From 6525b9f0cc468585f65f42644680c92e029aa0ab Mon Sep 17 00:00:00 2001 From: Anju Joon <50222412+AnjuJoon@users.noreply.github.com> Date: Mon, 20 May 2019 22:28:05 +1000 Subject: [PATCH] Delete Tax_Smoothing_3 superior version in Sandpit --- Tax_Smoothing_3.ipynb | 316 ------------------------------------------ 1 file changed, 316 deletions(-) delete mode 100644 Tax_Smoothing_3.ipynb diff --git a/Tax_Smoothing_3.ipynb b/Tax_Smoothing_3.ipynb deleted file mode 100644 index cbce549..0000000 --- a/Tax_Smoothing_3.ipynb +++ /dev/null @@ -1,316 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "# How to pay for a war: part 3\n", - "\n", - "### Another application of Markov jump linear quadratic dynamic programming\n", - "\n", - "#### By [Sebastian Graves](https://github.com/sebgraves) and [Thomas J. Sargent](http://www.tomsargent.com/) \n", - "\n", - "This notebook is another [sequel to an earlier notebook](https://github.com/QuantEcon/TaxSmoothing/blob/master/Tax_Smoothing_1.ipynb).\n", - "\n", - "As earlier, we use Markov jump linear quadratic (LQ) dynamic programming problems to implement some suggestions by Barro (1999, 2003) for extending his classic 1979 model of tax smoothing.\n", - "\n", - "Barro's 1979 model is about a government that borrows and lends in order to help it minimize an intertemporal measure of distortions caused by taxes. Technically, Barro's 1979 model looks a lot like a consumption smoothing model. Our generalizations of his 1979 model will also look like a souped up consumption smoothing model.\n", - "\n", - "In this notebook, we try to capture the tax-smoothing problem of a government that faces\n", - "**roll-over risk**\n", - "\n", - "### Roll-over risk\n", - "\n", - "Let $T_t$ denote tax collections, $\\beta$ a discount factor, $b_{t,t+1}$ time $t+1$ goods that the government promises to pay at $t$, $G_t$ government purchases, $p^t_{t+1}$ the number of time $t$ goods received per time $t+1$ goods promised. The stochastic process of government expenditures is exogenous. The government's problem is to choose a plan for borrowing and tax collections $\\{b_{t+1}, T_t\\}_{t=0}^\\infty$ to minimize\n", - "\n", - "$$ E_0 \\sum_{t=0}^\\infty \\beta^t T_t^2 $$\n", - "subject to the constraints\n", - "$$ T_t + p^t_{t+1} b_{t,t+1} = G_t + b_{t-1,t} $$\n", - " $$ G_t = U_{g,t} z_t $$\n", - " $$ z_{t+1} = A_{22,t} z_t + C_{2,t} w_{t+1} $$\n", - "\n", - "where $w_{t+1} \\sim {\\cal N}(0,I)$. The variables $T_t, b_{t, t+1}$ are *control* variables chosen at $t$,\n", - "while $b_{t-1,t}$ is an endogenous state variable inherited from the past at time $t$ and $p^t_{t+1}$ is an exogenous state variable at time $t$. This is the same set-up as used [in this notebook](http://nbviewer.jupyter.org/github/QuantEcon/TaxSmoothing/blob/master/Tax_Smoothing_1.ipynb). We will consider a situation in which the government faces \"roll-over risk\". Specifically, we shut down the government's ability to borrow in one of the Markov states. \n", - "\n", - "##### A dead end\n", - "\n", - "A first thought for how to implement this might be to allow $p^t_{t+1}$ to vary over time with:\n", - "\n", - "$$ p^t_{t+1} = \\beta $$\n", - "\n", - "in Markov state 1 and\n", - "\n", - "$$ p^t_{t+1} = 0 $$ in Markov state 2. Consequently, in the second Markov state the government is unable to borrow, and the budget constraint becomes $T_t = G_t + b_{t-1,t}$. \n", - "\n", - "However, if this is the only adjustment we make in our linear-quadratic model, the government will not set $b_{t,t+1} = 0$, which is the outcome we want to express ``roll-over'' risk in period $t$. \n", - "\n", - "Instead, the government would have an incentive to set $b_{t,t+1}$ to a large negative number in state 2 -- it would accumulate large amounts of *assets* to bring into period $t+1$ because that is cheap. (Our Riccati equations will discover this for us!)\n", - " \n", - "Thus, we must represent \"roll-over risk\" some other way.\n", - "\n", - "##### A better representation of roll-over risk\n", - "\n", - "To force the government to set $b_{t,t+1} = 0$, we can instead extend the model to have four Markov states:\n", - "\n", - "1. Good today, good yesterday\n", - "2. Good today, bad yesterday\n", - "3. Bad today, good yesterday\n", - "4. Bad today, bad yesterday\n", - "\n", - "where good is a state in which effectively the government can issue debt and bad is a state in which effectively the government can't issue debt.\n", - "\n", - "We'll explain what ``effectively'' means shortly\n", - "\n", - "We now set\n", - "\n", - "$$ p^t_{t+1} = \\beta $$ \n", - "\n", - "in all states. \n", - "\n", - "In addition -- and this is important because it defines what we mean by ``effectively'' -- we put a large penalty on the $b_{t-1,t}$ element of the state vector in states 2 and 4. This will prevent the government from wishing to issue any debt in states 3 or 4 because it would experience a large penalty from doing so in the next period. \n", - "\n", - "The transition matrix for this formulation is:\n", - "\n", - "$$ \\Pi = \\begin{bmatrix} 0.95 & 0 & 0.05 & 0 \\\\\n", - " 0.95 & 0 & 0.05 & 0 \\\\\n", - " 0 & 0.9 & 0 & 0.1 \\\\\n", - " 0 & 0.9 & 0 & 0.1 \\\\\n", - "\\end{bmatrix} $$\n", - "\n", - "This transition matrix ensures that the Markov state cannot move, for example, from state 3 to state 1. Because state 3 is \"bad today\", the next period cannot have \"good yesterday\"." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import quantecon as qe\n", - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "from lq_markov import *\n", - "%matplotlib inline" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "# Model parameters \n", - "beta, Gbar, rho, sigma = 0.95, 5, 0.8, 1\n", - "\n", - "# Basic model matrices\n", - "A22 = np.array([[1,0],[Gbar, rho],])\n", - "C2 = np.array([[0], [sigma]])\n", - "Ug = np.array([[0,1]])\n", - "\n", - "# LQ framework matrices\n", - "A_t = np.zeros((1,3))\n", - "A_b = np.hstack((np.zeros((2,1)),A22))\n", - "A = np.vstack((A_t,A_b))\n", - "\n", - "B = np.zeros((3,1))\n", - "B[0,0] = 1\n", - "\n", - "C = np.vstack((np.zeros((1,1)),C2))\n", - "\n", - "Sg = np.hstack((np.zeros((1,1)),Ug))\n", - "S1 = np.zeros((1,3))\n", - "S1[0,0] = 1\n", - "S = S1 + Sg\n", - "\n", - "R = np.dot(S.T,S)\n", - "\n", - "# Large penalty on debt in R2 to prevent borrowing in bad state\n", - "R1 = np.copy(R)\n", - "R2 = np.copy(R)\n", - "R1[0,0] = R[0,0] + 1e-9\n", - "R2[0,0] = R[0,0] + 1e12\n", - "\n", - "M = np.array([[-beta]])\n", - "Q = np.dot(M.T,M)\n", - "W = np.dot(M.T,S)\n", - "\n", - "# Create namedtuple to keep the R,Q,A,B,C,W matrices for each state of the world\n", - "world = namedtuple('world', ['A', 'B', 'C', 'R', 'Q', 'W'])\n", - "\n", - "Pi = np.array([[0.95,0,0.05,0],[0.95,0,0.05,0],[0,0.9,0,0.1],[0,0.9,0,0.1]])\n", - "\n", - "#Sets up the four states of the world\n", - "v1 = world(A=A,B=B,C=C,R=R1,Q=Q,W=W)\n", - "v2 = world(A=A,B=B,C=C,R=R2,Q=Q,W=W)\n", - "v3 = world(A=A,B=B,C=C,R=R1,Q=Q,W=W)\n", - "v4 = world(A=A,B=B,C=C,R=R2,Q=Q,W=W)\n", - "\n", - "MJLQBarro = LQ_Markov(beta,Pi,v1,v2,v3,v4)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This model is simulated below, using the same process for $G_t$ as in the previous notebook. When $ p^t_{t+1} = \\beta $ government debt fluctuates around zero. The spikes in the series for taxation show periods when the government is unable to access financial markets: positive spikes occur when debt is positive, and the government must raise taxes in the current period. \n", - "\n", - "Negative spikes occur when the government has positive asset holdings. An inability to use financial markets in the next period means that the government uses those assets to lower taxation toay." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Text(0.5, 0, 'Time')" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6QAAAEWCAYAAABxIlqKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzsnXeYXGd1/79net/ZqlVZSVaxLdkYF7mAARcSisGhhBKSkAAJJeGXACGQkNBCQkggkBCHhBAgEOPQggFjig3YGDfkIkuyitWl7X12+p25M/P+/rj3vXOn7szs7BTt+TyPHu1OufPunZn7vuf9nvM9JIQAwzAMwzAMwzAMw7QaS7sHwDAMwzAMwzAMw6xNOCBlGIZhGIZhGIZh2gIHpAzDMAzDMAzDMExb4ICUYRiGYRiGYRiGaQsckDIMwzAMwzAMwzBtgQNShmEYhmEYhmEYpi1wQMowNUJEm4koRkTWBp57IxGN1/H4XxDRH9b4WEFEO+odk+n5Pyai32/0+QzDMAzDFEJEXyGi97d7HAzTDXBAyrQUInoTET1NRAkimiai/yCiYLvHVQtCiFEhhE8IkW33WGpFP98PVXuMEOKlQoivtmpMDMMwDLMa6JvG8l+OiJKm339nFV/3HUT0M/NtQog3CSE+uVqvyTDnExyQMi2DiN4L4B8BvA9AD4DrAGwB8FMicrRzbMtBRLZ2j4FhGIZhmMrom8Y+IYQPwCiAW0233dHu8TEMUx4OSJmWQEQBAH8D4E+EED8RQqhCiLMAXgctKP1d/XEfJaJvEdH/EFGUiA4T0R7TcTYQ0XeIaI6IzhDRn1Z5za16OuvbiGiSiKb0oFjebyGivySiU0S0oL9uX9Fz/4CIRgHcZ7rNZhrLXUS0SEQnieitpmO79XSdEBEdAXD1Mufn14noGSIKE9G/AaCi+99CREf1491DRFuKDnELEZ0monki+pT+t+0C8HkAz9F3h5cqvLaRHkxEO4joAX0c80T0Tf12IqJ/JqJZ/b6DRHRp8fP13wtUWSL6LBGNEVGEiJ4koueb7lvu/R4hojv193tBPze1nhOGYRiGMSCi64lorz6PTerzmpzTb9LnuPX671fr88s2/fcP6+uOKBEdIqKX6bdfAeBfANyoz7XT+u3fIKIPml77nab1xp1EtE6/3aWvLd6q3x8ion9u7ZlhmPbCASnTKp4LwAXgTvONQogYgB8D+HXTzb8B4BsAggDuAvBvgBZAAvgBgAMANgJ4IYB3E9GLl3ntmwDsBPAiAH9JRL+m3/6nAF4J4AYAGwCEAHyu6Lk3ANgFoNxrfB3AuP7c1wD4eyJ6oX7fRwBs1/+9GEDFGk0iGgDwHQAfBDAA4BSA6033vxLAXwF4NYBBAA/qr23mVQD2ALgSwCsAvEUIcRTAOwA8qu8O15Ia/bcA7gXQC2ATgNv0218E4AUALoT2vrwewEINxwOAxwFcDqAPwP8C+DYRuUz3V3q/rQDuBnAOwFZo7/k39PtqOScMwzAMY0YF8P+gzUfPB3ArgD8EACHE/QBuB/BlIvLoP79PCHFaf+4xaGuZHmjZXt8gogEhxFMA3g3gF/pcO1z8okR0C4APQZurNwKYB/C1ooe9FMAV0ObxNxPRjc36oxmm0+GAlGkVAwDmhRCZMvdN6fdLHhJC/Eiv1bwdwLP1268GMCiE+JgQIq1PEv8F4LeWee2/EULEhRBPA/hvAG/Qb387gL8WQowLIVIAPgrgNVSYnvtR/blJ8wGJaATA8wD8hRBCEULsB/BFAG/UH/I6AB8XQiwKIcYA/GuV8d0C4IgQ4v+EECq0ndZp0/1vB/AJIcRR/fz9PYDLixTBf9Rfa1R//hvQGCo0xXqD/nc9ZLrdD+BiAKSPZaqWAwohviaEWBBCZIQQnwbgBHCR6SGV3u9roAX779PfA/N4ajknDMMwDGMghHhMCPG4ECIrhDgFbd6+wfSQv4K2GbsXwDEhxBdNz/2mEGJKCJETQtwOYALAVTW+9O8A+IIQ4qAQQgHwfgAvJCJz8Pr3QoiIEOIMgF9C28hlmDUBB6RMq5gHMEDlazHX6/dLzMFYAoBLf94WABuIaEn+gzZ5yLQXs5nBZtMxxkw/n4MW5EA/3ndNxzoKICuPV+a5ZjYAWBRCRIuOvdF0f/HrVqLgsUIIUfTcLQA+axrnIrSU3o2mx1T6G+vl/fqxH9PTZ9+ij+k+aMrl5wDMENEXSEvDXhYieq+eWhvWx9+Dwg2ISu/3CIBzFTYxajknDMMwDGNARLtJc5afIaIIgA/DNB/pm9P/A+BSAP9U9Nw/0MtV5LyzA4VzWTU2wLQOEEIsAYigcM4qngt9tf9lDNPdcEDKtIpHAaSgpVgaEJEXWprKz2s4xhiAM0KIoOmfXwhxC1BoZqArhZIR08+bAUyajvfSouO5hBATpseLCmOZBNBHRP6iY8vnTpV53UoUPJaIqOi5YwDeXjROtxDikRr+xkrjL4sQYloI8VYhxAZoKuS/k95SRgjxr0KIqwBcAi1193360+IAPKbDGDu+er3oX0BTjHv1tOEwimpkKzAGYHOFTYxazgnDMAzDmPkvAPsAbBdCBAB8DKb5iIi2AvgAgK8CMNeXXgithOVtAPr0ueyk6bnLzbWT0DZS5ev0AAggv2ZgmDUNB6RMSxBChKGZGt1GRC8hIrt+4f82tDrM22s4zGMAIkT0F6SZBlmJ6FIiqmoYBOBDROQhoksAvBnAN/XbPw/g4zLNk4gGiegVNf49YwAeAfAJ3ZDgMgB/AEC6+H0LwAeIqJeINgH4kyqH+yGAS4jo1frk96cwBXX6OD+gjx9E1ENEry06xvv01xoB8C7T3zgDYBPV6GJMRK/VxwtoNbUCQFY3d7iWiOzQAlAFmpoMAPsBvFo/xzv08yDxA8gAmANgI6IPQ5uEa+ExaMH6PxCRVz/Psra2lnPCMAzDMGb8AMJCiJg+f5jNCC3Q1NHbALwFQAyaggpoamUO2lxmIaJ3QFNIJTMARvQ5shxfB/BWfc3iglaDep8QYrrC4xlmTcEBKdMy9H5cfwUtDSYCrUZjDMAL9TSZ5Z6fhWZAcDmAM9DSfL8ILQW0Gg9A28n8OYB/EkLcq9/+WWgmOvcSURTArwBcW8ef9AZoZjuTAL4L4CNCiJ/q9/0NtPScM9BMgioG3EKIeQCvBfAP0IyCdgJ42HT/d5E3UIgAOARNVTbzfQBPQgsOfwjgS/rt9wE4DGCaiOaxPFcD2EtEMWjn5l16PUsA2s5ySP+7FpBPZ/pnAGloE/JXkQ/KAeAeaKZVx/XnKaicBl2A6f3eAc2+fxyamVKt54RhGIZhzLwHwB/qc9znkN+8BbSsHzeAvxVC5KCZEb6TiK4VQuyDthH6BLSN0gv0nyU/AXAWwCwRjRe/qBDibgCfgDavTkLbdH5j8eMYZq1CWrkaw5x/6ArsGQD2CnWIDMMwDMMwDMO0EVZIGYZhGIZhGIZhmLbAASnDMAzDMAzDMAzTFjhll2EYhmEYhmEYhmkLrJAyDMMwDMMwDMMwbaFcf79VZ2BgQGzdurUdL80wDMOchzz55JPzQojBdo+jm+G5mWEYhmkmtc7NbQlIt27diieeeGL5BzIMwzBMDRDRuXaPodvhuZlhGIZpJrXOzZyyyzAMwzAMwzAMw7QFDkgZhmEYhmEYhmGYtsABKcMwDMMwDMMwDNMWOCBlGIZhGIZhGIZh2gIHpAzDMAzDMAzDMExb4ICUYRiGYRiGYRiGaQsckDIMwzAMwzAMwzBtgQNShmE6hlA8jf97crzdw2AYpgN54uwisjnR7mEwTEfzxNlFHJ2KtHsYDFMXHJAyDNMxvOrfH8aff/sApsLJdg+FYboCIhohovuJ6CgRHSaid+m3X05EvyKi/UT0BBFd0+6xroTRhQRe8/lH8Ytjs+0eCsN0NB+56zA+89Pj7R4Gw9QFB6QMw3QEMxEFZxcSAIBQXG3zaBima8gAeK8QYheA6wC8k4h2A/gkgL8RQlwO4MP6713LUjINAIilMm0eCcN0Nkk1C0XNtnsYDFMXtnYPgGEYBgBuf/Sc8bNcfDIMUx0hxBSAKf3nKBEdBbARgAAQ0B/WA2CyPSNsDoqaAwBO2WWYZUhnckhncu0eBsPUBQekDMN0BCdnY8bP4QQrpAxTL0S0FcAVAPYCeDeAe4jon6BlQz23fSNbOVLxyXBAyjBVSWdySGc5IGW6C07ZZRimIwgnVWzqdQMAlpIckDJMPRCRD8B3ALxbCBEB8EcA3iOEGAHwHgBfqvC8t+k1pk/Mzc21bsB1IgNSVkgZpjpqlhVSRc3iyXOhdg+DqQMOSBmG6QgiiorNfR4AwBIrpAxTM0RkhxaM3iGEuFO/+fcByJ+/DaCsqZEQ4gtCiD1CiD2Dg4OrP9gGUTKcssswtcApu8D390/gtZ9/hLOtuggOSBmG6QgiioohvxMOm4VrSBmmRoiIoKmfR4UQnzHdNQngBv3nmwGcaPXYmgkrpAxTG+lsDmoDKbtCCLzxS3vxsyMzqzCq1rKUUJETQEJlE7RugQPSVSSVySKVYaczhqmFSDKDHrcdQbeddzUZpnauB/BGADfrLV72E9EtAN4K4NNEdADA3wN4WzsHuVJSHJAybWA+lsIrPvcwJpe6oxWZEAJqVjSkkKazOTx4Yh5PjnZ/qmtS1pxn+XrRLbCp0SryR1/bB6/ThtvecEW7h8IwHU0uJxBRVC0g9dg5ZZdhakQI8RAAqnD3Va0cy2rCLrtMOzg+E8WBsSU8Mx3BhqC73cNZFmlm1IipkfyOJdPdL6TIv6URpZhpDxyQrhJCCDx+dhG9Hke7h8IwHU8snYEQQMBtR9Dt4JRdhmEKYJddph3Iz1060x2fO1VXBFMNKKQyoy+R7v40V75edB+csrtKzERSiCoZjIcSa764nGGWI6K76gZcdvSwQsowTBGKvljOCV5gMq1DKm3d0kZFrjcbUQZT+t+aOA8UUhlc8/q7e+CAFMCXHzqDvacXmnrM4zNRAEBOAKOLiaYem2HONyJJbUc24LYh6OaAlGGYQmRgwDVhTCvJK6TdEdjIcTYyXvm3yv8lj5yaRyzVXaqpcb1ghbRrWPMBaTyVwcd/dBT/+9hoU497YjZm/Hx2Pt7UYzPM+UZE0RVSWUPKKbsMw5jIu+x2R2DAnB8YCmmXBKRSGc0JIFOnSirTfM0K6Xgogd/+r7341uNjzRtkCzBSdrtE2WY4IMWB8SVkcwJTYaWpxz0xE4XHYQUAnF3ggJRhqhE2pewGPQ4oaq5kl5ZhmLWLYWrEKbtMC0kaCml3zEfm2tF604zlnGsOSB8/uwgAXeMyLJF/i8oZFV3Dmg9InxpdAgBMhZv7ZTs+E8WzNvYg6LHjNCukDFMVWUPa47ajx20HkA9SGYZhZA0pp+AxraTbAhuzkqvWacRUzmX38bNaC5jZaKoJo2sd+ZRdVki7hTUfkO47p33ZZsIp5Jo00QkhcGI2hgvX+bG138spuwyzDBFFryF1aSm7ALiOlGEYA9mHtFnzdDcyG1W6JnX0fEF+7rrF1MhsZpTK1qfqGi67agYnZqK4/dGzeEJXSOe6LSDNyI2E1r9v9x6exoe+d6jlr9vtrOmAVAiBfaMh2K2EdDaHxURz6tYS6SyiSgabet24YMCLMxyQMkxVIkkVRIDfZUPQrbVKWmrS95FhmO5nrZuUZHMCv/bpB3DH3nPtHsqaQqbsNtJGpR2YA+d6Ny/MCult953Eh75/GMdnND+U2Whzy9pWm3wf0tZfL+4/Noc79423/HW7nTUdkI4tJhFKqHjejgEAwHST6khD+kK61+PAxqAbMxFlTe/qMsxyhJMqfE4bLBYyFNIQK6QMw+jkTY0an0vvOTxdkI7YTcRSGUSUDBZivFHXSrrN1Mg8zvoD0nwNqd2aDw92rw90YcquNDVq/do7mc50TYp3J9G0gJSIrET0FBHd3axjrjbjIa0dy7Xb+gGgacZGMtUw6NHSD3MCiCrdZZnNMK0koqgIuLRAdCjgBADMddmOLMMwq4dMwWs0ID05G8Xbb38S33i8uY76rUK23VirCnG76Lq2L9nGTY2kCpxUs4goKrYNevE/b7kGL7tsPaJKpquMBo2AtA01pIl0FulsDoIN2OqimQrpuwAcbeLxVp1JPQC9cnMvgOYZG0mFNOhxoNfjKLiNYZhSIskMArqZ0YDXCZuFmu58zTBM92K47DYYkB2Z0nqD79ONDLuNqN4ai9tYtBZF9vWssx6zXazM1Ej7G4XQTIwGvE684MJBDPm1TeLZSPeopO00o0p2mRFWp9CUgJSINgF4GYAvNuN4rWJKt7G+dGMAdmvzFsAy1bDXY0evV6YfckDKMJXQFFIbAMBiIawLuDggZRjGIK94NLbIOzYdAQDsHws1bUytJKawQtoOZIp3vcFduyhI2a0ziFZMrW1mwgoCbm1OHgq4AHRXHalRc96GDRzZNqcdhkrdTLMU0n8B8H4AFc8+Eb2NiJ4goifm5uaa9LIrYzKsoM/rgMdhw7qAq2k1pEtlFFJ2DGWYykSSqtHuBQDW97ia3oqJYZjuRS4wG/VjODatKaRji0nMx7pH6ZHIsp+V1NC2g/1jS3j+J+9DuEvXQNJ5titddutMM06p+cfPRhUja8lQSLukjlQI0VaXXQ5IG2PFASkRvRzArBDiyWqPE0J8QQixRwixZ3BwcKUv2xSmwkms79F2fpq5AA7F8zWknLLLMMsTSarG5AcAwz3N2yBiGKb7Sa1QIX1mOoqNQTcAYH8Xpu1GZMpul/VVfPzMIsYWkzi32J3dBlpdQxpOqisywVyRqZFJIc0JGL4Og0bKbnfMyVr9pvZzW1J209rmUbfUHXcKzVBIrwfwG0R0FsA3ANxMRF9rwnFXnaklBet7tAlq+6APhyYiTXHgCyXS8DttsFstRkC6GOeAlGEqEVEyxuQHyA0ihU0BGGaNkUhn8K0nxkqUQMPUqIFrQiyVwXgoiVdfuRFWC+GpLkzbNUyNuqwubUIvjYoku9PYsZVtX5YSaTznEz/HD5+eavgYZlWu3mDMrJACMDaJ+zwO2CzUNQqpYvo72mVqBHSPqt4prDggFUJ8QAixSQixFcBvAbhPCPG7Kx5ZC5gMJ7EhqCmkr7h8I2KpDH5yeApPnltcUVrMUiKNoF476nfZYCFO2WWYSmSyOcRSGaNeBQCGe9xIZXL8vWGYNcZPDk3j/f93EN/fP2Hcls0JY3GdbSAgk+m6z94UxKZeN0YXu68coFtTdsdD2rkOJ7vzWm60fWlBcHFkKoJEOotTc7GGj5FagUKayhQKMmZfhwGfs2sC0pTJDbg9Cml3OTN3Cmu2D2kslUFUyRgK6bUX9GGkz433fPMAfvM/HsVjZxYbPnYooRrKqNZX0cEpuwxTAbnzX1xDCjSvFRPDMN3BmB4sfv6BU0bqorndRCMpu2fmtXTRHUM+BD0Ow+ehm5CmRmqXBaRSIe3egFQGF6vvsis3TlbSa7aw7UudpkYVFFIA6PU6umaDuEAhbXFAKoRAgl12G6KpAakQ4hdCiJc385irhXTYlQqpxUL4ras3G/fHU42nlywl0gjqASmg1ZJ2yxeZYVqNXKiYU3aH9YB0OtJ9SgbDMI0j+4Mfn4nhlyc0A0RzQJprIGV3QTcxGgo40euxd+UGsWz7ku2yGtIJ/f3s9oC0FcHF8Rk9II03rkSa3YDrriFVsyDK/26ek/1OG2Kp7ngPkwUKaWu/L+lszshiYFOj+lizCqnsQSoVUgD4oxu244u/twfAyvLOl5Iqej2mnSVWSBmmIrK2yLwbu0H/XrJCyjBri/FQEheu8wEATs5qqYtKxlwT1kBAGk/DbbfC47Bp83G8OxbWZmTKbjfVkEYVFRF93N0bkOopuy1Iv5QK6fyKFNKs6ec6a0gzOQRN87C5jMbrtCKe6o5erOYNLLXFGzhmH5pW1B2fT9iWf8j5iexJtrnPY9xmsRA292u/r6TXVyieNlJ2Aa0f6cQSL6wZphzSPVLWqwCaq5/VQpji7w3DrAn+/NsH0Od1YHwpgctHenFyNmZkFpkXmI0ohPOxFPp92pysZSx13wZxNNV9fUhlui7QzQFpa+oBhRA4PqNtwKykLdGKXHbVLHq9DoQSpVlLXqcN5xYSDY+rlRSk+Ld4AyeRbp862+2s2YD0nsMz2L0+YKQGSmwWLV+h0Q9xJptDRMkgWKSQHp6MND5YhjmPiegLlR7Td8ZqIfR67FjswoUjwzD1c/8zs7BZCQuxNG69zI2A224EMYUBaSMpu2n0e7WAtNfjQDydRTqTg8PWuUliMxEFQY8dhycj+NHBKeM62VUBaSgfkEa6MCBVsznjfK+2qdHEUhKxVAZuu3VFNaRqVsBhsyCdyTUWkHocALSaa7Ovg99lMzZFOp2CjIoWB4UckDbOmgxIZyMKnjwXwp/9+oUl99mt2gTV6AdJTqDBomLwbkjZHV1I4D8eOIXpcBL/8vorCgKEbuBnR2bw3acm8OnXPRsuu7Xdw2FqJK+QFn7eAi57Vy5iGIapj1gqgwVTa7RNvR70FASk+fm4WkCqqFnMx1LY1OspuH0hnsKQX9t8luU0S4k0hgKukmN0Cs//5P1wWC3wu2yYCisY0BXeTqshVdQs7FYLrBYquU8qpCN97q5USM0bIautkJ7Q09P3bO3FgyfmG94wSWVy8DltWMykG3DZzWFdwAUiQIjCMhqvw7Yib5VWUpiy29oNHHPKLrvs1kfnbg+uIvccmQEAvOTS4ZL75EW1UWt1merQ6y00NVLUXMGXpBP52t5z+Ppjo7j/2Byeme4+RfeOvefww6en8LG7j7R7KEwdGKZG7sKA1O+2G/VHDMOcv5xbiBf8vrHXjaDbjiX92iDbODhslqpz87/ffxK3fPZBw51XUqCQ6v+HOthoMKkruLFUxqijl3WFneTcKYTAjZ/6Be7Ye67s/ROhJBxWC7YP+ioGpHcfnFxRm5PVxLwRstr1gCF9Q2b3+oD2e4MiRjqTg8umbRDUK6woahZuuxVuuxVEmpGRxOeyIZHOdkXboYKAtMVBYSKdX7OwQlofazIg3XcuhOGACzuHfCX32axaQNroroqsTQkW1JDKCbCzVVLpbgh0V1qQRAY0/7t3FPvHlto8GqZWIskMrBaC11GoagdcNlZIGWYNMFpUm7aptyhlV2+54XPaqi6I940uIaJkMGeqwRNCaAGpzwmgO+bj2agWhN7yrGF86OW7C+7rpIAgnc1hOqIYvUaLOTUXw5Z+D4Km99KMEAJ/9q0D+ND3Dq32UBtCBjY+p23VgwtpWrWl3wug8TpSNaspq3Yr1Z1mrKg5OO0WeBxW+Jw2WEyqt08PTuPpzt8kTukbCRZq/Vo2obKpUaOsyYB0JqJgQ9AFotIUE7tFOyWN5p0bCmlRDSmwst5SrWA8lDSCgm7c2YkkVWzt98BuJdx9YLLdw2FqJKKoCLhsJd/HgNtupPMyDHP+cm5RC0gv2aCpQxuDbvS48yn7UqnyOKwVF5hCCByeDANAQYAUTWWQzuaMlNegKWW3U5mNasHI66/ejLdcvxVuUwlKuzeL56IpIxU3obuupipkfx2bieKiYX9B+rWZcFJFOpPDI6cWcHI2unqDbhAZkAZctlVPv5T9uLfqxpqNrhdlqq/DamkoZddlt8LtsJaU0HhlQNoFabtyA8vvsrd8LZssqCHtnM2jbmBNBqTTEaXEzEgiFdLGU3a1i4jZZXcooO3Myl3PTmU8lMTWAW13rpus5SURJYNNvR68YOcgfvT0VEnaFtOZRJJqSbouIGtIO3/yYximMWYjCr780Bkcn4mi12PH7163BTdeNAiX3VpUQ7q8QjodUYwNYbO7q1zYS5fdvELauZtdc3pAOuR3gohwgT4vA603aSnmA3c+jT++Yx+AvBpkTm2VxFMZjC0mcdE6LSCNKGrJnGxWAW9/tHzabzuRf1fAbV91U6OokoHDasH6oNbyrNFepOlsDnarBQ6btW6FLqVm4bRZ4LHbSuZkqZDGuqCMRl4v/C5bQ2vZ/374DP7wq4839NpsatQ4azIgnQkrWFfBzMBmkaZGK03ZzX+Zh/XXmg43buW92iTSGSzG08bEt5I+rO0inFQRcNtwy7PWYzKsYP94adru7Y+excEytzPtI5xUS3ZjAa0HGiukDHN+cngyjJd89kF87O4j+N5TE9jc78UbrtmMr7z5GgDaHBpOqkbKLaAFBpUC0sMTed+DyYKAVJt3+71dlLIb0Tavh/zamLcN5gPSdqfsHhhfwpR+fpN6+mYqU6qQSpOeC4f9CLjtEAIlLq1SCfY4rHjsbGg1h90QUmkLuLTP3Wqe+1hKhc9lMzZOGlVIZcqu01a/QqpksnDZrfC5bAXGnIApIG2xQtpIUCc3EnxOW0Nr2cfPLuJnR2cbyqJImlKa2dSoPtZcQBpLZRBPZysHpFbZ9qXxlF2bhYwvL6D1VCTSdnA7FWnPLgPSbkw1iOiBzQt3DQEAHjuzWHB/PJXBR+46jK/9qvN2YtuBombxrSfG2r7jHlEyBQ24JQGXHelM55uBMQxTP9/fP4mYksHlI0HkBLClr9AZt0cPPmOpDB44PocdQz6sC7iQFeXnpiNTWkDqcVgL2o3MFymkbocVTpvF6HHaicxGU7BZyAietw3m/S7ambI7G1UwF00hlEhDCGGoQeWUONnr/aJ1fkNtK/YEkO/N9kFfR/oFyPRLOT+tZoARUzLwOW3wO21wWC3GuVmO4zNRHJvOpzunMjk4rFoNaT3BXDYnoGYFXDYr/uqWXfjLl15ccL/P1fqA9Ox8HLs//BMcnarPZDOpZmGzEJx2a0Nr2UXdYKoRLxJWSBtnzQWk07pj3XBFhVQPSFdgahT0OArq4exWCwZ8TmPXsxORNTeyoL4bFdKIoqV+Bj0OBD12jC0WGmUcnowgJ4CZSOcq1a3kjr2jeP//HcSPD023dRyRpFrQ70xiLGJYJWWYruT2R8/i8bOLZe+bi6YwFHAaC19ZOyeR14SJpST2nlnACy8egpUqK4RHJiO4YMCLrf3ewpTdeKFCCmgqaSjewQppNIUBn9MwldmuK6Reh7WtG4hHp7TAR810wpvCAAAgAElEQVRqGwXxVLWANAaX3YLNfR7jvSyuI5WpydsGvR15nc/XkGrjb2ZAms0J3PCp+/G9pyYAaIGez6l5KfT7HDWbGr3on3+JF//LL43fpULqqFMhlSq3027BVVt68eyRYMH9Xkfra0hPzsagZgXOzseXf7AJRdWUXnsDTsMAEIprn8WnRlcWkK52mvf5xpoLSI1UmICz7P1EBKuFGg7IlhJqgaGRZDjg6miFVDrsXjCgLQq6TSFNZbJQ1BwC+i7epl53ifOfTNWd6eD3oZXcuW8cAPAd/f92oZkalash1d5LriNlmO4jmxP427uP4isPny17/1w0hUG/E9de0IfPvO7Z+J3rthTcL4OYHxyYhJoVeOGudbBaLBVrwg6OL+GSDQFs7HUXKKSLutLUV9SKrZNrSGf1YF2yZ2sfdg75cMnGnrYqpEcm80pVKK4iqVZO2T0+E8WF6/ywWKhiQDofS8FuJWzu8yCWynSc74OSydeQAs0NMOLpDM4tJPD0hGbEFVUyhgq5uc+DM3UGYfLcpnWF1GGz1DVemebqqtD7NJ+y27qMJbmZVJzqvRyKmoPLboHNSg3VkC4m6lNIF+NpvPN/9+G7T40jnsoY/WM5Zbc+1lxAKoPCSgopoKmkjZr6hBLpAkMjybqA01BnO5HxJa1f2PoeraC+20yNpGW6nPhGej0YCxUqpAfHtQs/B6TAM9MRHJ6MYGPQjV8en2ureh9JZsqbGlVYxDAMk4eIRojofiI6SkSHiehdpvv+hIiO6bd/spXjGltMIJ3N4XSFhfVcNIVBn2ba8+orN5WU0cjv//eemkTQY8eVm4OwWQi5Mim7sxEFk2EFl48EsTHoxsRSEkJ/3EI8jYDLZiwSAU0h7WiX3Yhi1I8CmuvwT//sBmzt97S1htScOrmYSOdTdsuYGp2ei2G7nmpcTSHt9zrRU6HGtN0YCukqBKQyHVgqobFUxuj7uWt9AMemo3UF6PtGtRrcRl125aaCy24te7+RsttCJVumLddrpJRMZzSF1GqBWqe4JIQwsif2jy0Z15FqPHZmET88OIX3fPMAvvjQGXgdVtgaVGfXMms2IK1UQwpoKbaNp+yqBYZGknUBV0cHQuOhJDb2uo1Ju9u+SHKikxPHSJ8H46FkwQVd7kSGEmrZHd21xD2HZkAE/OsbLkdOAD84ONWWcaQzOSTVrKGGmpGqaSemcjFMB5EB8F4hxC4A1wF4JxHtJqKbALwCwGVCiEsA/FMrB3VqTjO1ObcQL7uom49pCmklgm5tY3diKYk9W/pgs1pgsVDZuVkqGVds1gLSWCqDiL6InY9p6a9mer12QwXpRLRzU7pGsVosbc1eOjIVMd6zUDwfkCpF82k6k8NURMFIr7bBLYPrEzOxgsfJz0ClGlNJLUHBamBu+wI0V/GSqa/SvCiWyiukFw37EUtlClLPK+HXn/Okbgql6i67dmuDCmmFgNTr1G6Pp1uokOrnpp404dGFBO49MoNLNgS0tXyd35doKoNMTmDHkA/hpIqzRT2SyyEN0uR74XHYtPPPCmldrLmAdDaSgt9pM3oqlcNqoRWYGqXLBqTDARdCCbVjDVqmlpJY3+My+rB2W0AqJzIZxGzqdSOdyRm7j+GkijPzcWzR65Rm13gd6UI8hR63HVdt6cOOIR9+cWy2LeOQwaa/TMpuj1um7HJAyjCVEEJMCSH26T9HARwFsBHAHwH4ByFESr+vpV/yk7rLaiKdNdxUJWo2h8VEumpA2mOaR6/cotWz2SxUViHcP7YEm4VwyYYebNKDoNN6QLwQSxuGRpIBnxPz0c6cAzLZHBbi6QKFVGK3ErJt9HcYDyVwhV5buBhPI6EHCsUK6VQ4CSGATbpRVb/Piet39ONbT4wVbBLPRVMY8Dmqbj4eHF/Crg//pMQTohUk0kUKaRMDjESxQqqbGgHAxcN+AKjNzEc/nbJW21BI66whlWtTZ4WUXafNCofV0lJTI5myW89rfviuQ7AS4SO3XtKQSinV0eftGABQ23sgTZBetHsYgHYOHbb2bh51I2suIJ0OK1hXoQepxG4lqA0opEIIhBJq+ZRd/TU7NRCaiaQwHHDlXYY7rJZjOeRuuHTDG+nVJkKZtiuL4l+wcxBAZzset4KokjF28268cBB7Ty8ikW59upRMWyq3QZRfpHRWGhfDdCpEtBXAFQD2ArgQwPOJaC8RPUBEV1d4ztuI6AkiemJubq5pY5EKKQCcnitM212MpyEEqgekpjT+Kzf3AtA2i8sFpAfGl3Dxej9cdiuu3dYPh9WC7++fBKAtas2GRoCm2EWUTEduEM/HtHNTzufCWkEhbgWKqvk0SMffUCJt9CEtNjUaW9SUPTkPA8AbrtmMiaUkHjw5b9yWV0gr+wU8MxWFoubwVAOOpyvl6Ykw1ve4jDXdaiikMi01alJIL1znBxHwjMk9txxCCMT1efvA+BJSmSzSDbZ9ke9hJYUU0FTSVvYhXTCdm1oQQuCxM4t49ZUbsSHo1lJ26wxIZXB53bY+2CyEw5Phmp7jdVjxggu1IPbsQrxuhZpZiwFpRMG6CoZGEpvFgmwDOxtJNYt0JodgmYDU6EXagYFQLicwG1UwZA5Iu+yLVKyQjvRpu+RyYpTp0tI5rpPTp1tBVMnA59TO1U0XDyGdzeGRkwstH0dSX9C4y0yCy6VxMQyTh4h8AL4D4N1CiAgAG4BeaGm87wPwLTLbv+sIIb4ghNgjhNgzODjYtPGcnI0ZauXZhcKAVLqrDvoqz8VehxVWi2YyeNmmHgDlA1IhBA6OhXG5fm3v8zrwokvW4btPTUBRs2UVUhkIz3WQSjq2mMCBsSUjTbOcz8VK/C1WikxLHOlzw2YhLMbTxoZicQmM3AiW8zCgqUc9bjt+eFDbKMjlBOZjaQz4nFUV0nldJTsxUz04azZCCOw9vYDrtvXnTWqyzdvAkArpYjwFRV87yvPgddqwpc+DZ6arq3OpTA45AezZ0gtFzeHJsyHD1KjegEi+l0575bDA67S11GXXrB7XQjSVQSKdxYag9rmzWevfwJGf8+EeN3YM+XB4MoJ3feMpfH//RMXnLMbT6PU6cO0F/QCAnAAcVuKU3TpZUwGpEAKn52LY3Oet+jirheouhAZguPaVddnt6dyANJRIQ80KrAs4TSm73aaQaude7qpvDGo7s9I9eEZfeMiFTScbTLWCqKIaBgp7tvbC47Dilyeap47UipyU3Y7SS5HLboXDZuEaUoZZBiKyQwtG7xBC3KnfPA7gTqHxGIAcgIFWjEcIgVNzcTx/5yAcVktJ2wYZCA5UUUiJCEG3HbvW++HRW06US9lNqllEUxlsMqlxv33NZoSTKn5yaBqLiTT6fcUKqZ6xtIKANKKo+O5T401xhg3F03j9fz6Kt9/+pKEsbzf1HpXYrJa2mRrJVhj9Xgd6vQ5NIa3Qh3RsMQGbhQyTRABw2Cy4aNhvqOVLSRXZnMCg32nM23Lz8YcHp4w5WrokH1tGLWw2p+ZimI+lcd22Pjis0jW1eedeKps5ASMd2dy//uLhAA6Mhau+3zI4vHnXEGwWwi9PzBsKqZYyWkdAqjsmy+9aOXxOW0uNpxbi+fraasga4xnZ1lFfbzdSQ7qof877PA7sXh/AI6cW8P39k/iL7xys8pw0+r0O43WtFqr7/DNrLCAdDyURUTK4dGOg6uPsDVpFy9zzcgqpNFXoxLoV2ZdzOOCCxbKytjftotjUyO2wYsDnzCukYQVWC2H7oA9Om2VFC5HzgVgqn7LrtFmxc8hXU/F+s5G7sm57+Ukw4LJz2xeGqYKuen4JwFEhxGdMd30PwM36Yy4E4AAwX3qE5rMQTyOcVLFzyIct/Z4Sp91aFFIA+PXd6/CaKzcZv1vKBKTy+mBO8ZVpuw+dnIcQWhBlphkK6V37J/Gebx7APYdX3sf5A3c+jcmwgumIgsfPLMJhtRjqshlbG+dmqRwFPQ70eRxaDak0NVKLFdIkNgTdsFoKBfktfR6c04MvY1OiQCHNIKKoeOf/7sN/P3IGQD4oOTFbaIi02vzqtFaTWaiQNr+GFIAx95oD0lufvQETS0n84MDksscY8rtw1ZZe/PL4XL7tS52mOvJYHkfllF1fCxXSXE4Y6bPVAtLP3X8St/zrQwBKu2jYrY3XkPZ67di9IWCcQ6l+lkMqpADwsz+7AQ+878aG0oXXOmsqID2ku6xeuqGn6uMa3YVcqqKQysV/K9MdamUmKnuzal/idqYFNUokmYHDaikoyB/pcxupQzMRBYM+J6wWwnCPixVSU88zQDOdWKixEXczkQsZd4VJMOC2sULKMNW5HsAbAdxMRPv1f7cA+DKAbUR0CMA3APy+aJFdqby+bux1Y+uAF+eKU3b1a021GlIA+IffvAxvuv4C4/dyAVm4qFwD0BSKTb1uw323OGV3yAhIG58HZGrtZ39+YkUq6cnZGH5yeBrP2aYteO85PI2tAx7YrKXLM6uFkBNoS79OGZD2ehzo9doRiquG70Aqkytwwh1bTBSk60q29HswF00hkc4Y2Usbgm5jLookVUNBlf/LgPTsQnzVa37DSRUvv+1BHJuO4vGzixgOuLC5z2OsK5pqamRaC8oMAvOc/NJLh3HxsB//8rPjFdejUmXV6hcHcWQqgpzQlMF6TY2MbKUqNaQ+lw2TS0l8f//Eqjsfh3UFHaiesntwfAlHpyJIprPGdUcqlTZL/R0zFhNp2K0En9OG3Rvy4pXdWlLtkH9OPG30Od4x5MOmXk/d559ZawHpZBhWC+Ei3cGsErU6c0UUFb//5cfwx3c8if1jS/kLtrdUIbVbLXDZLR3XZwvIpznI2lptZ6fLAlJFRcBtg7lEalOv1voF0FJ25d+3zu/qyNTpVmJWSAFgwOcwDARaSbUaUkAqpByQMkwlhBAPCSFICHGZEOJy/d+PhBBpIcTvCiEuFUJcKYS4r1VjkkFEv9eBjUE3ppYKr7dz0RT8LltVA5VyWEgLyMyLYblhJY1xJJv6PIbTb7GpUb/PCQutTCGVi99npqN4+FTjwvMde8/BbiV87BWXANBUwnLpuoA2NwPtMR00lyT1eR0FfUiFKCzzGQ8lCgyNJJv7tXKp0cWEMTeP9GlKqt9l093wtfcs75KcgtVCECLv3LxanJyN4tBEBE+eC2E8lMQFA14QkXHem2pqVKCQagGp36SQWiyEN1+/FWcXEiU12MYxUrqq6bTh1ss2GAqr026BV0+vrTVwTNagkOaEpua+6xv7caZCf+FmIR127VaqqpDK7+HoYsLwBpFtHW1WglrnexaKp9HrcYCIcMVIL172rPXocduNtYpEUbNGwLwYT6OvKDNSq+Fd+fdUUbNta3vUatZUQHp4MoKdQ75lJ8FaC6Hv2j+JB47P4WdHZvHfD58xGm2Xa/sCAD6nHdEOdAyVKbuyrkb7+7trZyeSVAt2yAFgpNeNyaUksjmBmbBiKMAjfZ6Smqa1hBACUUU1TI0AXSGNp1p+4VsuTcjvsrHLLsN0GYv6YrLP68D6HheiqQyipkyHuWV6kFbCpqeAmhUjuWFlTtkFgM0mhW6gSCG1Wgh9XueKSjcml5LYNqgFWKcaDJQUNYvvPDmOl1y6HjvX+Q3ltlJAai3z97eKJVNJUq/HgZDJ1AjIGxstJdKYj6Ux0lcakG7Rbzu3kMDYYgIuu8VI2w647IgoKs7oyujoYgKZbA6L8bTh/fCxHxzBo6dWz3xP1g/Ox1JYiKWMGufVMTUyKaQLpQopkPfCqFTqlTAppJv7PXj4L27GR2/djVddsRG9HofR57u28ci5uHINqfl7tNqGYNJ9eKTPUz0gjeQD0umIgqDHbqzx7VZL3X4wZrXT7bDic79zJZ61safgsw4AL/z0A/jig6eRTGeRVLPoK7rGaCnTK/u8xFIZXPPxn+F7VQyVzifWTEAqhMChiTAuWSZdF9Bk/loU0jv3jePCdT5cu60Pp+ZimAorsFmobNsXQFtct7KHU63MRBX0ex3GRdfW5ubbjRBRMvAXLUhG+jzI5ASmwknMRPPuyhcN+zAbTRkbCGuNVCYHNSsKFNJ+rwNqVrS8XlNOlhWbcTtsBalNDMN0PjLbot/rzBv6mcok5qKpZetHy2Et05asXMouAGw2BUTFpkaAlra7IoU0omDX+gCsFjJSkOtlJqIgomTwgp2a19TF67UUwe1D5Y0XZUDeiOniSgklVHgdmtFcn25qZF7PSGMjWVMr+ziakX3ARxcSGAslsKnXY2Q1BdyaX8ApfbNYzQqMhZJYiKVx9dY+vPG6LTg2E8U/3Xts1f5GuZEyF03pDsDaWk6ujdRmmhqlsvA7bbBaCGfnS2tIAWDAr73+fIXsJUMh1YPIHo8db7r+AqwLuIzSMalsL0cynQER4KrisvvBl+3GZ3/rcgD5LIjVQl5DtvR5Kqbsqtmcsal0biGO6XCqwJ26kfKzUCJdsoZ32a1ImnrtKmoWE0tJ7D2ziEV9HVmskDajD+mJmSgiSgZPnA2t6DjdwpoJSJcSKuZjaexaXz1dF6jcfNvMmfk49o0u4dVXbsKOIR9OzcZxeDKCHUM+I72jGJ/ThlgH1sPNRvLqISBNnbpLIQ0n1ZIdcmkKcWoujqWEalyodq7TPgPHZ1prktApyEVEYcqubroVb20dqZKuXkPqcVgLzB8Yhul8FuNp2CyEgNtmtGCYNAWk89HGFFKrHrzkRKlCGihRSLXgx0JA0F2atTTob1whFUJgKqxgU9CNAZ+j4cBWBhTyWizXJ5UUUkMhbsOG8VIibRg2DvicyIm8iz2QD0jvOjCJLf0eQ9U0E/Q40OO249xiHOOhZIFxU8BlMxRSGUwdHF9COpvDgM+Bv33lpXjjdVuwf2xp1XwFZJA1HkoglsoY86J02U011dQoA6/Thn6vw6hHLlZIjXm5woaHoZA6S+dP+V6FagwcE+ks3HYrynSGMujzOvCc7Vqt82p7TsiU3S39XqSzuZLWQoC2cSAvBTJld13BWlarIa018yubExhdTJS4f7sd1oL6ZekX88xUxHCB7vMWp+zWb6hUjExRN/d0Pp9ZMwGpNO4x25BXwlaDy65MG3nppcPYPuhDUs1i75kFXFylPtXn7FCFNJIq6M3aSO+mdhOKp9HnKU7Z1RYkT57Tdpdk0H2REZC21ka+U5Bp4+bdWGn60eo60uWMFNwOa80pRwzDdAbSdZKIjI3AKX3RDegKaSMBqaWcQqpdzwJFi3nZBqbP64TFUrrIXolCuhBPI53JYbjHhcEVHEcGFFLhetHuYVxzQR8uXFd+HWHVA6P2KKRp9Hq1OVYGkvOxNOSpVdQsZqMKHj21gN949oaKgc2Wfo+RsmuuMw247QgnVJyZj+Omi4cAAI+f1ZxuZQ3w83YOIJsT2Ks74Dab4hYzUsV3rIapUToLj9Na8D3wOwvXML0eByxUOSCNV0mzlUH9Uo0KaULNVq0flUglsJJq2ywOjIUR9NgNVV1u3pgxe4HIlN3hInEFqL3m+oHjs5iJpPCSS4YLbnfbLQUpu0tJ7W+fDCs4rdc8lwakKzc1OjknA9K1UWK2ZgLSvPvW8pNgLXnn0sBoXcCFHUPabqai5rBrfeWWMn6XrSNrSKcjCtb5TV/iGlOWO4mQyXZbsiHoBhHw5Dlt8pI7Z+t7XPA7bTg+E8VUOFlyrPMdmf7iN6W4yQm/1U67STULh81S0h5A4nXaCmptGIbpfBb0vnyA5nhJBEzpc3AyrfUNHWgkZVe/TphdZiOKlkpa7Eq7WV/IFtePSgb9TszHUoYRSj3I9cT6HjeG/K6GU3blBrVX3xy8aksvvvX251QsYbC3sYY0lFCNVEZzfahU4lJqDo+fCSEntHY9ldg24MWBsSVElEyBE2/AZceJ2SiSahZXbu5Fr8dupCrK+rwrNgfhtlvx0Cr1zJZtRqSaL1NmV8VlN52F12HDW5+/zbitOF1W1jpXVEhTlRVSuR5arLE0KZnOVsxUMmOzWtDrsRsK5moghMCDJ+Zw/Y4BIxW/XNqu/B5eMODF6bk45mMprOsxpezKDZwa17Nf+9UoBv1OvOiSws+v2164MW4O8qU4VRyQOmyWFbcJkrXpc9GUUZpwPrNmAtLZIuOealhrSNkNxdNw261w2a0F6TXVAlJfBwakQmi9nuSFF9CdybooIE1ncoimMmVz+IcDLuw7p1n/SxWYiLBznQ937pvAcz5xn7ELu1aQ5iJmhTRfq9LilF01W9Vm3m23QlFzbWsGzzBM/ZiNQexWzbhGbv7N19jypRy2MgppJKmWpOsCWoAT9NhLWr5INuseA9f+/c/rngMmdbV3Q9CFQd9KFFJtkVsuoCiHoRC3OWXXnGorlbhUJotzi5qSs61CyjEAvPKKjYZR3SaTQup32SDf1ouH/bhwnR/H9CymAX3D1Gmz4tptfXh4lYyNiusi5abJqrjspjLwOKx45RUb8ZFbd+PWCqqylhKext7TCwUp0oCmkBIBLlu5lF2pkNaaspuBp0I/8GK0NnGrp5Aem4liNprCDTsHjc2aaKo0IJMB6TVb+zC6mIAQhZ9No+a6hu9LOKni/mOzeO1Vm0rK7lyOygHpI5UC0ib0IT05GzPWaWshbXfFASkRjRDR/UR0lIgOE9G7mjGwZiN3QYcCy0+CtZj6aLuF2hd+wOcw0oWqKqQdmLIbS2WQzYmC+ku71dJVfUgNd+My7XZGej1IqlkMB1zY2p83irhwnd94L1bTta8TiZapIW1VGk4xiXSmapqQvI/Tdgs5NRfDwycbbzXBMKuJOSAFtKwUqZDKus3GUna1JUu2yNSo2D9A8uLdw3ju9lJzHQB4zVWb8G+/fQUAVG1h8dVHzuLltz1YoMpOmfodakpruqHeoLIvubeKs6kZW50piM1k0VQW43HYDOVZqqapTA7n5hMY8DlKzHnMvGDnILbr7sTmlF2ZFvsHz7sAV23pxW9eucmoDzQ7mO5eH8DZ+fiqbFIuVghIrRaCy24x+n42g0Q6awRbb77+Atz2hivKPk6rdVbw5q88jv984HThMVIZeOzWsinpQbesIa0xZbdGhRRY/TZxDx7X5rbnXzhgrFPKKqQRBU6bBc8eCQIAnru9H7detsG432iTVENgOBFKQgjg0o2ltc9uuxXpTH5jXNatW0hLFe73OkpM1Vbah1RRsxhdTBjp6406eXcTzVBIMwDeK4TYBeA6AO8kot1NOG5TmYkq6PXY4Syzk1RMLaY+5t1CIsL2IR8GfM6qk6xPd9ntpJ5C4TKW+TarBWoXKVLSRa5YIQWAnet88Dtt+O83X12QBnXTxUPYvT6AkT439o2uDQczSVQpDUhbkYZTjqSaq6qQyoCU03YLeeGnH8DvfHFvu4fBMGVZiKWMlF1AS22VQZxUExty2dVXLNmilN3ixaDkH19zGd55046y99msFrzgwkEAQLhKnd339k/g0EQER6Yixm1TYQV2K2HAq8352ZyoOTXSTLwoZXc5bEZA3toMpkw2h4iSMdY8QF7dDJoD0sV4gbtxOSwWwjtv2oEetx0XDOY3id/03K345GsuwwdftgtEhFufvcFYl5g/S2b3/GazGM/XxAIoUNeDbkdTnfnjy2zGSgZ9ThyZjCCRzpaYOcXTWXgqfHYcNgv8TptRXrYcyXRtNaSAppCupgHi3jOL2Dboxfoet7G5UW4zYCqsYLjHhZdeOoy/vmUXvvymqwuC6nr69k5HtM/TcE9pFqVcoxitjfQa0ut3DGBdwIn/+YNrSjYF7NbGXHY/etdhfObeYzi7EEdOADddNAiH1bIm6khXHJAKIaaEEPv0n6MAjgLYuNLjNpvpcKrAfasaNaXsmgr8AeDtL9iO9734wqrP8TntyOYEFLVz0mHLBaR2S3e57MpdTfP7Ifnrl+3CfX9+Y4ly/eJLhvGjdz0f128fwFOjSw3tbncr0unZX7SIW+00nHIk09mqfYGlWUNxD7BOYGIpib/+7tNNSW//6ZEZnKvQ/LyYZ6Yjyz+IYdqEqgcvfd58wLk+6MLUUhJCCCNld6hJCmkkmUHAXVtAV4xsu1Fp0R5VVBwcDwMAHjier1ucjSoY8rtgsZCxCd1I2m58mT7MxZRLWW4Fcp3QazIOlHWk8jZFzWJ0IYEt/eVb1ph59ZWb8NSHfr1ASd0QdON1e0aMtFW3w4o3PXcrNvd5CuYImZI5triygHQ6rOD3vvwYDowtGbctxFPYOqCN3++yFQgYQY+9ZoOgWkikagsAB/xO4/0uNvZJpDPwVjlG0GuvI2W39oB0wOuo2BvVTFRR8ZHvH6p7Q3l0MW6UwknnYbmRHk9lcNvPT0BRs5gJayZGvV4H3vqCbSVrCZlRUMscPR3W/p7hMnGCDHLlOmQpocJqIXzhjXvw4PtvLttO0m61QK1TIX345Dy+8shZfG3vKJ7WrzuXbOjB5n4PzsyzQloXRLQVwBUASrbuiehtRPQEET0xN7c6BenVmI0qNQektZkaqQW9il5y6TBef/Xmqs/xG1+szilODpexzK/FZbiTkIuJ4hx+QAtoqqnWV27uRTip4vR8HF9/bBQ3fup+fOXhMwUW3+cbsQpGCP1eR8trSJNqbSm75Rz22s09h6Zxx95RjC4mln9wFT597zG89X+ewGd+erymx3997+iKXo9hVhPZZsKcZrm+x4V4OouIksFcNAWi8tfr5SinkIYr1JDWAhEh6LZjqYJhyONnF5HNCbjsloKANKpkjPl8RQFpKgObhQzTnOVoVw2pbJFmbocxogeG8n2MJFVMRRTDFXU5yqWZFvPuX9uJ+957Q8FtMs13LNT4dTeqqPi9L+/FL4/P4edHZwBowZ2i5gwX/mIFv+kBaTpT1h23GLMpV7yo5CueysJd5Ri9HkftfUjV6scy0+9zIqJklk1JfezMIr766Dmj00EtCCEKWgLJTQu5bvnFsTl8+hhDZEoAACAASURBVKfHcdeBSRyeDBumouUwXHaLvi+HJsIlmYrT4SQsVL6UQAa6snRoKaki6LbDrfflLYfDZqm7TdDf3n0ERJrI8pVHzmLA58DOIR/W97gwE2nt2qwdNC0gJSIfgO8AeLcQomQLXwjxBSHEHiHEnsHBwWa9bM1o/Ylq25GtpZluuea5y2EEpB1URxopp5DWEJB3ElIhLZeyuxxXbtFqD/aNhnD/M7MYXUzgoz84ghs+df95q0RFlQwcNktJ+vqAz9nyGtLlnP2MnUm1c74zEhmIrmTz4vRcDLfddxIAYKnS/83Mz5+Z1R+Pjkr/ZxggbwxTnLILaKrUnJ7OW+yKWwtSIc3UmLJbC1qgUf669/DJBThtFvz2NVuw71zI2EyOKmo+IPU1HpBKVapa70cz9aQgNpPb7juBAZ8DN+v1bIBJIdXf55NzMQiBmgPSWiCiks+JdM8fDzWukD50Yh7HZ2KwWsgItmV2kGy5U+wCHXQ7jFTNlSKE0GtIa1BITeMoVhqXVUg9tacZa6ZGtabs6g6+y/Q4lcFwPWaeoYSKRDprbDwYAal+DGns9M8/PY54OlvwmSxGpribFdKD40t4+W0PlZRqTUcUDPicJYZGQD5lV8714YSKHk/1a45DNwetdY7OZHN4ZjqKV12uJZgenozgeTsGjCyMRo3TuommBKREZIcWjN4hhLizGcdsJtmcwFy09pTd5fpwZnMC4aRakL5SC8VfrE6gbA1pDQF5JyF35IMNBKTbBrQa06fHwzg5G8OLdg/j62+9DlElgzt+dX4qUdFUpqRnHwBsHfBgdDFRk4Kfyeaa0iImqeZqStlNdGDKbj4gbXzz5rSpLqQWi/hMNmfU4uVEe8xNGKYaxgahKSDdENTm3slwEnPRVEMtX4B8yqpUSHM5gVgqU9HUqBa0RXv5a96T50K4fCSIGy4aRCYn8PSElkYXS2WMkgdDIW3gehhPZWquHwXyCmkra0j3nl7AI6cW8Mc37ihQ9LboAanceDihB3ab+5ZP2V0JDpsF6wMujK8gM0Vea7cPenFiNorFeBpP6O3hjIDUX7ieaKZCms7mkMmJGhXS/HclXjQPVqshBbR06lprmxOp2k2NZJu45TKqZDAcqaNlyZj+vkqF1OOwwkL5oFZuREyFFbjsFly/o7xpGZBXSM21nHLMxZlNU2EF68vUjwL5gDSZ1j43S8k0gstccxw2C0Qdc7Siq80Xr/cbacPP26mJd0N+F2ajynm/Ad0Ml10C8CUAR4UQn1n5kJrPQiyFnEDtAanFUrWGMpJUIUT9AVBx6kEnEJFNxYtNjbqphjSRht9pq5g6UQ2LhbB7QwBPjYVwbjGBnet8eM72fly/YwD3PTN7Xl4AokqmrAvi9TtqazouhMDNn34AV/3dz1Y8lmSNLrudGJDKms/UChRSOSkOB1w1HWcmmkI2J7BNr3M6n1PLme6knEI6rCukU0sK5qKphhx2gXwWgQxIo0oGQqDhlF1AW7RXSmucDisY6fNgp54WKI1FzNdQr9MGj8OKiQYUu3i6voC0njYWzeL+Y3OwWwlvuKawJOnabf345G9eZihUx/UWLc1USCuxqc+zopRdueF+8XAAZxcSePc39+M93zwAIO+cbG5JAwA9Hi21uxlrgoReglJN3ZTI74qFSlN2E6nqCmmvx4GlGlx2hRBIqLUptkA+jbi4TU4xspyqHoVUBpzy/BMRgh6HcazxUMIwnrp++0DVDW2bkVGRX8/KoLJYcdSyKCsEpEVu/+Gkuuz6315nD1RZn+q2a62NAOB5erA95HdCzYqa06+7lWYopNcDeCOAm4lov/7vliYct25+fnQGL/3sgyWLtGm95UtdCmmVC778YpQz0alGcXF2JxBOqrAQ4DPt1NmXUYg7jaWEaqQNNcKlG3twaCKCbE4Y9Qg3XTSEiaUkTp6HVtsxRS0xNAK0elqX3YKHlmkn8qWHzhiB1Eon5+QyfUg71WU3lxMY0ydOJbOygNTrsGJD0FWT0ir7H27T3SlTTeyLxzDNYMDnwIsvWVcQdK7zO2EhrU5rLppqyGEXKFVIpetouYyPWgl6HAiXUZFyOc2AacjvxPoeF7wOq9F6IWaqIQW0zbwfHJys+zoVT2VrCkokMn21lX2ZnxoNYff6QIl6ZrUQXnf1iBFQj4eS8DltBRsRq8VIr2dFpkby/O1aH0A2J/BLU31wv9eBb7/9Ofh/Nxe6M/d6HEhnck1pQSYdY6upm5KL1vnxwZftwiuv2FgakKazVVXWoMeOaCqzbFCUzmotTWpRbAGthhTAsllSMoAqdgeuhkzJ3dSX7yfa53UYmRcTS0lcv2MAF63z47V7Rqoey26TQWH++yK/o8XlSdUU0pIa0oS6rEJqBKSZGhVS/dhOuxXvuGE7PnLrbsPxV8Yus1GlpmN1K81w2X1ICEFCiMuEEJfr/37UjMHVy1ceOYujUxE8Mx0tuF3uhNTq6mezVA/I5JesXoVU1rl0mqlRwG0vMBhYTiHuNBbj6RUGpHkHXunsdtPFWqrEfXq93vlEJYXUZbfi6q19VftbKmoW/3b/SeP3lQZEtbrsdppCOhtNGYYOqRWk7I6HEhjRXSRrUTulCiMbz7NCynQaz90+gP98456C+dFmtWDI78J4SA9Ia/RzKMYw9dEVj3IlJ/USdJdXSEOJNDI5gSG/02jtJjcoNVOj/Gu+44ZtWEqo+NbjY3W9dqJOhdTaYpfdTDaHpyfCuGJzb8XHmA2ZNvd5aq6HXQkjfW7MRBWjDUe9yPN38Xq/cdvHX3Up3nHDdmzu82DrgLekLlkGIM1I25XzWS39Zy0Wwh8+fxvW97iQSGcLNoE1hb26QgosP2azOlcLtZ6LhlJ2Qwn0uO0F57/PowWk0vBo55Af97znBXjJpcNVj2U3TMBMCqk+Z5oV0ngqg6iSwbplU3brqCHVvxepbG2fUflZdtmt2LU+gDdff4Fx35B+vTzfjY2a6rLbThZiKTxyagEAcGSy0IymXE1LNWxWS4HEX4z8ktVratSJKbvlmorbrNTSlKBqzEQUY8esEprBVOMLkkt1y26ifEC6vseNCwa82G+yhD9f0Oqfyk+Ez9sxgBOzsYo7n/cemcFSQsWv7dLStFbajiWpVrea9zgLJ4JOwdyiZaUKqWxrUEtwPyEV0gFWSJnuYrjHhQdPziOdzWHXcGD5J5RBBmQ5fVE+rddTDzSYAgxopjxJNQtFzeLug5N47ecfQS4nMCv7pfq1ReqOQS0gVdQs0tlcwTX0qi19uHwkiP/bN17Xa8dS1RWuYmxlFtiryfGZGBLpLK7YHKz4GKK8S3Ar0nUBbZ4WAtg/2tj8LGtwdw75YNEdn3/r6s34y5deXNH9N+hpfkBaa5sV7bE2ZHKiwGtgubrPEV1l/Mhdh6rOofWOR6bIh5cJNENxqZDWl7I7YlJHgbxCKg2PZH3pctis5RTS0oBUZlFWrCF15E2N1GwO0Rrq1h1lXrsaMkPKVab0TIppsxFWSLuCnxyeRjYnYLUQjkyFC+7Lp9jWFkDaLVpAVikdUe6m1hsEeTvU1Kj4i+VYJiBvFX939xE85xM/x+v/81dVH7cYTzfksCvZNuiDy27Bpl53wcV9pM9jpEiuNv/4k2fwlYfPtOS1okrGSB8vZkNQu9BXcs/7xmOjGOlz4+aL1wFYWTCmZnNQs6J6yq69M2tIzYYIjZoaCSFMAamlNoV0KYlejz3fjL6DehozTDU2BF3GIvCyTaV9+2rBVtT25Ky+MXRBDb0vKyHnv1AijU/fexyPnw1hNpoyAlKpTmwf8mE6omBGXxQWb+rtHPJhPlqfC2tiGYWrGNlXcbUV0oii4k++/hT+8s6DAIArRiorpEBeJd3cooD0hbuG4HfZcEeDLbBkyq7XYcNVW3rxqis2GpsdlehxS7Vx5U67ciMlWMca0lvUAi2rB6fV5s8bLxzC+158EX709DS+t3+i4uPk/FqrqZHVQgi4bMsHpEYNaT0pu0lsChZ+jnq9Wg2pzBDaWHNAqtdcF9SQlgakcp03HCh/XLcpZVeqvcum7Nr01y6zaXx6LoZc0XdYKrfl3oMhv0zZZYW0K3jk5AI29bpx1ZZeHC5RSFXYrVRzrYbcVal0zZeurvWmiWqtNiyskNbIjw9NIye0RXioSvF8aIUpu1YL4bpt/dizpa/g9o1BFyaWWrMj9d19E7j/WGv680YVFf4KaWLVVHxFzeLR0wt4xbM3GjupK1EulSoXYInNaoHDaunwgLSxsc3FUlDUHDb3e+CyWWsK7idCSWzsdcNp165RK9kQYJhWIlu/+F02bG0wgJTqVVbfLD4zH0eP276i67/MdLpz3wTOzGsB7lgoYagRUp2Q/gIya6Y4IO1x25ddoBcTT2XrNDVa/RpSNZvD6//zV/jx01M4OhXBoN9ZolgV49QX7I2+r/Xicdjwm1duwo8PTTXUO1sG9FYr4Vtvfw4++LJdyz5HeoZU6llbD786vQC33YpLNtS+MSPrTWUdqSwZKW7fZsZiIbzjhu2wWqhqplnSUEhr/yz2VGmXJJFqsjTPrIX5WKnpWb9X66c6WuTAuxx2/fti3rg1UnZNn5vbHz0Hr8OKXaYUbjMyII0kVWOdtlzJnnxOvKiu/NRcDC/8zAN44EThek+uI8qVMLkdVvhdNlZIu4W5aAqbet24ZEMAz0xFCy7YS3rP0FprG6yGk1159SGUSMNmoYqL+mr4XbaO60Na7FBos3SGy24kqRqpiSfnypsLKWoW8XS2oSbrZv7r9/bgU6+5rOC2DT1uzMdSq16np2ZzmIkqLTHuEUIUtCwoxmtMeqV/83goASG0hVlxkX8jJGvclXU7rB1najQeShrmHY0qpNLefqTPA6fdWrOp0cag21AkWCFlugWZDvesjT0V0yKXo9jU6OxCHFsHVhYESZXqvx48bWy0jS0mjAXrYFFA+pSeJupz2kuOk1SzddU1xpdxSS1mubVJM5gOKzg6FcEHbtmF+957I77+1muXXTsZKbt9rVFIAeB1e0agZgUeaGAjV35+bBYCEdW0Ngy6a6vHrIWHT87j6gv66uoMIDeL5eas/Jw5lzmG1UIY8jsxHa4cuMv5tZ4U4qDbUbNCWo+pUTYrDGVT0ut1IJsTODqliU3FCmolNva64XFY8fEfHTHmW/m3LsbTULM5PHZmEfcemcEf37SjYpDpcmjn+MsPn8Gff1tzY14uG2BIGhEV1X0emghDCC399ux83Oh3n0/ZLf8eDPmdrJB2CwvxFPq9TlyyoQdJNWuk8gB6SmcdAYt9mbSYUEJF0GNvqHg/4LIj3EHWzeUUUvsyLsOtIJsTiKYyuHKLlioke5wVI23HpQ15o9itlrINuIF8es1qMR1WIERr0lIT6SxyAhVTdmX6WDmFdOz/s/fmYY6c9bXweWvRrpZ636Zn3z22x/bY4wXjjcVmM0mAEALhCcklIXAhYSfLzU3y5ctCApcv5EL4QvbcJITFhAQwYGPAxgabGY/t8ez7TO/qRa1dVfXeP6reVyWpJFWVSmp1j87zzIPpbqlLrVLVe95zfufwOPZg2UyFW3CLSoMghbBP7DiFdHIpyxfCboM1WErkRK89yy6lFFeWshiLB/mGQFch7WKtgCmk122oPY/YCEJFqM+5uTTftHQL82zgG2/aAED/bM4m84j4Ja4aMVWGLYqtFFKg8Vwdg6pRY4be/sY2W5u0UiFlxz/RG8REXwjbh6xVIzPabdkF9N5sAJhxkTzKFVIHGyPsPFls0rI7m8zh1GwKt2/rd/Q4RhbZvZnlBzC3TD0M9wS41dwKGRtupUrEgnJdtThbUPkxOmmWUCmFWLG2Zpu/hy4uoicgoSdo7zPTF/bhX/7brZhN5vH5x88Zx1XazEmkCnjo2SuIBiS8wxQiVAmfKEAgeqhQNCDhx795H26sE/QFgHeJTlf83U8YoavpvIo//PoxvN+oGyoppNbvZ6P3cD1g3RBSPWlVxs5hfRfTTGCWDAJpF9wWU4OULWUKjhN2GQaj/qr+o9UCpbSGZXf1Z0jZnO3ukShCPpF3nFWChe+womYvwQjplRbPkbL5hXYE97CbWa1Qo0iFLciMyyZFj5FIt+ogYJ+QBn1ix4UaTS3nMB4PwicKrv8GbGHTH/bBL4kN1c5kVkGmoHYV0i7WJFjgzY11AnIagSmkmkaRK6qYXM41bRM138