbottom[:, :, -nover[2] :] = tap[:, :, nwin[2] // 2][:, :, np.newaxis]
tapbackbottom[-nover[0] :] = tapbackbottom[nwin[0] // 2]
for itap in range(0, nwins1 * nwins2, nwins2):
taps[(nwins0 - 1) * nwins1 * nwins2 + nwins2 + itap - 1] = tapbackbottom
# leftfrontmost tapers
tapleftfront = tap.copy()
tapleftfront[:, : nover[1]] = tap[:, nwin[1] // 2][:, np.newaxis, :]
tapleftfront[:, :, : nover[2]] = tapleftfront[:, :, nwin[2] // 2][
:, :, np.newaxis
]
for itap in range(0, nwins, nwins1 * nwins2):
taps[itap] = tapleftfront
# rightfrontmost tapers
taprightfront = tap.copy()
taprightfront[:, -nover[1] :] = tap[:, nwin[1] // 2][:, np.newaxis, :]
taprightfront[:, :, : nover[2]] = taprightfront[:, :, nwin[2] // 2][
:, :, np.newaxis
]
for itap in range(0, nwins, nwins1 * nwins2):
taps[(nwins1 - 1) * nwins2 + itap] = taprightfront
# leftbackmost tapers
tapleftback = tap.copy()
tapleftback[:, : nover[1]] = tap[:, nwin[1] // 2][:, np.newaxis, :]
tapleftback[:, :, -nover[2] :] = tapleftback[:, :, nwin[2] // 2][
:, :, np.newaxis
]
for itap in range(0, nwins, nwins1 * nwins2):
taps[nwins2 + itap - 1] = tapleftback
# rightbackmost tapers
taprightback = tap.copy()
taprightback[:, -nover[1] :] = tap[:, nwin[1] // 2][:, np.newaxis, :]
taprightback[:, :, -nover[2] :] = taprightback[:, :, nwin[2] // 2][
:, :, np.newaxis
]
for itap in range(0, nwins, nwins1 * nwins2):
taps[(nwins1 - 1) * nwins2 + nwins2 + itap - 1] = taprightback
# 3. corners
# lefttopfrontcorner taper
taplefttop = tap.copy()
taplefttop[: nover[0]] = tap[nwin[0] // 2]
taplefttop[:, : nover[1]] = taplefttop[:, nwin[1] // 2][:, np.newaxis, :]
taplefttop[:, :, : nover[2]] = taplefttop[:, :, nwin[2] // 2][:, :, np.newaxis]
taps[0] = taplefttop
# lefttopbackcorner taper
taplefttop = tap.copy()
taplefttop[: nover[0]] = tap[nwin[0] // 2]
taplefttop[:, : nover[1]] = taplefttop[:, nwin[1] // 2][:, np.newaxis, :]
taplefttop[:, :, -nover[2] :] = taplefttop[:, :, nwin[2] // 2][:, :, np.newaxis]
taps[nwins2 - 1] = taplefttop
# righttopfrontcorner taper
taprighttop = tap.copy()
taprighttop[: nover[0]] = tap[nwin[0] // 2]
taprighttop[:, -nover[1] :] = taprighttop[:, nwin[1] // 2][:, np.newaxis, :]
taprighttop[:, :, : nover[2]] = taprighttop[:, :, nwin[2] // 2][
:, :, np.newaxis
]
taps[(nwins1 - 1) * nwins2] = taprighttop
# righttopbackcorner taper
taprighttop = tap.copy()
taprighttop[: nover[0]] = tap[nwin[0] // 2]
taprighttop[:, -nover[1] :] = taprighttop[:, nwin[1] // 2][:, np.newaxis, :]
taprighttop[:, :, -nover[2] :] = taprighttop[:, :, nwin[2] // 2][
:, :, np.newaxis
]
taps[(nwins1 - 1) * nwins2 + nwins2 - 1] = taprighttop
# leftbottomfrontcorner taper
tapleftbottom = tap.copy()
tapleftbottom[-nover[0] :] = tap[nwin[0] // 2]
tapleftbottom[:, : nover[1]] = tapleftbottom[:, nwin[1] // 2][:, np.newaxis, :]
tapleftbottom[:, :, : nover[2]] = tapleftbottom[:, :, nwin[2] // 2][
:, :, np.newaxis
]
taps[(nwins0 - 1) * nwins1 * nwins2] = tapleftbottom
# leftbottombackcorner taper
tapleftbottom = tap.copy()
tapleftbottom[-nover[0] :] = tap[nwin[0] // 2]
tapleftbottom[:, : nover[1]] = tapleftbottom[:, nwin[1] // 2][:, np.newaxis, :]
tapleftbottom[:, :, -nover[2] :] = tapleftbottom[:, :, nwin[2] // 2][
:, :, np.newaxis
]
taps[(nwins0 - 1) * nwins1 * nwins2 + nwins2 - 1] = tapleftbottom
# rightbottomfrontcorner taper
taprightbottom = tap.copy()
taprightbottom[-nover[0] :] = tap[nwin[0] // 2]
taprightbottom[:, -nover[1] :] = taprightbottom[:, nwin[1] // 2][
:, np.newaxis, :
]
taprightbottom[:, :, : nover[2]] = taprightbottom[:, :, nwin[2] // 2][
:, :, np.newaxis
]
taps[(nwins0 - 1) * nwins1 * nwins2 + (nwins1 - 1) * nwins2] = taprightbottom
# rightbottombackcorner taper
taprightbottom = tap.copy()
taprightbottom[-nover[0] :] = tap[nwin[0] // 2]
taprightbottom[:, -nover[1] :] = taprightbottom[:, nwin[1] // 2][
:, np.newaxis, :
]
taprightbottom[:, :, -nover[2] :] = taprightbottom[:, :, nwin[2] // 2][
:, :, np.newaxis
]
taps[
(nwins0 - 1) * nwins1 * nwins2 + (nwins1 - 1) * nwins2 + nwins2 - 1
] = taprightbottom
# define scalings
if scalings is None:
scalings = [1.0] * nwins
# transform to apply
if tapertype is None:
OOp = BlockDiag([scalings[itap] * Op for itap in range(nwins)])
else:
OOp = BlockDiag(
[
scalings[itap] * Diagonal(taps[itap].ravel(), dtype=Op.dtype) * Op
for itap in range(nwins)
]
)
hstack2 = HStack(
[
Restriction(
(nwin[0], nwin[1], dimsd[2]),
range(win_in, win_end),
axis=2,
dtype=Op.dtype,
).H
for win_in, win_end in zip(dwin2_ins, dwin2_ends)
]
)
combining2 = BlockDiag([hstack2] * (nwins1 * nwins0))
hstack1 = HStack(
[
Restriction(
(nwin[0], dimsd[1], dimsd[2]),
range(win_in, win_end),
axis=1,
dtype=Op.dtype,
).H
for win_in, win_end in zip(dwin1_ins, dwin1_ends)
]
)
combining1 = BlockDiag([hstack1] * nwins0)
combining0 = HStack(
[
Restriction(dimsd, range(win_in, win_end), axis=0, dtype=Op.dtype).H
for win_in, win_end in zip(dwin0_ins, dwin0_ends)
]
)
Pop = LinearOperator(combining0 * combining1 * combining2 * OOp)
Pop.dims, Pop.dimsd = (
nwins0,
nwins1,
nwins2,
int(dims[0] // nwins0),
int(dims[1] // nwins1),
int(dims[2] // nwins2),
), dimsd
Pop.name = name
return Pop