sfuHYUwz1+XF7MYG4lX5bM75dEDET8OGUk7VYmlTOnkd1EUabUWCWe10I7UnbZ8Tvpdg3IImSR8E2HdiDkkxD2iY7ndoESoa8kPvUQkEX4JQHLRhfpqRprkkZg4Zt3bBtw9LgwV0gNQlpsbNllGOkJVBEjM7IuQpZiofoW9aWs/r4EZdFRyq5GaZWDglnyD19cwrahiCMx6PqJOLYORrhCmi2W1jZzK3mcnklh13C0LhknhPB1yub+MFc/62Ew6gch+lrBDLaWzRQULGUKmFw21n91LLtAcwrpPz51AV94xlkC+GpgXRBSVaNYyhbRF/bz4V/zXMFCxplCajUIbUYzqa5DPQFXO3qtQLaoQtFoVbx5o1CndoBd6OIhH7ab4vYrkTC6pPqbVEitMN4mQsqev3LWoBVg4QK1FkHcsmtxLJcXs/BJAgYj/qoYdDdgqmegwU0w5JM6yrKraRTTyzmMxgPw2wwjsgKbq4kGJARkgXfB1cJ8umQhZDctt+psF120G/vGY3jo3Xfg5XuHXT+HmZBdSOgLTKaUuQW7l8eCMg5s6sWG3pA+Q7qSq5plG4sHeOBb5X3TqULKk00dhBqxbsNWOpjY8Ve+vnrwSwIm+kKOFEcvMBj1l80C2oUbhRTQ542XMgX8wX8ew8s/+X2uljvB8ekVyCLB3jFnSdOsIoaN09i17AJ6wvVMHacXPxdl+5sj8WB9tx9L2N3YF8JKXrGt6msaIFQQThZamS2q2G40ITjBeDzI11mZggr2ts+lcjgzl+J2/HpghNWuC0AWBQxE/FV/95OGWJYuqEjlVSxlisgrKvINCGlf2F83S6UefuehF/DhLz7n6rHtxLogpIuZAijVlQZGTMyEdDHtTNFkCmmti76uuLojQMNRP2aT+VUlewy1OtxWo3y7EubC8+1DEZyatd6NZO/zgMui9XoYjuk7XK1O2p00XShbDWadqbXYqBdqdGkxgw3xIASBcFtJMzOkOX4TbKyQpjtIIU2kCyioGsZiQaOuxd2xreSKCPtESKJgi2CyhXBvyNdVSLtYk9g/EW+qp1I0zZCyAKItTVp2g7KIkE/EPbsGIYkCJnqDumV3JV+lhIyY/n+ly4StCewSUuZCcaOQqi10MLF7b6OeRTPu3jWE110/1qpDqgndceZ8g18zGhmcnovxkIznLi/jb4xE/HqqYy3MJHMYigYck2E2TpOutOzaIKTDPQGs5BVL5xMAZI0NXzeW3VprWRZ4xAic3TBPlVJUTE+hzyQ4bLNBHiuhB1SW1llMyT85k0IiXbBFSNk92smc9GisXJnOFBQezJQ2vR9zK/nSDGkNy24sKCNdUJuaH59abk9rhFusC0Jq7hmVRQG9IZkTFY2pp04IKZ8h9V4hHe4JIFtUOyLYqDYhbW/5thWSpmPbMRTFTDJveaNnM6StUEj9kojBiL/lhJQl+bbTsltrhtQvCRAFYm3ZNRJeAXgTamRzbiXcYZZddlEfjQWM2U93N4hkrhQoxrrH6j2X+TrHbFpdhbSLqwnmUCOWGrqprzlCSgjBX//CAXzsVXrS6kRfCFPLWUwv5zAYqVRIS5bUymsou4/aDb1hSperHtKWWnbZpqX943rvfTvw6y/b2apDqomBiLsRKMUgpE6xeySK49OlzXEnVtT3/ethfOP5Kcwkcxip0XdZD+w84ZZdppA22NAFSoFiZnL043MLXHRIu7DsxkMyVI3W3Cxm9YiMwNn9W6la9Qypef2+zY1C2hvESk5BMldErqhiU38IhACPHpu1/ZyckDqYkx7uCZRlkJhHCdN5la/HZpL5uim7APjcrJN53Er86OyC68e2A+uCkHLbpmHLNV+kVnK6VcDZDGl515kZlFIsZoo8Kt4pWKdZJ8Q3s/SvSlsSi8pezaTdZdMcy1hcv5ha3XjmV/LGDrfzxGM7GO8NYrLF1S+M8Coa5VHurQK7mNXalSdEr0eyStm9tJDBhHFz8SLUiF2MG713nWbZZefDWDyIgOReIU1mFa5UO1FI+8I+vovazAxvF12sNTArn6pR7ihx0uNZC7dvH8CwoX5u6A1Co7oCdf1EeS0HW9gHZIHbZxmcWnbZWISTlF2pTZZdgZQsop2Mwagf88b67ycXFvBLf/c0FBvrFlXT+DrPCT7xpv146mP34eFffykA+5sPqkbx1Wcn8a0XZzCdzGG4x7mjiyukLGW36EwhBcDto987OYc3/dWT+IcnzwPQg3YGo35nM6R8A8baRrpYoZDaSdpl3ZyVM6RBn8jHhLYNOt+AYhtJk0tZZAoq4iEZt23tx4/P6wTNlmXX+P0TDhTSytldNnrmlwRkCgpfA82t5JBTVEgCqbquMDi9vpixw3h9T51NOH5sO7EuCClfqEVKhJRdpBYypUWcXfCLvoVCmimoKCia694zNuM6k1z9YCP2Qam8OPKU4VVM2uWW3aDMrVFW5cqJdKEl6ijDWDzYNssugJYTLxYWVSvUCNDJaqW9JpVXsJgp8qTJUqiRe0Jasg/XX/h0WqiRWSH1N62Q6q89YCMkqquQdnG1w9zDWVA0CARV6ejNYuewnir77nu2VdlQmbJVWfkClK5j9mdIDULqqIe0DQqp4dxwW83TTgxG/FjO6jN43z85j0eOz9qy0bpVSAWBYCQW4KTILiFl6uCFRBqzyTwniE4QlEUQAmRcWHZHKhTSvzUsx//w5AVoGsWhi4u4caMzO30sWN+izogqI3B2lD3WL2wVNqU7IIkjQsjA80AWs8gWVARlCT99o56oHZAF/v16CHKF1D4hHokFsJwt8vUL24Qa6vFjKVPkAsTsSh7ZglZTHQWaI6QMPzyT6IhxwVpYJ4RUJ3eMdA5E/dyyy3ZpnBBImXd9Vb9x/PlcW3Z18tcJ8c2znJCWXxzZDb5WqFM7wGxDsaDMOzOtLmjzqXxL5kcZ2DB8qz7ElFJMLmX5Lnmr50gZ0Y9aLKgYwn6pyrLL7HETvfrNgFt2C+7PkRVOjut/lkIdNkM6tZyDXxJ0pVIS3Yca5Yr8tZcUz/oKacgn8kRLgZQWJV10cTVANNWeFFWtpprQDPZPxPHER+/FB1+xq2qBzpQWq000SRQQ9Uu2F4zs+ueEkLZjhnQ5W3QUaLSaYO6u+VSBr/mYY64eVJeElEESBUQDku0KGFaPcnImhVRecUVIdfeShFRVqJG9lF1Av3edmUvhsRNz2Dfeg3PzaTz07BVcSGQa1phUgrkOawUbJXMK/EYIImDPsqvWUEgBfX2/qT/s6jM/blJIs0UVQZ+A+/eNICiL2DoQsbX5EvCJ8IlC2Rx5I1RWvzCRJxaUMWuafZ5J6gpprflR9hjAHSHVjPXrxYUMvnti1vHj24V1QUgTprAPQN81mzfsnYsV37MDc3BCJdiOmNtQI16W2wHVL9PJHOIhuWpXplMUUt02JPKboxUhTaQKTXeQ1sNYLIC8ovFzzGssZ4tIF1RsN3blW01IG82QAvoCqVIhZdH6bAEgCgQ+UWhqhjSZK0IWSd2LMKBbdjtJIZ1cymI0FgAhBAG5CUKaVfjCli0q6j3XoqlPmRACfxNkuIsu1iKYcqJoFHlFg8+GOuQUhBCMx4OWahGz7NZymPQ0SB41g42gVI7M1INUZ7PcKyQtquA6FWwzem4lz/+e8zVSdymleOHKMmaTOSgadWXZNSPeoPbEDKYWsvuqE1JjRsgnmmZI7feQBn0iegISJpey+PsfnodPFPC5tx3AcI8fv/vVowDAO9/tohFBWskpiAZkvn5L2lBIGXGy2iz4+YMb8Usvqd0VWg8DET98ooDLS1lkCgpCPgkRv4TffPUe/PKd9p6zP+zD1sGwo40MrkwbVmnmuowFZT4yB+jjc7miWndzIeawVsoMjQIP7BvBRF8Qn/rOKVBK8c0XpvH85WXHz9VKdP6QgA0spAuIBWW+czIQ9SFdUJEpKHyw2kmoEXseqxnKkkLqjgRF/Hp3VicopNPLecsLY6OU4XZgOavbhgghDSy7eVw7Hqv6ulcwzx60Qoll1QW7h6M4cmmp5ZbdlZyCkE+se1GNWCik7G9vXqgEmqg8Yc8ZDcgNbUIhn4iCqkFRNc/teW5wZSnLU/oCsoCFdPOhRn4bM6GJdHl9lV8WugppF1cV+GYx1RVSX5uvB8M9ARBSe0PPCUmZSeYQkAVH4UGEEIgCaWkCfjKn8FGCTgdXSFfynIhaEdIzcym8718P44UrSbz6ulFEfFLTFTXxoK/m/CTDd16cwR994xg+9MpdZV8fcjFDCuibxU+dTeAjX3wONxh9vnYsuwBwcGs/vvrsJDRK8ZrrRzEWD+KjD+zGb/zbEUgCcbyOYgrpUk1CWkRPQOLnkhOF1Mqy++ZbNjo6PjMEgWAsHsDlxSxyRY3bb9926ybbz/Gbr9rjeL3DlHCW8Fs0KaTmYNPZlTwifqluwGNPkwqpXxLwnnu24yNfeh7v/8IRPPTsFYzHg/juB+9uidPEDTrjKJrEQrrAA42A0q7Z/EqBK6TxsINQozops4zgurXsAvpJOtsBM6QzyZyldYS9/sIqhholTbYhRkgrh+I1jSKRav0MKdC66hcWAb57tE0KaU6pOz8K6OEJlaFG5plehqCvOYVuxcaxAKXkv0wHqIE/ODWHwxeXcMuWPgB6wqGbOU5KKVZy1aFGuTrPtVjRp9yMXbgSmYKyqiFmXbgHIWSCEPJdQsgxQshRQsj7Kr7/QUIIJYQMrNYxegWesqtqY37z/AAAIABJREFUKLRIIa0HWdQtiLVGHmJBJ4Q0bxBcZ8RIFEhLZ0jXomV3LpXnfaTzFZbdE9MreP1fPoHJJb1XdiWnQKWUb7y7RTwk1yRjDH/9+FmcmUvjxcnyvlK3CmnYL+J8IoN/e+YSzyGxY9kFgI89sBt5RUWmoOIXb9dVwdfvH8dtW/tx8+a+uvOLVmiUKs3u79GAjJBP5DVN9cCc6K2YXx6LB3HGCBVyUm/DMBj1O55f3dQfwmgsgH966gIopWWWXQa/JGAmmUO22DrLrqpRCITgjTdN4NXXjuIrh68gHpRxeTGLrxy64vj5WoV1Q0jNCzXmWWcXKZ8x22EXYp2UXbYj5tayC+i7Yx2hkCZzlhdGuU6oU7uQzCn8Axj2SSCk2rKbzBWhaBT9LZ4hBUrVLF6DEdJdIzohbbU1NZVXGvbeWVl22UyvmUAGZbEpy65dQspuHhmL5N92Ym4lj49+6XlsHQjjXXdvA6DfTNyEGmUKKlSNlkKNWEhRnb9nIlUoc3p4pZBSSvGKT34fL/mTR/Hw0emmn6+LtkMB8AFK6R4AtwJ4NyFkL6CTVQAvB3BxFY/PMwimUJ9WzZA2wm+/Zi/eUcM66ISQTidzGI46JyayQGwlybrFWrLsss3ouZU8Hysxp/FrGsVHv/wcZFHAV999Bzb1haCoWtMzpIDxXtexZ19ezOApo2bjxEx5j7qbGVKg/LUxt16jkReGrYMRfOiVu/DGmzbg2g26GkoIwd+942b87S/e7PhYgrI+U7mcLeKpswm86a+eLNsgXckVEQnoSvTBLX144vR8w+cshRo5PpyGGI8HcdYgxU7ShJuBLAp433078OylJXz7xRk++23OzdgyEDZ6SFW+DrBCQBbhkwRXll1K9WunIBD8+Zuux3+/dzu++K7bce14DJ9//JzzF9YirEtCyhXSVB5n59JG55D9M7weIVtMsxnS5hTSqeXVJaRFVcN8Ko9hiz6serU37YJu2dUX64JAEPFLVYSU7YS2coY0HpIRlEVcWWyRQprIYCDi5+dsO0KNIg12vyN+iafBmR9HCBAxVQEE5ObSb5M2d+LDFf1rq4FUXsFb//pHWEgX8Imf3c93kwMuFVKuOFeFGtVeaC5mCmXhbAFJ5NH/zSCRLuDyYhYzyTz+7OETTT9fF+0FpXSKUnrI+O8VAMcAjBvf/iSADwPo3GhFB2D3Jo1SFNT2K6QA8Lrrx7hDohKxYGPVjGE2mbO8/zZCWxTSNUJI/ZKIeEjGufk03xw15z185fAVHL64hN95zR5M9IUgiQSKSl2n7JrRG/LVfa8fOlxSnlj/ZMQvIeqXHAVZmWFuZ2Cv065CCgDvfOk2fPyN15d9zS+JjtVRQCez8ZCMhXQe3z85hx+fW8ALV0oziam8wp0Ed2wfwNn5NLeu1gKbIW2VQspSbYMuXq9bvOGmDegP+/DNo9MoahSySMoqlbYOhpFIF5DKKw3fh1hQtlWfUwldIdX/OyCL+MArdmHbYAS3bevH+US6Y5J31wUhna+wbZaS1/I4O59yXKRbj5AtZgqI+qWmdmZ3DkdxZSlrO/ygFZhbyYPS6soXoP4MbbtQSVZ6AtUfRJZS1sqUXUKI0UXqLSFdzhRx6OIiLi5ksKk/xC+QlUTQa6TySsOZJauU3ZWcgqhfKrtRBAyF9PFT867IomOFdBWDjR4/NY8TMyv45M9ej/0Tcf513Tbr/HPCy+eD9npIc0XdalU5Q1rP4msXzEq1ZSCMyRYmSnfRehBCNgO4AcCPCCGvA3CFUnqkwWPeSQh5hhDyzNzcXBuO0j1Ek0JaUGjbZ0gbIWZzhpRSqlt2HQQaMUii4GiG9FtHp/GqT/3A1sZZrqgir2hrRiEFgG2DEfzwTEl9mzepiEcuLyEakPD6/fr+jCwKKGoaVE1rfoY0JGMpU+DdmZX4yYVF7rA6n0gjGpCweSDken4UAD771htx185BAHrIHSGlEMrVwHhvEJcXs5xoHr64xL9nvr/fuUM/5idO1VdJeQ+pQxu73WNlaFVvvRUkUUAsKKOgGDkYglDWnbxlQK+RubSQsUVIl7NFx/dojVpvwAxEfMgrWpUjbrXQWVdzF1BUDYl0HoMm6wsjp1NLOVxMZLDVYZEuD/WxnCEtuO4gZdhnDI8fnbKfcFVUNXzgC0dwfDrZ+IdtgFmGLUON6szQtgvJXLltKBqoVkgvGoFAG130UjnBWDyIyWVvCenfPHEOb/jMD/HC5DI29oX4jmmrLbsrucaW3YhfQlGlZQuYpMWueVAWcXkxi7d+/kf4ux+ed3EsxYaVL0DJXtOMPbhZsM2PyiRCt8FO1Qpp/R5Scwcpg18SPFFIGSG9Y3s/0gXVVhpiF50HQkgEwJcA/Dp0G+9vAfgfjR5HKf0cpfQApfTA4OBgi4+yObBFlabpCqm8CgppPcSDPhRsLPBW8gqyRdWVdVMSiO1xGkXV8P9+/RhenEracvnY7YbuJOwZjXLlMOwTy0KNppdzPBEdMP52qj7L12zKbiwoQ6MoC6cxY2o5hz2jPfBLAjSqE9hfuG0z3n77Zte/8/59o3jPvdsB6PcEvyQ4nkH2Epv6Qri4kMFl49x69lIlIdXvbzuHIxiM+vHEmWpC+oWnL+F3HnoBgMmy2wKFdIOpazToa//suaJSFI3zzkyItw7ogtliptjQfh0Lyjg7l8Z1//Nb+P5J+5uHGqWW5wmfwe6A1g9gHRDS+VShSumTRQHbhyL42nOTUDSKrU4VUl57YpWyW2wq0AgArhnrAQAcvWKfXF5IpPGlQ5fx6UdPN/W7GWZqdJACJUK+mgpppW1IJ6TlO88XFjKQRcKj+FuF8XjAc4X00mJGv5nlFGzsC5WCezog1IgdiznYKJmrttcGfSIuJHQy85Pzi46PJekw1KhStfUClFJ86SeXLROczZhN5iEQoD9cvrsdkEUoGnU808XmQNjrb9RDakVIA7LomUIqiwQ3b9ZtiK0K8OqidSCEyNDJ6D9TSr8MYBuALQCOEELOA9gA4BAhZGT1jrJ5mGtfiooGf4cppNdP6JvN3ztRf7HIOsDdqGWMVNnBV5+dxHlj43a6IrdiIV3AL/7tj/HNF6b415i6u1YsuwCwZ7SH//fu0Z4yQjqTzGEkViIikiig6NEMKcsRqeV0m1zKYiwe4GuseNCHNx2YwC/ctrmp38vuh4uZgiO7biuwsS+EyaUszhubmocv6usAVaO6Zde4vxFCcN14DCemV6qe42vPTeKrz17hjwOsU3abxZiZkMrt3XCRRMLPO0kk5QqpSTBrpJD2BCQcn17BSl7BTy7YX3Np1PpvOhjRz80uIfUITLkYqggHeMn2AV6p4VQhZRaIomUPaaGpQCNAt5iOxgJ4YdK+QspCdb51dIYvTpvBpPF8VmTOJ63uDGleUZEramW7tNGAXKWQXkiksaE31PIqkLFYEPOpgqedj+ZQq419IWOns/Vzkiu5IiI1EiIZmFprJoBW5DEg6zu/AHD40pIjGwm7YdmZIWW7ia1Qj0/NpvCBfz9SNu9jhdmVHAYi/qpFDIvcdxouVJlaXOohtX6eRCsV0rk0JvpCPEFwymM3QBetBdG3vj8P4Bil9BMAQCl9nlI6RCndTCndDOAygBsppWs6tUoQCAjRrx+6Qrp66pAVDm7px0DEj/96frLuz00v6wtAVwqpA8vuN16Y5ptdlUGKRyeX8d0Tc/jVfzrEr39WaeqdDjMh3TUSxWKmyDfTp5ZzGDGRfsmYv9VTdputfWG1J9XrsXReQTKnYCQWwJChQjWTO2IGmz9MGArpamKiLwSNlirJJpdzmEnmuEPAvGbYMhDG+US6yuJ8aSGDZE5BQdFamrI7Gi991toVasQgiQKKGoWi6dV17D30SQK3dQONA6rMrsHzicapxQzmGVIzBqJGKFiN7t52Y80TUmbVqJyFfMn2UsL9tgFnCqloKISqVahRptC0QgoA14zFygbAG2HKUC0KqoavNFg828HpuRTiIblsgctQsiyvjkLKbUMNLLsXEpmW23WB0qLBy12k6eUcryraPRoFIQQhWWypQrqUKSBdUBsWsTNLr9l2ZmXZNe/mLaQLfCfeDqxuWLXQSvX4pJF+eKHBsc+u5C0XjyWrrbNjq7TGiQKBLJKaiucz5xcgEGC7ye3htnKmEucTaWwdCLc8UbqLluEOAG8DcC8h5Fnj36tW+6BaBcno4Swo7e8hbQRRIHjVtSN49PhsXUdHvZGZRpAEYrlZboW5lRyuGYsZv7P8/mV+iifPJACYFNI1UvsCALtHoiAEEAiwc8iwP6YLKKoa5lLlXeuSKHiWsst7OC0UUhZaORYLchXcq7nckKGuFRSN91evFszrrwf26eaLI5eWrAnpYBi5ooajk0n88TeOI51XoKgat/suZgomy673x+qXRL72aTchZcnYRZVCFgh/DyN+Cf1hHyeLjcKWygmp/fWWRqklyR+MlHp8OwGddTV3gVrW04Nb+yAKBAMRH2IOCSTbOSta1b6ki00rpACwb7wHZ+fTtm2Ik8s5EKJffM0WG7c4PZPCjqGIpa+cWZatXn87wOyM5g9fT0Aus1VSSnExkcHm/tYT0mYKiWthJpnHa68fwxMfvZcvGEJ+qaWElAUOmEN5rGClkJo7MxkqL56HHFhIkg4WPsEW9pCy9MNLiw0IaTLPd7rN4FZbpwopt+yWXn+9XtFvHZ3BLVv6yubX3VbOmKFpFOfm09gyEMZgxA9ZJF3L7hoDpfRxSimhlF5HKd1v/Pt6xc9sppQ27l1YAxCITkhXq/alER7YN4pcUeMkzwozK+4tu6JALDfLzTg6uQxVo5hdyWNzfxhRv4TpimR/plQFZAGnZvWNuZOGpdKs2nQ6Qj4JW/rD6Av7SpvHqTwPbjRbdmVDIVVU7yy7Vkm7zGUyGgtw957XCingLGG3FdjUX3If3rNrCIAudrC1WmW9CQD8+bdP4LPfO4M//eZxTC3neFZJIlXgyn8rQo2A0nntJlW4GbAZUlWjEE0puxG/BEkUeHWhnVAjhvM2el0ZNKOHtBK9IR9EgXQVUq8wu5IHIeBqE0M0IOPWrX18se8EvPalgpAVVQ0reQW9HhDSrYMRUGp/XmtqKYvhaAAv2zOMQxeXXEU/M1BKcXJ2BduHopbfr/X62wWrXdpoQEIyp3Bb6EK6gJW8go39zuzYbsBuJF4R0lReQSqv23nMN/6QT8TFhTT+5JvHW9Iz95MLixAFwuecaiFi7N5VK6TlaiYjpOPxIKJ+Cc84IKRMIbSnkBq1Ly2YIT1tFGVfWqj/OZxdyVkuHt0qpMmcove4mSxXftk6sff8fBonZlbwymvKx//8kth0D+mVpSzyioYtAxEIAsFwj/fz0l104SXKFNIOCzUCgL1GRsSZuVTNn5lN5hENSK7SPiVjcVsLk0tZvOYvHsfXjkxibiWPoR6/Zfc5W/zvGunBqdkUKKV4+Og09o33YKTFuQxe4/bt/dg90oMBU0gLm5kdiZksu0bti5cKqZVzaspwmYzFg1yViwe9qacLyiIYt1hty+5Q1M8/g7tHoxju8ePMbNry/s7Ce75nhPH8/ZMX+OwoACTSeV770opQI6BESNtv2SUoqJq+iSYIfNOf/S9zeDacITUI6ZaBMJazRSxl7I3vadT6byoIBP1hX3eG1CvMJvXZLqs5ws+89Sb8xVtucPyc7I2r3IVk1ozecPM7XSzuvdJGUwuTy1mMxgN46c5BqBrFD22UDNfCfKqApUwRO4asrcy89maVLLtJbtktnyFVNcqTVi8s6IrWpjZYdmNNKqRHLi3hvf9ymHdgsZ3qSrtWUBbxxOkEPvPYGbw45U2ashmHLi5iz2i04SKopJDqf2tNo0gVlKpEXKZcjsUDuHlLH546W1sRqMSKg1klRnxboR5zQlpHIdWTvAtlSd4MpdlPZ8e2lClUEfyALCBv8TzfelEf+3v53mFbP28HiqpH0LMFwcGteqDRWDzIF1NddNGJYD2cq9VD2gixoIyBiA9n52orGDPJnKv5UaA0B1kLV5ayoBR4+vwCFI1iKOrHSCxQFWrE7JG7h6NYySl44UoShy8t4RV7117u1e+9bh/+/h23YJPhmDo7lzbdZ8tDjRRN02f5hObOnf6wD9sGw/jyoctV+QnMsjvU4/d8hlQQ9PEeYPUJqSAQTPQGIQoEIz0BbBuM4EwNhXS4x4+gLIJSvcs34pfw2e+d5d9fSBdaGmoElKpf2ln7AhgKqabp6c6mUCO2+c9U9EbvJxuxe+11owBKCfmNoFKKWn/Swagf86lyYju1nMUz5xdaIozUQ+ddzR1iJpmztNIBusLmZhZCrmFZZbsRXiikQ8bNiIUy1cL3Ts7hD//rRUwt5TAWC+KGjXFE/RLfZXIDZs/ZMWxNSEs9pJ1j2WU7bWznjVW+bB5oPSGtNytiB3/0jWP4jyOT+PG5BQC1bebmsmw7Ef1OoKgajlxawk0bexv+LNvJZQR8Ja+A0uoqALabNxIL4iXbB3BuPo3LDayvDEkHCqkoEARkwfPaF0XVcHY+haAsYiWn1ExLtEryZmAzPE6VyqnlHEZj5ba4Wqm53z0+h90jUWzoLT/Xm1FI/5//OoY7/uRR/P2TF3DnjgHe1TweDzYsL++ii9UEm53uxBlShq0DEZydr62Q6oTUXR+l2ICQsnkwlsI5FNWTXmcqLLuMRO0c0Z1Sn/neaVCKKifGWoAoEIgCwWDEj96QjJMzKyVCalJ7ZYGg6JFCSgjBf7tzK45OJvHE6fLN2KnlLAYifvglka/1vOx2DRlrhdW27ALA5v4wxuIBSKKgE9LZFF+nmSvmCCHctnvP7kHcvWsQqbzCidK82bLbIoX0wf1jeNfd2xqGB3kNXjekaRAFgRNituZjHCbYQLm9f98IPvXm/Xjd/jEAjbMvGCilNUn+YNRfpZD+55EpvOGzTzoeRWoWnXk1d4BaYSPNgKmtlQohS7f1hJDaVEg//egp/P8/OIfziTRGYwHIooCDW/vxI4PcuAFThXbUsOyWZkhXRyGtZdkFSsrahUQGhKBqkd4KNKOQHrq4iKfO6u/Vo8dnAcDyRgmU20i8JgWnZlNIF9SqHk0rMAdAwpgrSNaoAuCEtMePO3foIWKPNyi+ZrDaQa2HkE/yPIH4wkIGRZXiDiMArZZKWivJG9DnPgHnCumVxWzVnJaueJZ/5lJ5Bc9cWMDdxnxO5c8XVK1mMXstqBrFfxyZxExSn7N6u6mGYNRQUuymeHbRRbsRlEVkCyqKHaqQAnqyf32FNI9hi+uJHYR8Yt3sCVZ7csIIbBvq8WOkJ4DZlXzZtYLd3ncbhPTrz09j90gUO2tsVK8FEEKwcziKEzMrmE7m4JOEshBKHmrkQcouALz+hnEMRPz4Pz++UPb1yeUcxoxU1x1DEfglATuHrddbbhA21gqrHWoEAB++fzf+7A3XAwC2DYaxkldwxjj3KzexWcXJwS39fONjy0AYokCwkNZnfoHWKaTXjMXwkft3t727VTbqhhSNQhYJf/84ITU4TKDBBkPIJ+HB/eOY6AuBEAcKaY0ZUkAPNqokpEWD+3jxGXECT85mQsj9hJAThJDThJCPevGcdjFTI2ykGZQsq+WLskVDQfHCehH2S4j4paq5DjNmkzk+l6dRYNRYwI7HA0ik3Fe/nJpJIeqXau7Q8pTdVSKkVtHzjJwyZe1CIo2RnkBbhtODsgifKFjGuzfC//fIKfQEJNy8uRePnTAIaY2ExaSJ8F72WCFlA/Dba9i0zfBLIqIBiVeNlBJhrUONRmJBbB+KYLjHj8dtWsmdzJCy35XJe6uQnjIWbPfu1snexYUMt1WbwTaN6oUaVRLJ5WwR9/7ZY/jC05eqHkMpxZWlLLcP8eeSqhXSJ07Po6hS3L1rsOp52O64U5X02UtLWEgX8MFX7MTvve4a3LO7RHb7wj6oGkW6xfVDXXThFkFZRLaoK6SdGGoE6IQ0kS5Yui40jWJ2JYdhl3OaQ1F/XWfVnLE2YIt7ZtlVNMqv6UDJsjvc4+ebrr/96r1tX6x7jd0jUZyaSRmVL4Gy1yOJekKxF6FGgL4pe+eOATx9frHMtju9nOX397F4EMf/4H5c3yBM0AmYwrball1Ar9o5uLUfAHguybOX9ADFyg3n11w7ip+5cQPG4kHcvWsQPlHAZiOQKpEqpew26abuOMiirswrqr4RIokC/JKAaIVCanc965dEbO4P43mLpo7nLi/hJxfKBSuN1ladB6J+zKfKN6vYjPqaI6SEEBHAXwJ4AMBeAD9HCNnb7PPagT7blee7C16BE9Jall2LqhQ3GOqp3pkw4+Gj03pKnPH6xuMl60cyV3SsjDBMJ3MY7w3WvPHUsiy3C8msAp8klH04Ky27FxYyfF6k1SCEoCcolxFGO/jeyTk8dmIO77l3O1597SjOzqfxhs/8EF8+dBmxoFxlzzhuJBzKIvFcIb1ozNxO2Jy57Q/7+OKFbxBUkMegT798sJv+rVv7bSftllJm7RHSsN/7SpxnLy1DFgletlcnZL/2z4fw1s//qOrn2OLPSe3Ln3/rBM7Opy2dDPOpAvKKVqWQ+uXq1NzHTswh4pdwk4WyXepAdfZ3efT4DESB4G23bsbbb99ctjCzSljuootOQsAnIlvUKxQ6ViE1AlzOWNh2FzMFFFXKcyScYqgngNlkvmbv83xFYuZg1M/dHeYNcM2UaHr3rkH89A3jeMmOAax17ByJIpVX8INTc1VrBFnwrvaF4caNccyt5Ms2kaeWchgzXd+9JvlsBrETLLtmbBvSFdBnLy5CMkZtzHjg2lH8+Zt0NTUakPH7D16DX37JFvSHfeWW3TW+KVIJpswXVY07MF++d5hnN5QIqf3r2V07B/HE6fmqfvY//sZx/I+vHuX/v/Q5t36ewYgfikbx9r/9MU8GZ2JUq8KlasGLq/ktAE5TSs9SSgsA/hXAgx48b1189dkr2Pnb36g529UMRE5INTx0+Are+NkfglLKFVIvekgBYDgaKLtBLGeL+NiXn8dtf/QITs+m8M2j09g6GMYv3rEZAPgFricog1JU9XLaxbJFp6QZcg3Lshv86TeP444/ftTRY5azxSo1rrJ65UIig019rU/YZYiHZMczpJ/89kls7Avh7bdvxv37RrG5P4SFTAFn5tKW/XPsNR7c0u/5DOmlxQziIfsz1f0RPxKpPD7+8HG8+XNPlR0fA9ulZYXT4/FglS2sFpK5IvySYPuGGvRJntW+vPdfDuM9/+cQDl1cxN6xGIaiAa4Q/NiCQE4uZSEQoD9SvRHFVGJzIvGlhQz+6SndwmVlA2abDZWElFkRzXjhyjJu2Bi3VILYhob5OvDtF2fw2r94nN9QPvTvR7DtN79e9u8vv3sGN23qtazD4h20Dq8td/7po/jUd07Z/vnPPHYG7//Cs45+RxddAEBQFpAtKCh0aO0LULImnp1L44Ury/j0o6XPRqk73b1Cmlc07haqhLlTMOLXk3zZeIi5+oUlmgqE4FNvvgGf+Nn9ro6n07DLsMYuZYp4262byr4niQQa1ceRPCOkxmbhoYv6ZuxKroiVvILRFiYVh/2do5CaMdITQG9IRjKnIBKQGhLxN9+yEbdvH0B/xIeFNqTsrhZkQ5lXtZJV/NNvuRE/dcMGAMC1G2LYNhh2ZOu+b88Q8oqGJypcaQvpAmZN1wD+N63xXrx05yDu3DGAM7MpvPXzP8LDR6e5tbjdbgkvoqbGAZh9aZcBHKz8IULIOwG8EwA2btzY9C/dMRTFr929HbIo4FX7Rpt+PjMIIfqcRkHF4YuLePr8IhbSBSxlCvBJQsPyWrsY6vHzbkgA+JvHz+Ffn74ISoH/fG4ST59fxNtu3YS33bYJ0YCMa8f1uo5S/1XBcccqoKtT9ZSygIeppv/7sTOOH5PMVVeMMDJ+MZFGKq9gPpXHpjYEGjHEgrLjGdLJpSzu2zMEvyRiJCbisQ/dA02j+Mz3zlSpjQDwhV+5Defn03jk+AxemKy2YjSDiwtZTDiYt+0P+3BxIVM2E1pJZu/aOYg//ulrsX+DbkUaiuo7bYuZAu/VqoXJ5ZyjaoGQLCLrkY30P45MAtB3I3/uFv1a9PE3XIcvH7qCbx6dRq6olqnzT55J4NoN1qRwvDeInoCEp88v4I0HJgDoarRGgYm+IC4tVBNSVqsyVkFIe0M+vHClPF15PpXHrhHrm9T1xt/9B6fm8ZaD+ut4/vISnr+yjKnlHCb6QnjybAI7h6O4b3f5DOr9+6yDSyLMieBQIb20kMUnv3MS73vZDls//9zlJTx32dtzvIurA0FZ5CmmnbYgZ9jYF4JPFHD44iIeOnwFj5+exy/cvhk9AdnUQeqOsAzyapOcZVDOfCqPsLF+YcoLe4xZPeWJputs8b/DWNTvGo7iZXvKk8nZNTxX1DyzI+4ajiLkE3HowiIe3D/OSf9oC7tcWY9lJ8yQmkEIwZtv2YjPPHbG0QZ+f9iPI4tLLU/ZXS1IhjJf1ChCFuuI0VgQj3zgbkfPeXBLP8I+Ef9xZBIv2THA1yyLmQISqTx3AZRs0NZ/0+1DEfzjLx3ESq6IO/74UTx2Yg7RgLQq1wUvCKnVUVdJJJTSzwH4HAAcOHCgaS/o3rEe3vfVCkQDElI5hQ/3nk9ksJgpoDcke7ZrMNyjK6SUUhBCcHw6ia0DYQiE4B+evICCouG2rf0I+SS+4ASaryFZzhaxr45CKgo6IXeqktSDk864pIVCGvFLGIsFcHo2xRN226mQxoJyVbF4I1jt4AsCwbvv2W7581sGwtgyEMbx6RUsZYpI55Wy5N1mcHkhgz2j9j8v/REfDl1cKrOFVdeUiHjzLaXzktWizKXyDQnp5YWMI4Ic8omYWvamB5YhV9Rwo5E6/IprRpDMKfjm0WnMJHO88Hs5U8Szl5bwnhrvmSwKuGvXEB54oglHAAAgAElEQVQ9PqeXTwuE25GvGY3h4RenkVfUMiWYqd+VM6TDPQHMmW4klFIkUgVLZRYA9oxGsXUgjP98bpJfH9LGJtKlhQzG4kFML+fw4P4xfPCVu2z9TaIuFVKnKKqUB1t10YUTBH0iv/d1asquLAp47fVj+OJPLvMZ7wvzGVy7IcbTbt06u5j9djaZt+wSn0vlcd2GOJ48m+BElPW0mwmp1mChulYRC8p47307cOeOgarXxhbZeUWF6NGgoiQKuH5DHD8xFNJJRkhbqJCyAMROs+wCwNtv24zPOBQi+sI+LKQKJXvpOjsn9VAjCkXVIHv02nySgAeuHcUXf3IZj5+ex+MfuQdBWcRipgiN6krpYNTPZ8kb2aCjARlhv8StxfIqDPJ68RsvA5gw/f8NACY9eN5VRcQvIZVX+MLsQiKNxUzRk4RdBm69yeq/49RsCjuGorh1az8W0gUIBLh5S1/V41ioUjOEtFEEecQveRps4uRYkznF8vi2D0dxajaFiwt6QE+7ZkgBIO5CIS26DN1g6XxezZFqGsXlxSw29Nnfse0P+7GQziORLuBle4bxc7dMNDxnhowF1qyNbt1Li1nb86yAHnPvVe3LhOnvYE4dZgtE88bDE2fmoVHd1lIL9+0ewnwqzwMG2MztNWM9oLS6wufKUhZRv1T19xyOBaBqlKcbr+R1W+JA2HrhSgjBa64bxVNnE3wWnSURX17MYm4lD0WjVUpsPTCFNOVyhtRuUbeqaUjllZpzcF10UQsBuURIWd5BJ+KdL91aFjh2LqHft0ohaS4tu+w6W5E/kSuqSKTymF8pYM9oD/ySUErvlEVE/VJZ3yDLLFxvahQAvP/lO3Hz5uq1k8QJqXcKKaAH+1yY1zfKp4z79tVo2QX09oBfuWsr3nuv9SauFQYiPqzkFX6PX2+qvR5qVOoh9Qp/+FP78P6X78RCuoDz8xke9gaArwnUBjOkZkiiXinl9XHahRdn89MAdhBCthBCfADeDOA/PHjeVUU0oAcHsfms84kMljIFbwmpqYs0r6i4kMhgx3AEt23TE8uuGYtZkgD2NTe9mEVVQ6agNiakAcn1jKoZ7EOw7CChNlljxnXHkF66fNZIjN3YRkLqJtTIbejGBkM582qOdGYlh4KqOVIk+8I+sFHQ114/ij/66esaOgOYPaxyoVSJdF7BQrpQRgwbISSLntW+MA50zVgPxkyLBjbXO2M6/keOzSIakLC/TkLiXTsHIRDgEaPWh20w7TMs9hcrbLuXF6sTdgHwkBO2YGVJ2gPR2tecV1wzAo0CPzyjW6vTRhLxpcUM39BwQkiZFcwJITWTymNTK7Yeo2gUGoXn3bJdrH8E5FLAma8DFSKGXSNRvH7/GO436i0uGPetmZUc+sM+14FMpcq4csfOxx8+gVf+r+8jW1QxGPXjQ6/chTffXNIKWJomQ2mG1NVhrEmULLsqRA8X3LGgjJW8AlWjmFzOgRD3M8J20MkKKQB87IE9eP8r7LlygNIYGrvnrb9QI4PoaRpvsfACfknEXcZm+aXFTBknmDM+607mcmWhVE/jlYPACZr+jZRSBcB7ADwM4BiAL1BKj9Z/VOcjGjAU0nxJIV1IF3hHoxcwL0DPzaehahTbhyI4uKUPAgFu395v+bhmLLvsMXYUUrcqiRks9tuRQpotWs5Ybh+KIFfU8OSZBPrCPtsBPV4gHtJvOHarcCilrkM3mHJ4IWGvY6oRmMV5owNF0mwTtdv1OsgJaX1rMwv6cUKQgz7vUnYVleJNBzbgv957ZxnJZhtEzFL3zRem8aVDl/Hg/jGejGeF3rAPN23qxaPHZwDoCqlAgN2jup2uco70ylJ1BylQWsCwhSZTSvtrKKQAsNkoGmePMSukkzXCk+qBpR47seyaO0tfnErW+ckSWIJ5q63BXaw/mDMcOlkhBYD/9eYb8Nm33YSRngDOG9fh2WSuqWaAiF9CUBYxu5JHrqjip/73E3ji9DxOzaa4AjoQ8eGX79zKO5bZ164Gy249MNVHo94qw8y1lswWMb2cxWDE39LALa6QdtgMqVuwzRlWe7beFFJJEKBqFMUWKI9svXhpQR8rZJg11gQsm9TOqKEkEijMWrxGFVJQSr9OKd1JKd1GKf1DL55ztRHx6zOkjJTpCmmR7+R4gdGYoYQtZXBqRo+H3zEURX/Ejy/8ym34tbutLQ/tIqReVD+w1E67ai6lFMmctaV4h9Gh+fjpeR7w1C6w46mVbFgJVpnjc/GhHozovXAnZ6srA9zgkqG0OrHImknQhIWaZ4WQT+/WrVdlBJQIsiPLrkFIvbB41tr96wnoC72ZZA6qRvHhLx7B9RNx/ParG7dY3bt7GC9cSWJ6OYdktohoQMZwNACfJPC/P8OVxYylaskJqUHo2eKx1gwpoH++wj6Rq6pcIV3IcELqxDrGFjpONqNU03vy4qRNQmrcJZ2GJ3XRhZmQdmrtSyU29YdwPpEGpRRn59IYaaIZgBCCoR4/ZlfyOD69gsMXl/CDU/PcKgroamglBiL+Csvu+gyQqQfzXJyXpIe71rJFTC3nWhpoBJgV0rVx/jcCs08zu+l6OyfZdSpbVD1VSAG99SPsE3F5MVtfIbVj2RUEKJqukK5Vy+66RNSwrLLgjXNzKSxli55VvgB6qIlfEnB6NoVTsykIRC/UBoADm/tqksaALMIvCS0lpGG/N5ZdprjYPdZsUUVRpZaW3e0GIQWAD9kMafEKbAfU7oxc0VBS3SyYCCHYNRzFyWl79sdGYATRSYgGI0E+ScBAg4AiM/TS9vqElBNkm0QX0M9HVdNV52ahata7f4QQDPf4MZ3M4UIijWROwVsPbrRVVn3fHj3F9rsnZpHMKegJShAEgoneICfggF4JkMwplpbdgYgPhJQsu2zxONjg78/C0YCSQnppUSekPQGpqpy8HmRRQEAWHBFSczvUiRm7hLSrkHbhDub+5rWyIN8yEMaFRBpPnE7g7Hy6Zsq1XQxF/ZhN5nDMcCSYN6AA62uGTkirU3avRoUUgKczpOZcj8mlbNkoSCtQmiHtTMuuUzAHEpu5XgW3aEvBzrVcQfX0vAP0dctEX6hKIeUzpA6cEPqsK121UCNvIjzXISJ+Gam8gqKqp8MyZazR4tAJRIFg62AEp2ZTCEgiNvaFbC1+Af0CuOxihpQRw3o9pICetulFqJFThZTN31nZceMhH3YOR3D7tgE+n9cuOFWl2U6fW9vOjuEIvnZkkicwNwNWlxJwcPNihHRDPOhowTIQ9WOuQajRpYUMwj4RfWH7bgOmimQLatM3YaVOKfqwUTrPZiHtJhPvGIpgQ28QjxybAaWl83djX6hshnRySSeOVjZaSdTJP7MMs3ma3gZ/p6EePw+SYim7M8k8ziWsldhGcGrXNyuk5+czts5ZbtntKqRdOESgzLK7Nlaum/rDmE8V8Ilvn8BAxI8H94839XxDPQEcm0xyQvriVBLpgooH949hNpnnG9tmDET8WMoU9cWmKJjSN5s6lDUF8+iF1zOkgL5hPbWcw107hxo8ojnw2pc1siHTCIyksY38dWfZFUuW5FYojxt6Q7i4oAevAihzqpn7hu0cp6JpPOm/3VgfZ3MLEDFmSPOKhgNGEucr9g7jZ27a4Onv2T4UwenZFA5dXMT1dYJTKuGmFxMAD+aJBevvRYQNy3KzCPmdKaQsobSyYoThG+97KX73tY0tlF4jFmTdr/ZeB7uwul0w7RyOIplTGqqNdpAtqgjKoiNiycK7rJS8ehiK+rlVpBYuL2Yw0RdyRLSZRcmLOVJzOXUlhnsCmE7mcHw6CYGUq/L1QAjBzZv7cGxqRe/RNQgp27lkVuMrSzo5rfV3HekJcMtuIp1HPCQ3PIfYMQNAJq9wVf6Z8wuO5kcZIg4/+0xpmegLGh3BjV0ETCH1woXRxdWFtWjZ3WJ0Zh+6uIRfvWur7Y3nWhiOBjC1nMOzl/Qe83NGYNLL9w7jX955K0K+6vsnC0djG12qg7CT9QJz5YaXShVbH1xazCJTUFuasAsAIb9h2V0nM6RihWV3vYUaMUdWUaUt2UTTO8+zWErrn+3tQxHMreSRzBW5g8kWIRWYQkrr5ma0CuvjbG4BzKE6r9g7jB98+B781dtucmR/s4PtgxFcXsxidiWPWywqXmohFpSx5CC5lsGuQsoIuVewTUgbWIpFgXjWA+sEfIbUrkLahGUX0AkpAJzwwLabKahlNjc7kEUBo7GAbULGMBQN8GH6WphJ5jHi8IYd9JCQKmrtBLmRmG5/PTaVxNbBiKOF46jx2OVskW+obOwLYSWv8POfJSdvqEEUh3v8ZSm7/TZUZHOfcbqg8kTgTEF1p5A6/Oyz7rjtg/q5whbH9cDCwboKaRdOEfSVPrtrRSG9Z/cQfu911+BL77oNv/SSLU0/3317hpAtqnju8nIZsar3eWe5AB/89yP45LdPmuog1tfivx7KFFIPXzdbHxw3FOvReIstu751Ztld54TUPDfqtWUX0AMis0UVZ+ZSCPtEjMeD+NG5BVz3P7+FY9P6OWnnUumTBCiqBqXGWFOrsTau5qsAZjUF9KRYp4qOXZgX/LdY9GbVQizow3LW+WKO2XzthBoVVYq80hwBYItVu4R00ebxtRulGVJnll23xe07h/Xz4uRM84SUKaRO8W/vvA2/8fKdjh4zGPUjXVDrBmKl8krZ58sO2A3Yi+qXehfb8XgQeUXDU2cXsHukunS+HkZiASgaxflEpkwhBYBLCzoRvbyUhU+sPZc71FMi9HOpvK35XXOfcaag4MCmXnz2rTdiPB50tMnF4FghNZSWbQYhPW+DkKp8htRdl3IXVy/WokLql0S8/fbNuGlTnyfriNu39fNxAlYTBwBjsdqEdNBQSB8/PY9PPXKK35uvJoXUbJf0staCE1JjA3m0zvvgBfaN9+BNBzZw995aB1dI16ll17ze8NIqzsDWGc9dWUY85OM2XaDUGmArZVcw9ZB2Lbudg4hJIY1YVJB4BUZI+8I+R2pULChj2WbAjhnL2SICstBwZ40RhmZtu2zhaTcMiFVkuLEathJOZ0hZyq7bHfz+iB8DET+OXF529Xgzsi4UUkDveXVarcOCk6brqKRpN4TUo/NRM/ova93wfurGcYz0BJDKK7bnRxlYj2lB0bgDgVXtsDnSyaUcRuOBmvbpkZ4AEukCnj6/gIRNQsrSeS8tZlBUKcJ+CffvG8UTH70Xr71+zNFrAErz83bBFrYb+0OQBIJzNuqKilpXIe3CHfxmQrpGFFKvQQjBr961FQD4Z1wSCK/eskLltUR1MFu2XmBeZHs5y+eTBIR9YkkhbbVl1yfhT99wfcN8gbUCpiCu15Rd8zqwFWFBjDucnUujNyzjnl2lGWZuzbc5Q1pQNM/7Uu3i6rya24DZmht1uHh2gs0DIYgCwc2bex3tnLqeIa1RqVKJiIv6ByuwD4PdY72QSCPqlxwF3rQDsqjfcOwqpM2k7DK8bM8QHjk2g2yTNtVsUeUzmK0G2xmeWqpPSMMOP1N2iK4dsPOx1u5fT0DGH/7UPhAC3OBgphtAmQ25UiFlhPTKYqbuZsvP3LQBWwbC+LnPPYULiUzdyhcGRkiZVbbZ9zriF12FGsmigI19IXsKqbFh06196cIp1qJC2go8uH8cP/jwPXjF3mEA+nWgnrJkJqS7R6LQrsZQoxbVvgD6mixdUCEQ3bXShX1UzZCus491WbpzCxTSLQNh7qqLB314080T+OKv3gYAKDr4m8qiSSHtWnY7B5WW3VbBL4n4/Qevwbvvse4crYV4SL/4FR3WYCxn7RFSN32EVuAKqV1CupDBxv7W2KObhZNNgDxP2XX/Ol63fwyZgopHjs+4fg5AnyVsNkTDLhjZmlzOWn5f0/Q5R6eElJG9qeUmCSm3qdW+9N23ZxjP/NbLyqxwdlBGSI0Z0oixuXJp0SCkS9m6hHQ8HsRD774Dbzm4EYJAsHuksUrLyDojpGGLQBMncDpDau4z3DIQtjVDWuzWvnThEsGuQsox0RdCLCgjGpAw1mBuMeyXyupINI1CIPasfOsFcotqXwAgZgQBDvcEViUQZi2DkR+2blpvlt1Wz5ACwKuv1Z0SbLyMqbLMrWcv1EifIS1q3VCjjkK0TZZdAPj5g5tw3QZnaoxTCymDXULKXr9Xll27YUAXExls6g819TtbhZ6gjGWbQVJcIW3iQ31wSz+Ge/z46rOTrp8DAHJtVEiHYzo5qqWQZoq62ht2eDwhn4RYUMZ0k4SUvS+Nbgr9Eb/jhdpA2M+f12x1Zkm7qbyemtwoaCgWlPH7D+7D8d+/H285uLHh7x2KViik/mYVUtnR556n+AkEmwfCOJ9IcxtvLfAZ0q5C2oVDmMcP5KtYIWUghOCunYO4bdtAw5/9zgfuwiuvGYaqUah0daodVhNloUaeK6T6mqnVdt31CPZe5NepZdcnmRXS1lyzXn3dKIBSQ0LlXK692hc9ZVdRtbJE6nahezWvATMhjbaYkLoBmx2wO5vJsJxVHCmkzXaRsuHqpUyRV1/UgqpRXFrMYGNfdYdaJyAesq+QemHZFQWC27b28645t8gU2kdI/ZKIwai/rKTdDBZ25FQhBfQbvVcKaSvsKIJAuH3WnGI90RvE2bk0fvsrz4MAuGvXoO3ns4OgT0RPQMKZuRSA5hXSaEBCQdVsB5qV6iOAzQNh5Ioar66pBfb56CqkXThFVyGtxqffciPebyOALuSTIIsCVEqhac13XK81mDcivSakcaP6pdWBRusRUiV5WmcbJe1QSLcPRfDe+3bgwf26UsrOb9b5bed8l4VuD2lHwmzZdRrA0g70GbsgC2lnCmkyW7QVVMNec7M9gYwAKBptWNkxuZRFUaXY3KEKaSwoO07ZbbaWoDfss/07ayHbRssuAIzFAjUtu4yQuvlMjcYCmE5aP69dsP7LVt0UmH3WXBu1aziKK0tZPPTsJP77vTtw40bvkxHH4kGcntUJabObD0y9TudtElJTfcSWfn0zqZFtlz2mO0PahVMEuoS0KYgCgapRaJSuOyWqEeSWKqT6uqqrkDpHaYZUv+est/PSvAHeyqqq9798Jw4YbR1sjVPkCmnjx0sigaJSFFVtVSq1Oo9pdQjCPgmE6G+qvwNtQb1h/eK3kM47elwqr9iyIHPLrkczpACwmCnUVcZY8MvGDiWk8aAPy9klWz/LLgJNE9KQD6m8goKiuVZb2xlqBOjkqFZdDSM5bhTSkVgQz19pLnXYzgxpM9B3x5fKFNJ33b0NBzb3YT6Vx6uuHW3J7x2PB3nlgJu/rRkRY8MqlVNshYtptLQDu2VQJ6Tn5zO4fVvtx7Bd265C2oVTmC27V3OokVswQqpq629WrxGkFs6Qstm90Q5rCFgLYAoin3dcZ+dlKzdCakGoIqQ2FFJRQFHVoGjdUKOOgiAQRHwSogG5I20tbKHoRCGllNpOOOWW3SYJqUYpDxJYSNe3F19I6IR0U39nWnZjDiy7BePC2uyCqZf1n9qcXbVCpqC46iF1i9FYEFPLOUuLNtvgcDpDqj9vAPOpQlPduK1XSKstu5Io4LZt/Xjt9WMtuxmN95YWQc2n7BruiLy9c90cajTaE4BfEnBuPlX3MYoxeNrsSEAXVx8CpmvqapS3r3WIhBj1V/SqStgFyis3vN6U7OkqpK7ByE9hnYYaldW+tOmaxVRmRzOkZT2k3VCjjkIkIHWkXRcoDS4vOpghzSv6zoed1xSSRRDSvIKhaJQv0udT9dXcC4k0fJKA0Z7OvKDHgjLyioZcsTEhYhfWZi1l8RCbFXZn29U0ilxRQ7DJuUInGIsHkCmoSGarz51mZkhZiu3MsjNXgBlKi4u3tw2FEZAFvpHQLpiDkppVSJk7wur9swK37AoEgkCwqT+Ec/OZmj/PumCBrkLahXNIogBZJBBI6wJC1jNEY9GpanTdKVGN0BaFtEtIHYPPkCr27aVrCWX9t20iemKFQmpnzSOJAhSVGj2kXYW0oxANSB0ZaAToczRhn9hQdTQj7UCdEgSCsE9CyuYcWS1oJkI6t9KIkGYw0Rvs2Jukk2RjbtmVmnstfOPBwftsRs5QE9upkDJydMUi2IgpYm5DjQBgqsZ8qh0oLQw1AoA3HZjAd95/F0Jt3AAAyglpswop69CbbRBMxKBVFG9v7teTdmtBMdn4uzOkXbhBQBa7dl2XEAQCjV6dM6Tm677Xm5IHt/Thzh0D2DUS9fR5rwa4SYRdSzArpO2ywnJCquj3Wzt/Up9IUNS0bg9pJyIe8nFC0InoDfscERUWKmSXDET8ElI2bXu1oFKKEbuEdCHTsXZdoLQDaket9KL2xfw7F10qpFnjPW/nDCkjjpaE1NjgcBdqpJOu6aT7pF2estuiXUpZFLCht/0z0ONlhLQ5MsxmoOxW7JTmcvUb2JaBMC4mMmXz42Ywu240IKGg2E/z7aILhqAsrkroxnqAZAo16tTN31ZBElo3y7d9KIp//KWDbd+MXA9g78t6teyWK/OdrZBSqr8Pq3F97V7R6+APHtyH333t3tU+jJroC/uw4MCym3Jolwz7xaZDjTRN382OBiTMp2ofK6UUFxNpbOzrzEAjwJlCylN2m50hNWaF7fafVoJtQgTbSEh3DEchEOD5y9UBUCXLrrsZUgCYrNFxagdOItDXEhghDcpi068t4pcQ9Uu2K3aYQiqYCGlB1WpW/zCFlG222E3z7cIahJAJQsh3CSHHCCFHCSHvM77+cULIcULIc4SQrxBCnJVddzCCPrEjwwbXAgRSsux2FdIuOgHrvod0FRVSpz2kgB6E2bXsdhh2jUSxY7hz7Re9IWcKqdP5vYhfanqxqGoUkkAwGPXXVUjnUwWkC2rHVr4ApZ4xO92vBa8U0mBzCimbd22nZTfil7BvPIYfnVuo+h7b4HCzixz2Swj7RNtWUiswdW41LratxGDUD0kgroi+FUZiAdvWaONU54uIrYMRAMDpOetgI7Yp8MabJvD4R+6x1YvcRV0oAD5AKd0D4FYA7yaE7AXwbQD7KKXXATgJ4GOreIyeoquQuoco6KFGqrb+ZvUaQW5DH2QXziFxQqqvV9abcl9e+9LeUCNHKbvG50PRKMSuZbcLJ3CrkEZsLlpDPgmZJlMwFSM4YTBSn5BeXNBnzjrZsutohtTw7Te7aAr5RPhEwVF4lRmZVbDsAsAtm/tw+NJSlR0znVeaUvGGegKYbWD9rgemzq3GxbaVEAWC0XjAM7vYaDxoWyEthRrp/3+XsYl3Ytq6+odtCvSFfdjQG+oqFU2CUjpFKT1k/PcKgGMAximl36KUsgv4UwA2rNYxeo3uDKl7SAKBSino1WjZ7SqkHQnRlLK7Ht8XqYXpzrXA/qa8SsdmDymD3E3Z7cIJdIXUvnLmtAMy7BebVkg1SiEKwEDUXzdll1W+dGoHKaDXvgA2LbuqClEgTV9cCSGIh2QsOXifzciugkIKALds6UNB0fDc5fLe0HRBbSoFdijqx1zSPSFl5Gk1Lratxlgs6NnGw2hPwLFll+3IxkIyRmMBHJ9KWv48U0i7CoX3IIRsBnADgB9VfOsdAL5R4zHvJIQ8Qwh5Zm5urrUH6BG6Cql7CKyHlNJ1ufivh9VIO+2iMSSTvXS92XWBclVUbtNnrkohtTlDWvrvrkLahQP0hWWk8ortUBCecGpTRfFCIWVzKo0U0guJDAgBNvR2bql01C+BEHtVO0WVembN6A35XCuk2VWYIQWAmzf3AQC+8+JM2dfTecW2Qm+FoZ4AZpqx7K7TGVIA+I2X78SHXrnLk+cajQcwn8rzWeh6qAw1AoDdI1Ecr6GQ8mCpLqHwFISQCIAvAfh1SmnS9PXfgm7r/Werx1FKP0cpPUApPTA4ONieg20SsaDcsZVsnQ6RGIT0KpwhJYRw8rMe7wFrFey9oLTktFlPKCd6qxNqZM+ya7YWdxXSLhyABd7YVUmdzpCG/SLSheZrXwRjhnQlr9Ts8LyQSGMsFoRfai9xcgJBILhmrAf/+uNLmGmQ9FpQtKbnRxniIdl1DylXSNtMSHvDPrzmulH81ffP4qHDV/jX03mlKVvpUNSP2WQelFonuDaC2uLal9XErVv7cd+eYU+eazQWAKVoeJ4DepI2UL4Du3u0B2fmUpaElt0guwqpdyCEyNDJ6D9TSr9s+vrbAbwGwM9Ttx+aDsRvvXoPPv6G61b7MNYkRIFAo7qz4SrjowBK1/4uIe0clFla1+FJaRYn2l774siy27oUajvoEtI1jD6jksZuF6nThNOgLHGFzS1UWlJIgdrVL+fm09g80Ll2XYZPvmk/MgUVv/e1o3V/rqBqns04NaOQ8hlSuf1qwp+98Xoc2NSL3//PFzkxSeWVppSNoagf2aLqOv25qK3PWHmvMeKgYkfTyi27gK6QFlWKs/PVwUbreVNgNUAIIQA+D+AYpfQTpq/fD+AjAF5HKc2s1vG1AhN9oY4OHOxk8PRN5eqz7AKlcY2r8bV3KsxvxXqca16NMK1Ky66d872MOHcJaRdOwBVSm2QllVchi8S2CqkrpIprNQowLLuirpACwJzFHKmqUZyYWcGu4R7Xv6dd2DEcxcv2DuPopPV8HEPRwx6neEh230O6SgopoAePvOvubVhIF/DYiVkAOkFuJgl2qEc/j9wGG6nd+UVbGDMqduzMkVpbdvXP8vGpattusfseeI07ALwNwL2EkGeNf68C8GkAUQDfNr722VU9yi46AmYrnx0b33oD2wjrXn86B4QQTobW40aBIBBOuts1uywIBISUKght1b6Yjq1r2e3CEfrCzhVSJ4EyIZ8ESoFcsfEcWS2wOZWBOgrpufk0ckUNe8c6n5AC9myjRQ8V0njIh+VswdXGQNaYAV4NQgoAL905iIGIH186dBmA83OwEkNRnSjNugw2Yim73UCL+hhhhLRGl6gZvJOz5OUAACAASURBVIfUdMPbOhhGNCDhB6fmq35e7b4HnoJS+jillFBKr6OU7jf+fZ1Sup1SOmH62q+u9rF2sfpgC35FW5+Jpo3AbIlX42vvZLD3Yz1adoHSedeu2hdA/1s6mSGVVsFabEZ3RbCGEXdQQwLooUZ2A42AkrU33USwEUvyG4jq5NkqafeYkca5Z3RtWLDs2EYLqncKaW9IRlGlrmyqzLLb7pRdBlkU8Pr9Y3j0+CyWM0VPLLsAXHeRdu2i9hDxSwjIAhI2Nrt4D2lFIMID+0bw8NHpKts/t01334Muumg72IK/oFydCikLbuneAzoLbIOSrNNz0rcKGyGCQEozpDaWo+bckzVn2SWEfJwQcpwQ8hwh5CuEkLhXB9ZFY/Q4JaQOyQALn8m4rH6hlOqpaYSg15h3tQrnOTaVhCQQbB+KuPo97YYd22hBoZ4R0n5DXbarhJuRLarwScKq7gY/cO0oiirFYydnPQg10pW7eonN9aB0Z0htgRCC/nD9qiYGFmpUebq/fv84UnkF3zlWnrS8nqt3uuii08Fm9Arq1ddDCpQ2wtarErdWwRXSdXpbYBsg7bTCSkJJIbVzvpcppGuwh/TbAPZRSq8DcBLAx5o/pC7sIiCLCMoilmzOkKbzKkIO5vfCvuYUUvNsWUAWEfaJlqTq2FQS24ciHZ2wa4Yd26iXlt3+CFOXXRDSgupZN6Vb7J+IYyDiw0OHryBTVJuqfekJSvBJgq30Vyt0OzDtYyDiQ8LGOcdCjSrVloNb+zHc48fXjkyWfd1JyEIXXXThLdi1r6houBpFwm6oUWdCWu+WXeO8a6cyr1t29fuzHeXZTELXnGWXUvotSiljK08B2ND8IXXhBE4qQZzaJUPGz7rtIi0pJ/qJ3Rv2WRLSF6eS2DO6NuZHAXu2Ub32xZsP9EBY/30JG2pVJbIFddXsugyiQHDf7mF898QcBELwsr3uq0kIIRju8Vep00+fX8CFRLrh47sdmPbRH/EjkbahkFqEGrH/f+/uYfzwTIKTUPPPt3OWposuutDBVNGierXOkLJQo+49oJPAzsX1qtrLq3DeCWaF1HHK7tpTSM14B4Bv1PomIeSdhJBnCCHPzM3Nefhrr27EgjKWHFh2Hc2QMoXUpWW3cqHaZ0FI03kFM8n8mrHrAvZso0UPZ0hL87fOFdJMUV21QCMzXrlPJ6Hvu28HrtvQnLN/IFJtJX3jZ5/EXR9/rGHwUynUaH3e9LxEf9ieQqpahBox3LVzAKm8gsMXl/jXmEp9NS6Gu+hitWGug1iv83r1wBba3Rn2zgJXSNfpfYGtB9u59jBbdp32kHakQkoI+Q4h5AWLfw+afua3ACgA/rnW81BKP0cpPUApPTA4OOjN0XeBWFC2PUOqV27YJ6SMyGRcdpGqFf2EVn2aU8t6iueG3qCr37EasGMb9dKyy9KU3SikiVSe99WuJu7ZNYQv/MpteM8925t+rnpE6ScXFus+Vu3OkNpGf8SPRKpxurNWQyEFgNu2DUAUCH5wqrQJqXCFtKtQdNFFu8Etuypdt/bIepC7tS8difU+28uV+TYSPUFwmLJbFkzYgYSUUvoySuk+i39fBQBCyNsBvAbAz9NmCiu7cIV4SMayI8uukxnS5iy7xtqfWzD6LRTSy4s6IR2Lrx1CWss2akbewx5SvyQiGpBsJZ5WYno5xys8VhOEENyypc8TO06l0s56tgDgr39wru5juwqpfQxEfCioGlYapDtXWvPNiAVl7J+I4/snTYS0O0PaRRerhlKo0dVq2e3OkHYimHK9bi27Aqt9aXeoEUvZtWPZNafsrjHLLiHkfgAfAfA6SmnGm0PqwgniQR+Wso2JCqVUTzh1NEPKQo1cKqRsoWp8DqxmSCeXdJVxfA0RUkC37TYMNfLwwjNoYVNtBEopppZza4rs20Ff2I/FTEm5W8mVNmS+d3KOEx4rdO2i9sHCtBrZdmuFGjHcMBHH8ekV/n4p3RnSLrpYNbDbUlHV1u3ivx7We3jOWsX67yFtvyXZfE92nrLbgQppA3waQBTAtwkhzxJCPuvBMXXhAHZDjfKKBkWjjkKNuELqov8SsJ4hzRRU5Iolgjv5f9u78yBH7us+4N+HewDMCczszM7eXHJ5nytKoixKlEjxSCmUSrJLdmwzqViKLkd0SUnRUSqWUpUqWZblsiuuuKhICh2rbJ2JlIqs05IYOyUeUpZaUvQul+Qul7uzO9fOPRgM0L/80b9uYLC40UCju7+fqqmdAbAzv0YD6H793u/9ljYRDondKMgrJgbjdZsabReVYyW7gBkctBqQLq7nsVUwMNUHGVInjaXMdVmtzN1Kzvz3TVeNY3O7iJMX12r+X5aLNi/TZDOtWk2NLOODcWwVDPvCVmnpHe4Dol6z3nfbBaOpeWV+Y332cw5pf7ECIL9eJIm4MIe0/JjczJ+N7uiy67EMqVLqsFJqr1LqZv31fqcGRs0ZTkaxVTB2BHnVrOuT91QLDW6s7qztZkgNu5TPfJlZcyHL55GeW9rE5FDCc11PzYC03jqkhqMZoEwq3lSDmXIzy2bA7L+AVK/Lqp+PFT2H+s6rzLnpx84uVf+P4BzSVjS73JBOOte8Amuto2sFtlx6h8g9paZGwZxDGuEc0r5UyiC6PJAuiYUFkZD0tJFY+Wu8mUB/R4a0H+eQUn8bGTBPGhtlSa3GRMkWuuyGQoJkLNx2hrRgZ07Mn0d1c53yst1zS5ueK9cFgImhBFZzhZoXApzssguYnXZbnUNaCki99/zWk9EXNhb1hY0VXbJ7w/QwRpNRHDtbu7FRoaLRFtWWtQLJBku/2CW7NV7uWTuw1QGpvfQO9wFRr1mHpXxgS3Y5h7QfWYkLvx6bI6FQz495oR0Z0tYC0qjX5pCS+4YHogDQcB6pFTi1ugRIMhZpP0NaMbfMypCWB6Tnlzaxe8R7GTy7822NIDHvYJddwMyQXtrI150fWcnqYDzlwee3Hvt1ZGdIzQsmVgOd+hlShZD4tyzISdYFpEaZ+XpNjYBSYGtlWkuNpXj4Ieq18lJ5v57812Nljfj501+s/eLXpYgiYen5a648Q9rMe72874kbF2z4jvS4kaQZkDbqtLtpBaTRVgPScNtddi+fQ2qO1QpIi4bCheUcpj205IslUxEUVcoXnG1qlE3HoFQpK9iM80s5RMOCbMpb83MbqbywYWVIhwYiuHnvKF6YXcNajaz+dlHxRKRJsUgIwwPRpueQ1roCW9kcybqowpI5ot4rPywF8aPQygLx46e/2E2NfLpjomEXMqRlx2Rp4r1ePnWuL5d9of5WypA2CEjz7WZIw+2vQ6oqA1IzMLqkA4nZ1RwKhvJkF1j7JLtGOaPjJbv2PLzmA9ILy5vYNZTwXTZwrLJkV7/2hxJRHBpPQSngnF5OqFLRMFgq2oJMOob5BqXi9dYhBUrNkayS3SJLdolcU36S2kwZn99EwyGEezyXjxrze/fjqAsZ0nCLGdLyi8Sea2pE7ms1Q5poMUOaikc6WId0Z+ZkeCAKEWBRj9Va8mW3B+c4ljqQXn6yXjQUDAWHu+zuPKlvxvnlnCef20aSsTDikdCODGlYz3e2yr/PL1cPSAuG8u0V2G7IpuKNM6Sq/rzcWCSEoUTE/j3bRZbsErml/H0XxM/CSEgCud39ztonfj0sRMKhnmcdwy3OId25DikzpNSiET3Pq+k5pG2U7K5vtZchLc0VK5VijCZLy5fM6S614x5b8gUAxtKXz4e15AtmSaKTGdJm14QsN7O86bv5o4A5x2QsFbOfi5XNAoYSEYiI3cBpZqn6kjxFQ7FUtAWZdKz5dUjrPK/ZwbidabU6HTNDStR75Sf8fs1G1RMJh3gM6EMRn5fspmLhlisUO7UjIG3idNSsHDC/d+P43HzLVepLqVgYkZDgUrNzSFt8Q6RiEVxcqb3eZj3FKieq0yMDdjmlFZh6MSAdjEcQC4cwX6VkN1+0AlLn3tDZVGsZUsNQuLi8hUmfLfliGUvFsKif+5XcNoZ06frEYBwhKTV0qrRdVFz/sgWZdAxPvNy4qVGjk4hsKo751coMqT9PPIj6WXkQGsSy1ViYGdJ+ZB2X/VpG/pG7r7Knq/VKqxlSwOyumy8arlQwMSD1OBHBSDKGpQbNbjbzZpDUcoY03n6G1KhSyrdvLIlfzqwAKGVIrTmBXmJl6ao1NdrWAWncwZLdoYEIomFpuCakZWE9j3zR8GXJLqADUn0RZmVz255LHQmHsGsogXNLdeaQ8mSkaeXdnWvNKSkajTMtmXQML8yu6ccrzuEickl55sOvaz7W86tH9+LI5JDbw6AKfs+QTo8M9HyJw/LjcrPVEJGwIF9kUyNqUzYdaxiotNtlNxWLYN2hLrsAsC+TxKuXNlA0FObXtjCWijla2tpLmXSsasnuBb3+ZytrvjYiIsg0MZ/PYi/54tMMaWZHhrSAoUTUvm/3yEDNkt2CoVgq2gKru3O9CgxDKTQ61mXTcTu7v20Yvj3pIOp35ZmSIL4Pr58exm+8dp/bw6AK4bC/mxq5ofz93ezTai+LxKZG1A6zfLG5OaSJWGu7fDARwWquAKWzna2wMqTlJbv7xpLYLirMLG9ifm0L2bT3sqOWsVT1DqRf+9mriIVDuOvqCUf/XiYdq7nuaSW7YZQHOxg3YywVL5tDuo2hgVLwPzWcqFmyyzmkrbGaadXqJg2UMp71f08MSxvb2C4aKBYVotwHRK5op4yPqNus47LfVgVwk90oSpovz7cSRGxqRG3JpBtnzjbzRYQELa+NOZiIomgoO8PaCl25uuOFvW8sCQB4ZXEDc6tb9nImXpRNx+0snWUjX8DXf/4q7r9h0vFS5PIsUyMXdEDm1zmk44NxbOSLWN8qmHNIKzOky7mqF1HYZbc11nq79RobFQ3VRMluackn7gMi9zAgpX5kr0PK16RjSgFp88+pVUHGgJTakkk1zpxtbhcxEA23PG9rMGFmnlZzrZftFnQ3zZBcHpCeXdzA/Frekw2NLOWdXi3fefYCVnMF/MbtzpcENdPx1DKznEMsErIDCr+xXjfza1tml92BUkA6NZzAVsGoWjVQcGmyvlc1s9yQUqrhVe1den/NLOdQMJxdo5eImrdjbUJeGKI+EdXHZb4mnWOde7eSdY64uB94VuADmVQMq7kCtgq1s5ib28W2Wk6XAtL6XXyr0fHojhf21HACkZDgzMKGLtn1bkCaScewkS9iM1963r99/AKmhhN4zYExx/+elSFtpnz6/HIOU8MJ3zaOmdABzrmlTWxuFzGUKC/Z1Uu/LF8+j7SZ8lIqyTax3FAzXXb3jJoXos4tbaJQ5D4gckt5BooZUuoX1hxSviSdEykr2W1WLGKul+rGuSMDUh+wshj15pHm8kUkWmxoBMAuhVxpI0NatLrslr3KIuEQ9owO4B8vrGIjX/R2QGqVM+qy3bWtAh5/YQ73XT/ZlXkQ2XQMWwUD6/nG5dMXljcxOeTPcl2glCF9UXduHSwr2d0zagakp/R95QqGcqV7nFcNJaKIhKTBHNLGJ7bTep+8emlD7wMeeojcsDND6uJAiMr4vcuuG9opg46E3FsWiR9HPjDWxDwvq2S3VZ2U7BrWOqQVb4a9Y0n87MwlAN5cg9SS0WuDWs/73/3jLPIFAw/cMNXVv2et51jP+aWcbxsaAaXXzbGzywB2zpW9ZmoIu4bi+N/HZy77f8yQtiYUkqql6eUMQzU8sR0eiGIoEcGrlzZRKLLLLpFbOIeU+hHnkDqvvTmkIbt8utcYkPqAXVZXJ0PafsmumXlqp2S32rIvAPDGK7NY3jR/n5e77FpB0Hm95uV3n7uAbDqO2/aNduXvZdI7M7K1FA2Fiys53y75AgBjyRjCIcGTpxcAAAezKfu+cEjw9ht348cnZrFcsVxJoag4h7RFmXS87rJSRdW4qRFglu2eu7TJpXeIXFR+csqOptQv2GXXeeE2ntNoWFw7PvPMzAdKJbu1A5XNNkt2O8mQlkp2d76433nLHvvDx8slu1YQ9NL8OraLBh4/OYe7jox37QM1azeYqd/Y6Pi5ZRQMhSkfZ0hDIUE2HcPZxU2IlJplWd5xyzS2iwrffnZnlrTANTBblk3H6l4EMYzGTY0As2zXzJBy6R0it+wo2WU2ivpE2Gqmw9ekY+ymRi08pZGQuLIGKcCA1BeaKdnNdVyy61yGdHwwjrfoNTonPFyym4pHMDmUwEtz6/jZmUtYzRXw1mucXXu0XLaJjqevLGzgn3/xSUwNJ3DPNbu6NpZ+YJXt7h4euOxiy3W7h3Agk8R3nr2w43Zm51qXaVCy20xTI8Cc22vOIWWnYyK3lF8MYjaK+gUzpM5rZ15uJBxy7YJxpPFDqN8NJSKIhqVuyW5u22grIE3FIhBpM0NqBaRVrng9fPdVmB4d8HSGFDCzpC/Nr+FHJ2YRDQt+5crxrv0t68LD/Grt/fyTk7NY2tjGlx9+vW/XILVMDCYArOwo17WICO65dhce+79nsLZVQDpuftQVDWbnWpVNxzG7aq7rWq3zXjPrkAJmye56voi5tTwvChC5JLRjDqmLAyEqY88h5bVKx1jv9VY65rJklzoiYjUeqVOy2+Yc0lBIMBiPtNfUSJfsVrvide3uIfzB26/z/NWwQ+MpvDS3jh/88iJuPzhmBz7dEIuEkIqFsVInWz27uoWQAIcn0l0bR78Y1xczDmSTVe+/59pJ5IsGfnJizr7NXHKEH3utmB4dQG67+rqugPk+b+Z9bHU/PrOwzosCDhKRvSLyIxF5XkSeE5GP6NvHROT7IvKC/rc7k9vJU8ovHrE8kvqFnc3ja9Ix7TynkRCbGlGHMql43WVfNrfbm0MKmI2N6gVBtdTLkPrFwWwKy5vbeHFuHfdd353uuuVS8QjWt2pfHLi4kkM2HQ/EPEmrZPdgtnrwfdv+UYwmo/j+L0tlu8yQtm56xFqyZbPq/c1nSM3fs7SxzZJdZxUAfFQpdQ2A1wH4kIhcC+ARAD9USl0J4If6Zwq4cFn2w+sXhMk/rNclX5POKXXZbf7/MENKHcsOxnFxpXaGNJdvbw4pYM4j7ahk18cfMIfGzXLRkAD3XTfZ9b+XikfqrkM6u7qFXT5ef7TcxJAVkFbPkIZDZgn1U6cv2bdtG8aOEzJqbM+o+fyeW6oVkDZ3ErE/UyqtZsmuc5RSM0qpn+vvVwE8D2AawIMAHtMPewzAO9wZIfWTHRlSHx+byVuYIXWe3dSohff522/ajV+9bW+3hlQXA1KfOJhJ4uX5dShdJlvJLNltb3cPJaKONjXyk0M6O/fag5merKmaiofrZkhnV7Y83SiqFdftHkIqFsZ1u4drPuamPcM4t7RpN4IqGgpRH78eu2F61MqQblS931CN1yEFgLRuAgb4+zPBTSJyAMAtAJ4AsEspNQOYQSuAqh3XROR9IvK0iDw9NzdX7SHkI2HOIaU+ZFXN8NjgHOvCbyvrkD548zTee+ehbg2pLgakPnF4Io21rQIurOQuu2+7aKBgqN5nSGss++Ine0YHcNv+UTx0x4Ge/L1ULIK1egHpag4TAcmQ3rZ/DM/9x/vqZoRvmDaD1W8eO493/Pk/YGYpxzmkLRoeiGIwEem4ZBcozW2OsnOF40QkDeDrAB5WSq00+/+UUo8qpY4qpY6Oj3evKRv1h50BqX+PzeQtVvDUSgMeqs96f3vlHJxnBT5xeGIQAHBqdu2y+za3zRLP9ueQttnUSGdI/XzQi4RD+PoH7sB913e/XBcwS3Y38tX3xXbRwMJ6PjAZ0mZcPz0MEeAz3z2BY2eXkC8anEPahj2jSZyrEZA229QIAK6wS9y5D5wkIlGYweiXlFLf0DdfFJEpff8UgFm3xkf9gyW71I/YZdd51nPplcMtd71PWJmHagFpTs85bKfLLuBAUyMe9BxjNjWqPod0fm0LSpXmVpL5fB0eT9sXZQBwDmkbzDVEncuQLq7Xnu9OrREzpfB5AM8rpT5bdte3ADykv38IwDd7PTbqP+UXj3hspn7BOaTOs6rBvPKcMiD1iWw6huGBKF6okyHttGS31vzUWor64V55M3hBOh6uWbI7q5ta7RoMRslus27cM7LjZ2ZIW2cGpBtVPwOKRgsZUh2QnlmoPh+V2vIGAL8F4C0ickx/PQDgUwDuEZEXANyjfyayPwNZHkn9wgqe2GXXOda5t1cqkhxZNFFEPgbgjwCMK6Xmnfid1BoRweGJdN2S3fYD0iiKhsLmdhHJWPMvGatklxkp5yRjEWxUCUg/+KWf4eRFc98zQ7rTu26bBgAcP7eEkxfXuORIG6ZHBrCeL2J5cxsjydiO+wylmn5OrQzpQp0lqqg1Sqm/B1DrQ/atvRwLeUMoJEALlQ1E3cYMqfMiHltKp+MzMxHZC/Pq6yudD4c6cXg8jRerBaS6ZDfRZsnu0IAZhLY6j7QQgHVIe81a9sUK9i1PvLRoX4yYYIZ0hzuuyOKPf+0m7Bsz5y9yyZHWWWuRVlv6pWiopkv/xtPmxZJ03JFroUTUhrBwvh71F3vNTI8ET15gL/vikafUibOCPwHwb8H5Ka47kE1hYT2Pta3CjhO+TjOkIwNmRmRxPd/SGpeGLu9jQso56bi5Dze2i/Y+zm0X7YyTiFm+TZfbo5cv8Ur5Sj/J6EBysUpms6iaP4kQEXzlX73eXv6FiHrPykbxs5D6hZ0h9Ur05AHWBSevPKcdhQoi8k8BnFNKPdPEY7nWWZft0qWasxVLv+Q6DEj3jpkn8q8stjbvq8gMqeOskunyst2Len+PJKPYP5ZEhJe9q7IC0rWt1ht0Bd1YqnRRqpJhKLSSdL794Bj2ZZJODY2IWhRiQEp9JsySXcdZ83K9Mle8YYZURH4AoNqaFh8H8O8AvK2ZP6SUehTAowBw9OjR1rrjUFOsUs3Z1S0cGk/bt2902GV335h58ni23YDUI1dnvMDKiq5tFexV7meWzYD0s792E27eO+rSyPqfFZBeWL58rV6qL6MD0oW1KhnSFkp2ich9YWajqM94bb6jF1gXir3ylDYMSJVSd1e7XURuAHAQwDM6+t4D4OcicrtS6oKjo6SmWM1sZld3LqlwacPMCI0MRNv6vSPJGIYSkYYZ0tmVHJ6bWcFdR8xQyVAKIt65OuMFKR2Qli/9MrNszuvbn0nZmSy63OSwDkhXGJC2angginBIsFBluRZDKWZaiDyE8/Wo35SWKHF5ID4SDgdk2Rel1HGl1IRS6oBS6gCAVwHcymDUPdZyH5Ulu4s6qzHaQbCyL5NsGJB+7v+8hH/xxafsDFTBUFxiw2EpneVez5dKdq0MKefl1Wdl+g9kUi6PxHtCIcFoMlZ9DikzpESeYjc18siJKvlflFl7x3lt2RdONvORoYEIYpHQZRnSxfUtDCUiiHYwt3DfWBKvNFg78OX5dQDAd56dAWDOLfPKG8ErShnSUkB6YTmHoUTEvo+qG0vF8K0PvwF/+K4b3R6KJ2VSseolu6r5dUiJyH12hpRvW+oT1muSFXXOsU75vdJY1LFh6kwp1yB1kYhgYjB+WYZ0YT1vd8ls196xJF69tGnPC63mtA5Yv33cTJIzc+K8VNkcUsvMcg679bIcVN+Ne0YYuLdpLFU9Q2pwPUMiT2HJLvUbaw4pzxmdY5VBeyUx5JG4mZo1MRivMoc03/Hcwn1jSeSLht3RtZJhKLyyuIFENISnzixidjWHouKJqtNS1rIv+Z1zSCeHWa5L3TWWjtnLC5UrKl54IvISdjSlflOaQ8rXpFMCtewL9Z+JwcRlQePCWh6jyc4C0v1j5ry7MzXKdi+s5JAvGLjn2kkoBZy6uGaW7HrkjeAVtUp2pxiQUpeZJbtVmhoZ3rkCS0SlUl2vnKiS/0WYtXecdVz2Shk0A1Kf2TV0eYZ0cT1vL9vQLmst0rOXqgekpxfM+aNH95vLjsytbaGo2NTIaanYzpLdrUIR82t5TA6xZJe6K5OKYyVXwHbR2HG7WZrv0qCIqGURe31ClwdCpJWWInJ5ID4S8VjnYu56n5kYSmA1V0Bu2yzpVEqZJbvpzgLS8UFzDmq1piZAKXN6mw5I59fyKDJD6rhwSJCIhuyS3dkV8+LD1AgzpNRd1mfIpYqyXZbsEnlLiB1Nqc9YTTcjXunA4wF2UyOPXHninvcZK3C0AhUzo6E6zpAmYxEMRMNVS/YAMyCNhUO4enIQkZBgYW3LzJx45I3gJel4xM6Qnl8y1yBlyS51m/UZUjmPlN20ibzFnlvG9y31iSvGU/j3/+QavPnIuNtD8Q27qZFHLjwxIPWZXXotygt6HqnVFbPTpkYAkB2MYb5mQLqOPWMDiIRDyKTNxxUNXoHthlQ8Ys8htfYzA1LqNuszpLJKghlSIm/x2okq+Z+I4HfeeAiDiajbQ/GNUobU3XE0iwGpz+wbSwIwA0TAXIMUcCYgzaTiVbtsAuaSLwcyZuOjbDqO+bU8DKU8s/6RlyRjEaxvmSW7M8tmQDo5zDmk1F2lDOnOi1JFZkiJPMWaU8b3LZF/We9vr1wwZrjgM3tGBxAOid1kyMpmZFKdrUMKANl0DPNV5pAqpXBmYR37M2YwnEnHWbLbRel4GGtb2wDMDruDiQjSXFuTusxay7jyM8DgesNEnsIGMkT+V2pe5o3jMz+OfCYaDmHv6ABOz5tNhuyS3Q6bGgE6Q1qlZHdubQsb+WJZhjRmNzXiiarzJocHcE7PHT2/tMlyXeqJkYEoIiG5rGyfJbtE3mK9X5khJfKvkMfmijMg9aGD2RRemtcZUisg7XAdUgDIpGNYXM/DMNSO21/RHXb36QzpeDpuLvvCgLQrDmZTOHdpE/mCgQsrOUyxXJd6IBQSc354xbJSXIeUyFsYkBL5n5Uh9cppOANSHzqQTeHMwjqUUlhYy2MgGsZALNzx782k4ygYCiu57R23n9YBqZUhzaRjyBcM3Svv7QAADi5JREFULG9u84DXBQezSRgKeGVxAzPLOWZIqWfGB82LTeXMDKlLAyKilnltbhkRtc5uauSR9zlPI3zoYDaFjXwRs6tbeGl+DQeyKUd+b1aX/VaW7J1ZWEc4JJgeGdCP00vPrOZ4wOsCK/B/4eIq5te2MMmAlHrEbFh2eVMjr5QEEREQYYaUyPes97dX3ucMSH3ooA5AX55fx4kLqziyK+3I781WNDXZzBfxyf/1HJ58eRHTIwOIRcyXk9X8ZHZliwFpF1j794mXF6EUl3yh3hlPxzFXVrJrle975QosEZU3NeL7lsivrJJdr1wwZmtOH7IyaM+cXcLMcg5HJocc+b2Z9M51CJ86vYgv/sNpAMAbr8zaj7MyqatbBR7wumAkGcNoMoq/PzUPAJxDSj2THYxjYc2cRx4KCYrKDEi9csAjovLMicsDIaKuCYV2/tvvPDJMasX0yABGk1H81RNnAABXTw468nutpWOsdQitpWWA0vqngJlFsfBEtTsOZFM4NbuGZCyM63Y7c8GBqJFxPY98adOcR15khpTIcyJ6IVK+b4n8y2vNyxiQ+lAoJLj3ukmcXTSXBjniUEA6moxCpFSy+/L8OpKxMB65/2r85uv224/LpONIREP2WMh5B3UW/L1vPGSXSBN1W3bQfK09fnIOPz4xC8PKkPJ9TuQZdlMjj5yoElHrvDZXnAGpTz1wwxQAYDARcWyOYSQcQiYVw09fXEBuu4gzCxvYn0nh/W+6AtdMlbJ04ZDgql1mEMwDXnfccTiLqycH8b47D7k9FAoQq/rhkW/8Ah/76jN2hpTvcyLv4BxSIv/zWjdtBqQ+9forMhhJRnFk1yDEwZPFj77tCJ48vYiPfvUZnJ5fx8FssurjrDJhr7wRvObdt+3Bdx6+E6k4p4FT74wPmvPDc9sG5tfyWNTrHLMSgsg7rOMyryMR+ZfV1Mgr73OezfpUNBzCn73nFqQTzu7iX799H04vrONzj78EEcG9109WfdzVupGSdcJKRN43nt5ZbXHy4hoAIOyRAx4RlSoaeMGYyL+sZkZeqWBihtTH7rxqHLfuG3X8977zlmkYymxoYs1lrGRlSE/Nrjn+94nIHUMDEcTCIXtuysmLqwB4YkvkJXbJrkdOVImodXZTI48cnxmQUsuO7Bq018I8kK0ekFqNlPJFo2fjIqLuEhHsHRvA/TdMIR4J2QGpVw54RFR6v/J9S+Rf7LJLvicieOCGSYjADkwrsfMrkT/91e+8Fv/pndfjYDaFExd0htQjBzw/EpEviMisiDxbdtvNIvJTETkmIk+LyO1ujpH6i9e6bxJR68IeW2+Yc0ipLR9882G84YosxgdrB56f++2jGEvFejgqIuq2qeEBAMDhiTS+fXwGADMtLvtvAP4zgL8su+3TAD6plPpbEXlA//zm3g+N+hGXfSHyP6upkVem1DAgpbak4hHccThb9zH3XLurR6Mhol47PJGGXvWFJ7YuUko9LiIHKm8GYK3FNQzgfC/HRP2tNLfM5YEQUddY728nV9roJgakRETUsvKGaV65AhsgDwP4roh8BubUnDtcHg/1kQjXISXyPa81L+P1MSIiatlrD43Z37Nkt+98AMDvKaX2Avg9AJ+v9UAReZ+eZ/r03NxczwZI7glxDimR75WaGrk8kCYxICUiopbFI2FctSsNAPDI8S5IHgLwDf39VwHUbGqklHpUKXVUKXV0fHy8J4Mjd5WanfCdS+RX8UgY/+beI7j/hkm3h9KUjgNSEfldETkhIs+JyKedGBQREfW/e68zD3QXV3Iuj4QqnAfwJv39WwC84OJYqM+EWbJLFAgfuuswDk8Muj2MpnQ0h1RE7gLwIIAblVJbIjLhzLCIiKjfffDNh5EvGHjXrXvcHkpgichfw+ygmxWRVwH8AYD3AvhTEYkAyAF4n3sjpH7z9pumkIqHGZASUd/otKnRBwB8Sim1BQBKqdnOh0RERF4wEAvj9x+4xu1hBJpS6tdr3HVbTwdCnnF4YtAzWRMiCoZOS3avAvBGEXlCRH4iIq+p9UA2TiAiIiIiIqJyDTOkIvIDANVmxH5c//9RAK8D8BoAXxGRQ0opVflgpdSjAB4FgKNHj152PxEREREREQVLw4BUKXV3rftE5AMAvqED0CdFxACQBcAUKBEREREREdXVacnu/4TZwQ8ichWAGID5TgdFRERERERE/tdpU6MvAPiCiDwLIA/goWrlukRERERERESVOgpIlVJ5AL/p0FiIiIiIiIgoQDot2SUiIiIiIiJqCwNSIiIiIiIicoW4MeVTROYAnHHgV2URzCZKQdzuIG4zEMztDuI2A8Hcbie3eb9Satyh3xVIPDZ3jNsdHEHcZoDbHTRObHdTx2ZXAlKniMjTSqmjbo+j14K43UHcZiCY2x3EbQaCud1B3OYgCOp+5XYHRxC3GeB2uz2OXuvldrNkl4iIiIiIiFzBgJSIiIiIiIhc4fWA9FG3B+CSIG53ELcZCOZ2B3GbgWBudxC3OQiCul+53cERxG0GuN1B07Pt9vQcUiIiIiIiIvIur2dIiYiIiIiIyKMYkBIREREREZErPBuQish9InJCRE6JyCNuj6dbROS0iBwXkWMi8rS+bUxEvi8iL+h/R90eZ6dE5AsiMisiz5bdVnU7xfRnet//QkRudW/k7auxzZ8QkXN6fx8TkQfK7vt9vc0nRORed0bdORHZKyI/EpHnReQ5EfmIvt23+7vONvt6f4tIQkSeFJFn9HZ/Ut9+UESe0Pv6yyIS07fH9c+n9P0H3Bw/tS4ox2YgGMfnIB6bgWAen4N4bAZ4fO6b47NSynNfAMIAXgRwCEAMwDMArnV7XF3a1tMAshW3fRrAI/r7RwD8odvjdGA77wRwK4BnG20ngAcA/C0AAfA6AE+4PX4Ht/kTAD5W5bHX6td5HMBB/foPu70NbW73FIBb9feDAE7q7fPt/q6zzb7e33qfpfX3UQBP6H34FQDv0bf/BYAP6O8/COAv9PfvAfBlt7eBXy3t78Acm/X2+v74HMRjc53t9vvndeCOzQ222+/7u6+Oz17NkN4O4JRS6iWlVB7A3wB40OUx9dKDAB7T3z8G4B0ujsURSqnHASxW3FxrOx8E8JfK9FMAIyIy1ZuROqfGNtfyIIC/UUptKaVeBnAK5vvAc5RSM0qpn+vvVwE8D2AaPt7fdba5Fl/sb73P1vSPUf2lALwFwNf07ZX72noNfA3AW0VEejRc6lzQj82Az47PQTw2A8E8Pgfx2Azw+Kx/dP347NWAdBrA2bKfX0X9F4+XKQDfE5Gficj79G27lFIzgPlGAjDh2ui6q9Z2+n3/f1iXv3yhrNzLl9usSz5ugXllLhD7u2KbAZ/vbxEJi8gxALMAvg/zavKSUqqgH1K+bfZ26/uXAWR6O2LqgG9et00K6vE5EJ/VNfj689oSxGMzwOMzXDw+ezUgrRaR+3X9mjcopW4FcD+AD4nInW4PqA/4ef//FwBXALgZwAyAP9a3+26bRSQN4OsAHlZKrdR7aJXbPLntVbbZ9/tbKVVUSt0MYA/Mq8jXVHuY/tc32x1QQdt/PD7v5Pf97/vPayCYx2aAx2e4fHz2akD6KoC9ZT/vAXDepbF0lVLqvP53FsD/gPmCuWiVReh/Z90bYVfV2k7f7n+l1EX9AWEA+BxKZSC+2mYRicL84P+SUuob+mZf7+9q2xyU/Q0ASqklAD+GOUdlREQi+q7ybbO3W98/jObL5sh9vnvd1hPg47OvP6trCcLndRCPzQCPz/1wfPZqQPoUgCt1J6gYzMm133J5TI4TkZSIDFrfA3gbgGdhbutD+mEPAfimOyPsulrb+S0Av607vL0OwLJVTuJ1FfMv3glzfwPmNr9Hdzk7COBKAE/2enxO0HMOPg/geaXUZ8vu8u3+rrXNft/fIjIuIiP6+wEAd8Ocn/MjAO/WD6vc19Zr4N0A/k4p5ckrzwEViGMzEPjjs28/q+sJwOd14I7NAI/P+nv3j8/Ndj/qty+Y3b1Owqx3/rjb4+nSNh6C2cnrGQDPWdsJs2b7hwBe0P+OuT1WB7b1r2GWRGzDvArzL2ttJ8yygT/X+/44gKNuj9/Bbf7vept+od/8U2WP/7je5hMA7nd7/B1s96/ALPP4BYBj+usBP+/vOtvs6/0N4EYA/09v37MA/oO+/RDMA/gpAF8FENe3J/TPp/T9h9zeBn61vM99f2zW2xmI43MQj811ttvvn9eBOzY32G6/7+++Oj6L/iNEREREREREPeXVkl0iIiIiIiLyOAakRERERERE5AoGpEREREREROQKBqRERERERETkCgakRERERERE5IpI44cQkRNExGqdDgCTAIoA5vTPG0qpO1wZGBERUUDx2EzkPi77QuQCEfkEgDWl1GfcHgsRERHx2EzkFpbsEvUBEVnT/75ZRH4iIl8RkZMi8ikR+Wci8qSIHBeRK/TjxkXk6yLylP56g7tbQERE5C88NhP1BgNSov5zE4CPALgBwG8BuEopdTuA/wrgd/Vj/hTAnyilXgPgXfo+IiIi6g4em4m6hHNIifrPU0qpGQAQkRcBfE/ffhzAXfr7uwFcKyLW/xkSkUGl1GpPR0pERBQMPDYTdQkDUqL+s1X2vVH2s4HSezYE4PVKqc1eDoyIiCigeGwm6hKW7BJ50/cAfNj6QURudnEsRERExGMzUVsYkBJ5078GcFREfiEivwTwfrcHREREFHA8NhO1gcu+EBERERERkSuYISUiIiIiIiJXMCAlIiIiIiIiVzAgJSIiIiIiIlcwICUiIiIiIiJXMCAlIiIiIiIiVzAgJSIiIiIiIlcwICUiIiIiIiJX/H+hrC3bup20FAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "x0 = np.array([[0,1,25]])\n", - "T = 300\n", - "x,u,w,state = MJLQBarro.compute_sequence(x0,ts_length=T)\n", - "\n", - "# Calculate taxation each period from the budget constraint and the Markov state\n", - "tax = np.zeros([T,1])\n", - "for i in range(T):\n", - " tax[i,:] = S.dot(x[:,i]) + M.dot(u[:,i])\n", - "\n", - "#Plot of debt issuance and taxation\n", - "plt.figure(figsize=(16,4))\n", - "plt.subplot(121)\n", - "plt.plot(x[0,:])\n", - "plt.title('One-period debt issuance')\n", - "plt.xlabel('Time')\n", - "plt.subplot(122)\n", - "plt.plot(tax)\n", - "plt.title('Taxation')\n", - "plt.xlabel('Time')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can adjust the model so that, rather than having debt fluctuate around zero, the government is a debtor in every period we allow it to borrow. To accomplish this, we simply raise $ p^t_{t+1}$ to $\\beta + 0.02 = 0.97 $. " - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Text(0.5, 0, 'Time')" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6IAAAEWCAYAAAB8PCrNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzsnXeYY2d1/79Hmt77bJnZne2212XXHRcwNsaOMc3B1BBqgDRIM+0HCYRQEiCQUEKAAA44mBKIcQHbuGAb22vv2tv77vQuadS79P7+uPeqzKhcSbdJcz7PM8/MXN1ydPt5zznfQ0IIMAzDMAzDMAzDMIxR2Mw2gGEYhmEYhmEYhlldsCPKMAzDMAzDMAzDGAo7ogzDMAzDMAzDMIyhsCPKMAzDMAzDMAzDGAo7ogzDMAzDMAzDMIyhsCPKMAzDMAzDMAzDGAo7ogxTBCLaQER+IrKXsex1RDRVwvyPE9F7Vc4riGhrqTZlLP9rInpHucszDMMwDJMNEf2AiD5sth0MUw2wI8oYAhG9k4gOEVGQiOaI6D+IqMtsu9QghJgQQrQJIRJm26IWeX8/VWgeIcQfCCHuNMomhmEYhtEDebBY+UkSUSjj/7fpuN0PENFvM6cJId4phPgXvbbJMLUEO6KM7hDR3wL4ZwB3AOgEcCWAjQAeJqIGM20rBhHVmW0DwzAMwzD5kQeL24QQbQAmALw6Y9pdZtvHMExu2BFldIWIOgB8GsBfCiF+I4SICSHGALwRkjP6R/J8nyKinxLRfxORj4iOENGlGetZR0T/S0SLRDRKRB8ssM0ROW31fUQ0Q0SzsjOsfG4joo8S0Rkicsrb7Vm27HuIaALAoxnT6jJs+RURuYjoNBH9Sca6m+W0nCUiOgrgsiL750YiOk5EHiL6OgBa9vm7ieiYvL4HiWjjslXcQkRnichBRF+Uv9u5AL4F4CXyaLA7z7ZTacBEtJWIfifb4SCin8jTiYi+QkQL8mcHiej85cvL/2dFYYno34hokoi8RLSPiK7N+KzY8R4mol/Ix9sp7xu1+4RhGIZhUhDR1US0R36OzcjPNeWZ/nL5GbdW/v8y+fmyWf7/7+X3Dh8RHSaiV8nTdwP4KoDr5GftnDz9biL6RMa2/zzjfeMXRDQoT2+S3y3+RP58iYi+YuyeYRhzYUeU0ZurADQB+EXmRCGEH8CvAdyYMfk1AO4G0AXgVwC+DkiOI4B7ARwAsB7ADQD+iohuKrLtlwPYBuCVAD5KRK+Qp38QwOsAvAzAOgBLAL6xbNmXATgXQK5t/BjAlLzsGwB8johukD/7BwBb5J+bAOStwSSiPgD/C+ATAPoAnAFwdcbnrwPwcQC3AegH8KS87UxeD+BSABcDeC2AdwshjgH4AIBn5NFgNSnQnwHwEIBuAEMAviZPfyWAlwLYDum4vAmAU8X6AOB5ALsA9AD4HwA/I6KmjM/zHW87gPsAjAMYgXTM75Y/U7NPGIZhGCaTGIC/gPQ8uhbAqwG8FwCEEI8B+CGA7xFRi/z3HUKIs/KyJyC9y3RCyu66m4j6hBAvAvgrAI/Lz9o1yzdKRLcA+CSkZ/V6AA4AP1o22x8A2A3pOf4uIrpOqy/NMFaHHVFGb/oAOIQQ8RyfzcqfKzwlhHhArsX8IYCL5OmXAegXQvyjECIqPxy+A+DNRbb9aSFEQAhxCMD3AbxFnv5+AP9PCDElhIgA+BSAN1B2Gu6n5GVDmSskomEA1wD4iBAiLITYD+C7AN4uz/JGAJ8VQriEEJMA/r2AfbcAOCqE+LkQIgZpZHUu4/P3A/i8EOKYvP8+B2DXsgjgP8vbmpCXfwvKIwYpQr1O/l5PZUxvB3AOAJJtmVWzQiHEj4QQTiFEXAjxZQCNAHZkzJLveF8Oycm/Qz4Gmfao2ScMwzAMk0II8ZwQ4nkhREIIcQbSc/tlGbN8HNIg7B4AJ4QQ381Y9idCiFkhRFII8UMA0wAuUbnptwH4thDioBAiDODDAG4gokyn9XNCCK8QYhTAE5AGcBlmVcCOKKM3DgB9lLvWcq38uUKmExYE0CQvtxHAOiJyKz+QHhpKekumSMGGjHVMZvw9Dsm5gby+X2as6xiAhLK+HMtmsg6ASwjhW7bu9RmfL99uPrLmFUKIZctuBPBvGXa6IKXurs+YJ993LJUPy+t+Tk6Tfbds06OQIpXfADBPRN8mKd26KET0t3IKrUe2vxPZAw/5jvcwgPE8gxdq9gnDMAzDpCCi80hSip8nIi+Av0fG80gelP5vAOcD+NKyZd8jl6Uoz52tyH6WFWIdMt4DhBBuAF5kP7OWPwvb1H8zhqlu2BFl9OYZABFIqZQpiKgVUjrKIyrWMQlgVAjRlfHTLoS4BcgWKZAjgwrDGX9vADCTsb4/WLa+JiHEdMb8Io8tMwB6iKh92bqVZWdzbDcfWfMSES1bdhLA+5fZ2SyEeFrFd8xnf06EEHNCiD8RQqyDFHX8JsmtYYQQ/y6EuATATkgpunfIiwUAtGSsJjXCK9eDfgRShLhbTg/2YFkNbB4mAWzIM3ihZp8wDMMwTCbfAfACgC1CiA4A/4iM5xERjQD4GIA7AWTWj26HVKryPgA98rPsdMayxZ61M5AGUJXtdALoQPqdgWFWNeyIMroihPBAEiv6GhHdTET18g3/Z5DqLH+oYjXPAfAS0UdIEgOyE9H5RFRQCAjAJ4mohYh2AngXgJ/I078F4LNKOicR9RPRa1V+n0kATwP4vCw0cCGA9wBQVPl+CuBjRNRNREMA/rLA6u4HsJOIbpMfeh9EhjMn2/kx2X4QUScR3b5sHXfI2xoG8KGM7zgPYIhUqhIT0e2yvYBUMysAJGTRhiuIqB6S4xmGFD0GgP0AbpP38VZ5Pyi0A4gDWARQR0R/D+nhq4bnIDnpXyCiVnk/K7WzavYJwzAMw2TSDsAjhPDLz49MkUEbpGjo1wC8G4AfUsQUkKKTSUjPMhsRfQBSRFRhHsCw/IzMxY8B/In8ztIEqcb0USHEXJ75GWZVwY4ooztyP62PQ0p38UKqwZgEcIOcDlNs+QQkYYFdAEYhpfN+F1KqZyF+B2nk8hEAXxJCPCRP/zdI4jgPEZEPwLMArijhK70FkojODIBfAvgHIcTD8mefhpSGMwpJ/Cevoy2EcAC4HcAXIAkAbQPw+4zPf4m0MIIXwGFIUeRM7gGwD5JTeD+A/5KnPwrgCIA5InKgOJcB2ENEfkj75kNyvUoHpJHkJfl7OZFOW/oKgCikB/GdSDvjAPAgJDGqk/JyYeRPd84i43hvhSTDPwVJJEntPmEYhmGYTP4awHvlZ9w3kB60BaQsn2YAnxFCJCGJDP45EV0hhHgB0gDoXkgDpJvkvxV+A2AMwAIRTS3fqBDiPgCfh/RcnYE02Pz25fMxzGqFpLI0hqkd5IjrKID6PHWGDMMwDMMwDMOYCEdEGYZhGIZhGIZhGENhR5RhGIZhGIZhGIYxFE7NZRiGYRiGYRiGYQyFI6IMwzAMwzAMwzCMoeTq06cbfX19YmRkxMhNMgzDMDXMvn37HEKIfrPtqGb42cwwDMNoidpns6GO6MjICPbu3Vt8RoZhGIZRARGNm21DtcPPZoZhGEZL1D6bOTWXYRiGYRiGYRiGMRR2RBmGYRiGYRiGYRhDYUeUYRiGYRiGYRiGMRR2RBmGYRiGYRiGYRhDYUeUYRiGYRiGYRiGMRR2RBmGYRiGYRiGYRhDYUeUYRiGYRiGYRiGMRR2RBmGWdWcnPfh96cdZpvBMAzDMIzGLPoiePDInNlmMHlgR5RhmFWLEAIf/PGLePt/7cEzZ5xmm8MwDMMwjIb8fN8UPvCjfYjGk2abwuSAHVGGYVYtR2a8OD7nQ53dhr/88YsIRRNmm8QwDMMwjEbEEkkIASSFMNsUJgfsiDIMs2r56d5JNNTZ8JU37oLDH8ETpxbNNolhGIZhGI1QHFD2Q60JO6IMw6xKfvD7UfzPngnccv4avHLnIDqb67mOhGEYhmFqiGRSdkTBnqgVYUeUYZhVx4sTS/jUvUdx3Y5+fPq156PebsMN5w7gkWMLiCW4joRhGIZhagHZD039ZqwFO6IMw6w67tozgdYGO7765t3obK4HALzyvDXwhGLYN75ksnUMwzAMw2iBkprLNaLWhB1RhmFWFZ5gDPcemMFrd69HW2NdavruDV0ApHYuDMMwDMNUP0okVHCykyVhR5RhmFXFg0fnEIkn8ZbLNmRNH2hvREuDHaOOgEmWMQzDMAyjJYIjopaGHVGGYVYVL4wvobO5HjvXdWRNJyJs7G3FuDNokmUMwzAMw2hJSjXXZDuY3LAjyjDMquLFCTd2DXfBZqMVn23qa8EYR0QZhmEYpiZQ9Ac5ImpN2BFlGGbV4A3HcHLBh4s3dOf8fKS3FROuIOKsnMswDMMwVQ+LFVkbdkQZhlk1HJz0QIi0MNFyRnpbEU8KTLtDBlvGMAzDMIzWKDWi7Idak6KOKBENE9FjRHSMiI4Q0Yfk6T1E9DARnZJ/5w4xMAzDWIR940sgAnblc0T7WgEAYyXWifojcTx92lGxfQzDMAzDaEe6jyh7olZETUQ0DuBvhRDnArgSwJ8T0XkAPgrgESHENgCPyP8zDMNYkngiiZ+/MIlLNnSjo6k+5zwjfS0AULBO9OGj87jyc49gwRdOTXv/D/fird/dA284pq3RDMMwDMOUTZIjopamqCMqhJgVQrwg/+0DcAzAegCvBXCnPNudAF6nl5EMwzCV8uCReUy6QnjvtZvzztPf1oiOpjocm/Xm/DwST+Af7zuCOW8Yvz40l5r++9NOANynjGEYhmGsBEdErU1JNaJENAJgN4A9AAaFELOA5KwCGMizzPuIaC8R7V1cXKzMWoZhmDIQQuDbT5zBSG8LbjxvMO98RITLRnrw3Jgr5+ffePQ0Jl0htDfV4YFDsyu3wwLxjMEQkZ2IXiSi++T/f0BEo0S0X/7ZZbaNDMMwZpFMckTUyqh2RImoDcD/AvgrIUTucEEOhBDfFkJcKoS4tL+/vxwbGYZhKuK5URcOTHnwnms3w56jbUsml2/qwdnFABZ9kazp3/rdGfz7o6fx+t3r8a6rN+G5MdeKeZL8oGOM50OQMpUyuUMIsUv+2W+GUQzDMFaAVXOtjSpHlIjqITmhdwkhfiFPnieitfLnawEs6GMiwzBMZXznybPoaW3AGy4eKjrvFZt7AUjOaybf//0ort3Why/dfhFu2jkIIYDfnczO8uAHHWMkRDQE4FUAvmu2LQzDMFYknZprrh1MbtSo5hKA/wJwTAjxrxkf/QrAO+S/3wHgHu3NYxiGqYylQBS/PbaAt16+Ac0N9qLz71zXgZYGO54bdaam+cIxzHsjeMmWXththB2D7Wios+HkvA+JjKcb+6GMwXwVwIcBLK9O/iwRHSSirxBRY64FuWyGYZjVQLp9Cz+grYiaiOjVAN4O4PqMmpNbAHwBwI1EdArAjfL/DMMwluLgtAcAcNXWXlXz19ttuGRjN/ZkRETPLkoqulv62wAAdXYbNve14uS8Dw5/Oj2XH3SMURDRrQAWhBD7ln30MQDnALgMQA+Aj+RanstmGIZZDaRTc002hMlJXbEZhBBPAchXVHWDtuYwDMNoy8FJNwDg/PWdqpe5YlMPvvzwSbiDUXS1NODMoh9A2hEFgO2D7dg3voQ5T7qNCz/oGAO5GsBr5IHhJgAdRPQjIcQfyZ9HiOj7AP7ONAsZhmFMRnku80CxNSlJNZdhGKbaODjtweb+1ry9Q3Nx+aZeCAE8P7YEADiz6EedjbCxtyU1z/bBNky7Qzjr8KemcY0oYxRCiI8JIYaEECMA3gzgUSHEH2VoNxCktmqHTTSTYRjGVDgiam3YEWUYpqY5OOXGRUNdJS1z4VAnGupsqTrR0wt+bOhtQb09fcvcNtgOAHjylCM1jZ9zjAW4i4gOATgEoA/AP5lsD8MwjGmwaq61KZqayzAMU63Me8OY90ZwQQlpuQDQVG/H7uGuVJ3omcVAVlouAGwbkP5/KsMRTfKQK2MCQojHATwu/329qcYwDMNYiKQs5cZ+qDXhiCjDMDXLkRlJqOiCodIcUQC4cnMvDk97MLUUxLgzgK0D2Y7oxt5WNNTZsODLFCuqzF6GYRiGYbSDI6LWhh1RhmFqlpPzUv3mdjmNthRes2sdkgL4s7teQCwhcNWWbNVdu43wsT84B688bxDnr+8AAAgLJOe6AlGcWfQjEk+YbQrDMAzDmEparMhcO5jcsCPKMEzNcmrej8GORnQ2qxcqUtjS34bdG7pwcMqDc9a045qtfSvmedfVm/DtP74U771mMwDzxRA8wRhe+i+P4YYv/w5//ZP95hrDMCZwcMqNUJQHYRiGkRAcEbU07IgyDFOznF7wYdtA6dFQhTdcMgQAeM81myCJkOZG+cjsB93/vjAFfySOrQNtODLjNdUWhjGaYDSO2775NH7x4pTZpjAMYxE4NdfasCPKMExNkkwKnFrwY9tgW/GZ8/DGS4fx9bfuxm0XDxWcT3FSzexTJoTAXXvGsXtDF27euQZTSyHEEknT7GEYo4nGk4gnBYIRa0ZEx50BPH5iwWwzGGZVkVBSc801g8kDO6IMw9QkM54QgtFERRHRersNt164DnZb/mgoACgfmzngemDKgzOLAbz18g0Y6WtFIikw6QqaZxDDGEwiae3Ix/d/P4a//ekBs81gmFWFMkBs5kAxkx92REskGk9i75jLbDMYhinCqQVJqKiSiKhabHJE1Mwa0UNTbgDA1Vv7sKmvBQAw5gyYZxDDGIxy/Zldq52PWCLJWQoMYzDp1FyTDWFywo5oidz59Bje8K1n8PQZR/GZGYYxjdOyYu62Af0dUSVeamYk5uisF53N9Vjb2YSR3lYAwKiDI6LM6sHqtWBJIfhlmGEMRukjyn2+rQk7oiXyqwMzAICvPXLaZEsYhinEWYcfva0N6Gpp0H1b6RpR3TeVl6OzPpy7th1EhJ7WBrQ31WHU4TfPIIYxmKTFU/CSSes6yQxTq6TuCybbweSGHdESGHMEcGjag60DbXjmrBP7J91mm8QwTB5GHQGM9LUasi2byaq5iaTAiTkvzl0r9TMlImzua8UYR0SZVYTVU3MTQrAjyjAGI1L3Bb72rAg7ogWIJZL4zeHZVDj//kOzAIBPvXonAEkBj2EYazLmCGJjb4sh2zI7IjrmDCAcS6YcUQAY6WvFqIPvUczqIWlxsSJOzWUY40mkMiVMNoTJCTuiBXjoyDw+8KMX8H/7pwEAvz02j4uGOjHU3QzAug87hrEqnlAMz426dG84H4omMOcNY1Pv6oiIHpuVeoael+GIbu5rw7Q7hGA0bopNDGM0qRpRi3p7yaSwbNoww9QqVq8dX+2wI1qA43PSy923nziLpUAUBybduG7HQFohk8XvGKYkPnPfUbzxP5/BlZ9/BGM6RusUtVjjUnPliKghW1vJM2ecaKq3ZSkE71gj/X16getEmdVBun2LyYbkISnSNjIMYwxWT9lf7bAjWoCT8z4QAcfnfPjkPYeRFMDLdvSDlJ6B5pqXl1FHANPukNlmMEwW/kgc9x+cxUu39yMUTeA7T57VbVuKk7vJIEeUTIyIRuIJ3HdwFjftXIPGOntq+rZBqX/qyXl2RJnVQdLitWAJTs1lqoBoPImf75uqmeg99xG1NuyI5kAIgURS4NS8H9fvGMDOdR247+AsulrqcdFQF2w2pWegNU/ql3/pcVz9hUfNNoNhsnjg0CxCsQQ+dMNWvH73evx83xRcgagu2xqVI6LG14gaf0947PgiPKEYXr97fdb0jT0taLDbcGrel5p2eNqDh4/OG20iwxiCEBaPiCb5hbjW8IVj+NGz4zV1TH9/2oG/+9kBHJv1FZ+5CkhyjailYUd0GbFEEm/9zh68/4f7MOYM4Lx1HfjeOy/Dxt4W3HrhWthtlKoHq6UbD8Pozb0HZrCprxUXb+jGH1+1EZF4Er/VySkadwTR19aA9qZ6Xda/nPQ9Qf9tPXRkDtd98TF4QjEAwE+en0BfWyOu2dqXNV+d3YYtA204keGIfvKew/jo/x7U30iGMYGExSMfSYs7ykzpPHp8AZ/4v8OYcNWOQnkkLtWdRRO1UX+W6iNq0fvCaqfObAOsxtcfPY1nzjpT/28bbMdgRxMe/dvrUg+3VI2oBc/pWI3cOJjaQgiBg1MevOrCtSAiDHY0AZDSSvXgwJQbW/rbis+oEUbdE6LxJP7p/mOYcAXx/KgLPW0NeOzEIu64aQfq7CvHFbcPtmHv2BIAYMYdwosTUsupQCSO1ka+/TO1hdVfOBMZ9tlB5hrDaEIsIbJ+1wK1Ju7DA0DWhiOiGQSjcXzz8dN42fZ+1Mkhju2y+IfdRqkXPTPrwYrh8EfMNoFhVjDvjcATiuGcNVLdop6O26l5H47P+XDz+Wu0X3kelFdKve8JP3l+IjXy/vyYC19+6AT62hrwzqtGcs6/fbAd0+4Q/JE4HpDbTwHA5FLtjN4zjILVXziVwexqECw6veDHX/zPCzy4XYRaTLdOWjyzoFRqzbGuNdgRzWD/hBuxhMA7rx7BTeevQYPdllPsxMoR0XkvO6KM9VAUqHcMKo6oNF2PB8OvDszARsCrLlyr+brzYVQf0Xv2z+C8tR24ZGM3/m//NH5/2ok/uXZz3ujmhUOdAKR03nv2z6C5XhIzmnSxmBlTe1j9hbOa+hk+P+bCfQdnseDjd4pCKMc0UQ0HVSVWV58uFeV71NAhqik4NyuD58eWQARcvKEbF67vxB9fuTFLhVLBZqIwSTEWvGEAQBun3TEW4sScVKe4Q46Iko6DOfcemMHVW/sw0N6k/crzYETduC8cw4uTbrz/pZuRFMC+8SU01dvwpsuG8y5z9ZY+nLOmHR//5SGEY0l8+OYd+JffnMBkDdUzMYyC1V84ra7qm0nKGakVb0Qn0r1rTTZEQ5TTsxoi92qotQhvrcER0Qz2jruwY7Adnc316G1rxBWbe3POl4rmWPAiVUYv+9sbTbaEYdKcmPdhsKMRXS0NAPRz3HzhGMacQVy1pa/4zBqSVtKufF3PnHHmVBN+btSFRFLgmq19uHxTNwDgdbvWp/ZpPrv+5sbtCMeSuHZbH/70ZVvQ0mDn1FymJklHcqz3bAbS7wxWtS8Tq0eXrUI1HVO1WP06KhWRGgAy1w4mN+yIysQTSbwwvoTLRnqKzkuwbmqu4oh2txijFsowajgx58OONR2p/9Pp7dpeRONOycHa1GdM2xYFrWpEX5hYwlu+8yy+99Tois+eOu1AU70NF2/sxks29+H2S4bwZ9dtLbrOG88bxNffuhv/9ubdICIMd7dwai5TkwiLO0/VlPJYTbaaSa05bUB1pZCrgQdVrA3nb8ocn/MhEE3g0pHuovOS7L5b8aRe9EmpucqLPsOYjSsQxakFP67OaC+iV5214ohu7F1Z260nqRrRCtaRTAp86ldHAADjGamz8UQS7//hPjxxahEv2dKHJrnO84u3X6TatlsvXJf6f7inmVNzmZpEcQqsqq9TTSmCyr25VtIz9SJZg9G2ahLVUgM7otaGI6IyB6c8AIBdw11F57UZJExSDopYEV9wjF6cXvDhNV9/Cnsy2hydnPfhjp8dgDOHavNn7juKZFLgDy8eSk3TS3l6zBkAAGzsNTYiqoX40ouTSzg45UG9nTCVkTo75gzgkeMLeOV5a/D52y6o1FQM97RgcimoycvwXXvGcUi+dzKM2aRrRK35/EtW0Qt+LarB6kE1HVO1JCzeBqlUaql+txZhR1Tm0LQbHU112NBT/AVWT8XPSlmQI6LVck8MxxKIxvkuUU08eGQeB6c8eMf3n8OBSakv5WfuO4qf7ZvCO7//PPyROADpwfzlh07gly9O48+u25ISKgL0G8wZdwbQ396IlgZjkz1IAwGzUYfkfO7e0I2ppXTqrBLlfe+1m7C+q7kCKyWGu1sQjCbgzFGHWgqLvgj+3y8P44+/twcTTo6wMuZj9dTcaoqeJVL70mRDLE41RbnVkuTUXMZA2BGVOTTtwQVDnakXykJYuX3LghwRrZab4oWffgg3ffUJs81gSuDFCTfWdzWjud6O/3ziDPaNL+HJUw7ctHMQh6Y9+L5c3/jlh07ga4+exu2XDOEvrt+WtQ69BL/GnEGMGBwNBTLFl8pfx6QrCCLgyk09WPRFEI4lAEjfCdAu3XjLgNQb+fSCv6L1PHV6EQAQjCbwiXsOV2wXw1SK1Z2nRBVFGWsx0qcHSvSwlvZTrTlutahsXEuwIwogEk/gxJwP56/vVDW/XmmFlZJICjjk1EhrWZabRFIgGk9i1BEw2xRGJUII7J9044pNPbjt4iE8fHQen/i/w+htbcBX3rQL127rww+fHcfxOS++8+RZ3Hbxenzx9ovQUJd9q9GvRjRgeH0ooM33mVoKYbC9CZv7JUdx2i1FRSecAbQ31WkmQLZNdkRPVeiIPnHSgd7WBrx+93ocnHJXxcs1U9tYvT2KsLijnEktqsHqQbKKjqlaksnaGoSw+n1htcOOKICTc37EEgIXqHRErSoEtBSMVtUFV2lEhjGeaXcIDn8EuzZ04U2XDSOWEDg268VnX38BWhrq8O6rN2HBF8EffvNpNNXb8fFbzs25Hj0Gc4LROOa9EVMiolp8n8mlIIZ7mjHULaXfKum5Y84gNva2qMrWUMPazia0Ndbh1Lyv7HUkkwJPnlrENdv6sG2wHe5grOJUX4aplHRdo8mG5CFRRZEmJdJXBaaaSi067IkqSiFXg6ixVONag1VzATx8bB4ASnZErdZH1OlPvwhWQwrCgSmpvpBbzVQPByYlYZqLhrqwfbAdb7x0COu6mnHz+WsAAC/b3o+X7+iH3Ub40+u2oq8tdz9bIgKRtilqEy5zFHOBdEunSr7PlCuIKzf3YqhbcqQVZdsJVxDnre0otGhJEBG2DrTh1Hz5A0GnFvxw+KO4dls/BuSexacX/HmPN6MfRGQHsBfAtBDiViLaBOBuAD0AXgDwdiHEqhglsHpKYTWlcSpOc8Ki+9IqVNPgglpqTagqJWJWFbmCq49V74j+6sAM/v2RU7h55xpVQkVApliRjoaVgaJY2tlcXxU3xYOzstQGAAAgAElEQVSyI2qG48CUTjyRxN3PT6Cp3oZzZcfoX96Q3ULEZiN8/12Xq1qfjUjTa2hMFvsZMSM1V84tKfeyi8aTmPWGMdTTgoH2Rlk5N4R4IomppSD+QHb0tWL7YBsePb5Y9vJKOv2OwXb0tjUAkJzTKzf3amIfUxIfAnAMgDJa8c8AviKEuJuIvgXgPQD+wyzjjMTqYkDVFJmxuvCTVUhHRE02REOSNTYIwT1xrc2qTs0VQuCrD5/E+es78NU371Kd+kapejBrndUOOTWuv72xKh50B7ntQ1Xxrw+fxJOnHPj7W3euqPksBxtpew2Ny61bNpgiVlRZjeiMOwQhgOHuZthshPVdzZhcCmLWE0YsITRvR7NtoB0OfwRLZabTKtHaDT0tWNvZhNYGO85wqr3hENEQgFcB+K78PwG4HsDP5VnuBPA6c6wznoTF0yStbl8mKVv57b0gqcGPGtpPVhf9KhWrZ0qsdla1I3p01ouzjgDeevnGVJN4tdg0TivUAodPioj2tzVa/oJLJgWOz0o1albbj0xu7tk/g1ecO4i3XrFBk/WR1hFRZxA9rQ3obDY+1VsZwir3upuU+4YqabnbBttxeNqTijxu6NE2yrttUBIsOllmneiEK4iOpjp0ttSnUn255tsUvgrgwwCUYoxeAG4hRFz+fwrA+lwLEtH7iGgvEe1dXCw/Om4l0hFHaz5TqumFuNacEb2oxdRc5atY9ToqFeVr8LlsTVa1I3rvgVnYbZSqbysFrdMKtcAZiKDORuhutX5qrisYRVQumLHafmRW4gpEMe0O4fJN3ZqtU+vBHEkx1/hoKJDRR7TM5RVhouEeSajo2m19GHcGcefTY2ios+H89drViALAms4mAIDDX2ZEdCmYFXneOtCOFyaW8Kb/fAYL3rAmNjKFIaJbASwIIfZlTs4xa87TUgjxbSHEpUKIS/v7+3Wx0WhSToFFNRKsnjqcSfrlvQqMNZFaU5gF0t+lVr5TtfV6jSWSeOVXfofHTiyYbYohrGpH9NeHZ3H11j70tDaUvKzkiFrrpHb6o+hpbYDdZrN8au6iHL0F+EFXDCEE/vRH+/Dw0XnTbDg8LaVRn79OnaCXGiq9hg5MuhFLpN84x51BU+pDgcw+ouV9n1l3CDYC1nRIDuK12yTH4JHjC3jptn60N2kb5bVXWF4w4Qpm1dS/dHsfmuvt2DPqwoNH5jSxkSnK1QBeQ0RjkMSJrocUIe0iIkX/YQjAjDnmGY/y3mzV2raqiohyaq4qarF9S63VVKYdUZMNUUkgEsfJeT9OVyAoWE0UdUSJ6HtEtEBEhzOmfYqIpolov/xzi75mas/UUhDjziCu31HmSDBZ7yJ1+KPobWvUvPZODxRHtLulvmZG3fTCHYzh14fnsG98yTQbDsmO6E6VytJqqCSrYGopiNd98/e48+kxAEA4lsCMJ2R6RLTc627eG0FfWyPq7NIteaS3JRUdfdWF2goVAZKoFFCevcmkwJQrhOEMR/S1u9Zj7ydegaHuZjxxygEAODTlwT37p7UxmFmBEOJjQoghIcQIgDcDeFQI8TYAjwF4gzzbOwDcY5KJhmP11NyqrBG1vqmmooyFVsMxVUutCVVVU1tDoLruE1qgJiL6AwA355j+FSHELvnnAW3N0p89Z10AgCvKVHm0Yo2oMxBBX1uDJdOGl6M4ooMdTVUzSmUWo7IIj5nn25EZDzb0tGhafym1bynXHi+EQCpKPLUUhBDmKOYCmRHR8paf94UxKEdDAcmxffmOATTW2XDDuYMaWJiNIq5Ujr3zvjCiiSSGu7OdfiLCtdv68ewZJ47NevHqrz+FD929XwtzmdL4CIC/IaLTkGpG/8tkewzD6s5TSmHVoqnDmVRT9NZManE/JSw+oFMq1aZsvNpaJxV1RIUQTwBwGWCLoewZdaKrpR47BtvLWt6qqbm9rQ2gKoiILmQ4ola31WzGZMEaMyPHh6Y9qvvsqqWSa0gRuto7vgRPMJZq3WJWRLRS1dx5bwSDHdk9OP/uph249y+vQYfGablAZguq0g2ecKYVc5dz7bY++CJx3PbNpyuyjykNIcTjQohb5b/PCiEuF0JsFULcLoSIFFu+VrB65MPq9mVSay089KIWU3NTKe5VMGCihmqrEVUGqlZLWnwlNaJ/QUQH5dTdvAomVlPmE0JgwRfGnlEXLhvpSaWolYoVo44Ov5TeZyOyfJRx0RdBS4MdbU11VfFQNhPFETXrfJt2hzDpCmHXcJem660kq+D4nBcNdhsSSYHHTy7g8ZMLsNsIm/vaNLVRLVSBYwcAC94wBjIiogDQ0VSP7WUOlBVDcZzLGdwYd+V3RK/a0ouWBjs297fiuh39aG9c9a2qGQOxeuQjHWky2RAVKE5Itby8m0Ut1tImayw1tJoGgIDVp1hdriP6HwC2ANgFYBbAl/PNaDVlvl8dmMHln30E484grtjUU/Z6rBZ1DEbjCEYT1VMj6o9goL06nGazGZMjUGYd04dk8ZlXnKdtimglgznH53x42Y5+9Lc34l8fPom7n5vEWy4fRmeL8a1bgAzV3DKOUTSehDMQxWB7U/GZNUIZgCvnlDo260VTvQ1D3c0rPutqacDv7ng5/u/Pr8bW/jbL34eY2sLqkQ9RRVHGtBqsyYZYnFpMzbX6dVQKmd+hWr5OLSoxF6IsR1QIMS+ESAghkgC+A+Bybc3Sj7uencBQdzM+eet5eONlw2Wvx2oOlFNuw9CbqhG1kHE5WPSF0d9eHU6z2YyZXCP64JE5bB9sw6Y+besvqczzNBiNY8wZwM51Hfj6W3bDFYiisc6GD92wXVP7SqGSGtFFv5Km3lhkTu2oJDX30JQH56/rTAkrLae/vRH1dhtsNutljTC1jdUjH9UkQlKLDpYeKGmUteQ0JGroO2V+hWr5OrU0EKCGshxRIlqb8e/rARzON6+VGHUE8NyYC2+9YgPec82mimqvrOZAOQOSI9rX1iC/4JtsUBEWfBHZES3N1sPTHvzm8OppDyGEwKhSI2rC+bYUiOK5URdu2qmDcmuZytOn5v0QAjhnTQeu2NyLBz54LX72gavQ326cI7ecSmpE5+W+m4MdBkZEy7Q3nkji8IwHFwwVrxcmqo7ID1M7VEsf0Wp4waw1wRq9qKZ0a7XUUt1r5nu6ld7ZC5Hq41ol9laKmvYtPwbwDIAdRDRFRO8B8C9EdIiIDgJ4OYC/1tlOTfjlC1OwEfCHFw9VvC6rRURdASmq0tPaaElF3+Us+iLob2uUXlZV3u2+9bszuPVrT+EDP9oHh3916G8sBWPwheMAzHko7J90IynSfS21RLqGSv9SShub89d3AACGe1pw3roOTW0rFaXSvJwH3YLsiA4YGBFValpLfdCdXvQjHEvioqHi9cL2Mo8vw5SL1dtOWL2GNRNOzVVHLYo61VI0PPM7VMvzyIiBgH3jLlz/pccRjMb124hKiipJCCHekmNyVcrBH5r2YPtguyaRh3LTCvViKRADIPXltKKQUibhWAK+cBwDHU0IOAKqbw4PHJpFY50NkXgSZxb86GszLwJmFEo0FDDnJqpsf0u/9m1Rys0qePT4ArYOtGGo2xyF3FykakTLWHbem1aQNgp7mTWtByelfrJqIqJWvw8xtYcyqGmhR3MWqRfMKrgwEhZPc7YKtSbsA1j/OiqFzOyIKrjsAGT0ptXR4JPzfpx1BOD0R9HSY66oYCWquVXHmDOILf3aqGqWm1aoF0tBKTW3q6XBcmnDy1F6iPa3NcKu8mVVCIHRxQCu2doHADizGCiyRG0wluGImpFuNuYMoL2xDj2tDZqvu5wUcl84hj2jTtxw7oDm9lRCuka09Otu3htGnY3Q06L9Ps5HKjW3xANwcNqN9sY6bFLRr9VWQrYDw2hBqu2ERZ9/1dQfsJaiYnqSdtjNtUNLrH4dlUJ2RNREQ0oglZqr40kVt9Bgw6pxRGOJJCZcQc0EV8pNK9QLdzAGu43Q0VQnveBb+K6oiLP0tTfAZlP3oHMGovBF4rhqax+a6m04s+jX20xLMOYMwEaSAIwZD4UxZxAjfa2piJ+WqD32mTx1yoFYQuCGc7RV8K2Uch07QIqIDrQ3lt1KqhzKrRGddIWwqb9Vla1pZV7r3ouY2sL6qbnSb4ual0UtRvr0IFeU+7HjC7jic79FOJYwy6yKqKVjX401okak5qZS7y2wT1aNIzrpCiKRFBo6otY6qZeCUXQ214OILFe/uhyXovDb2qg6KpaZIrq5r20VOaJBrO9uRmOdzZTzbcwRwIjGarkK5ZynjxxfQGdzPS7eoG1P00pJ9xEtfdkF38oeonpD8p2/1HNq3hvGgMo2M5UIODFMOaRVaU02JA/VFGVM98c02RCLk8tpO+sIYN4bSek7VBu1JMCUeS+olkFRI9S1raTgvWocUcWR0eql2mrKtO5gDF1yD0WrOcnLcckKvz2tDaqFlUblVNzNfW3YMrCKHFFHACO9rbDbjB9ciMaTmFoKYlOvPrWYpbYZSiQFHju+gOt29OdtHWIWldWIhg1t3QJkOomlWbzgi6i2tZIWMQxTDlZXpTWrUf3nHjiGZ844S1qmltIz9SRXGmW1RxRTAkxWesktE5EVETXRkBIwYsDKSvXq1nqb0xHFEd2smSNqrZvMUjCKbrnGzOr9+1zBTEdUnTNy1hFAvZ2wvrsZW/pbMbUUqtq0F7UIIVKOqBm9YSeXgkgKYKOKesByoBLrrA9MueEMRHH9OdaqDwUqrRGNGCpUBKTFikrZ/9F4Eq5AVLWtinNeCy8zTHVg5YijECI1mJjLPm84htd8/SmcXtB+kPUHvx/DYycWSlpmtfUyLJf04Ed6WqLKHblqd6QzyYqIljVUbDxGDAQoNaJWGGhaNY7oWUcAXS316NZIdMVq6a9LwRi65Yio1Zzk5bgCUTTU2dDSYFetrDnq8GNDTwvsNsKW/jYIka0oW4sodbFSjabxD7UxjbMIllOqc/3osQXYbYTrtlvPEaUyI4zhWAKeUMxwR5TKiFYqtd1qI6L2VI1oabYxTLkkLZxOmnn7zhWFmHKFcHDKg+NzXs23nRCi5OeH1dOcrUKu9i1GiM3oiWJ2lZqfRVakukq+T0o1V0d7rZR6v2oc0dHFgGb1oYD10l/dwSi6lIioxZzk5bgCUfS2NoCIJKdZxdU26ghgU5+keHzOmnYAwOFpj652ms24U3IEN/W1mHJMx5xBAMCIbqm5pY22P35yAZds7EanPOBiJdIR0dKWW5Bbtwy0m5OaW4q986l+p2prRKXfVrpPMrVN+gXaeudctmjKys/1cl6E7ISWut5aSs/Uk1y1dlaqvyuHVAp5DRz77NTc6vg+aSdRx9RcC52jq8YRHXNq7YhaK/1VSs2tnhpRpR2IXUVUTAiBSVcIG2WHaEt/Gzqa6rBvfEl3W81k1KE4gq2q9pPWzLhDaK6369K6BZCvIZWjcYFIHEdnvLhyU48utlRKucI88z7JuTM6Iqo4iaW8ZC4ojqhKp1nZJ1ZI/WFWB1YWWcmOzKw0MF0/qq3x5TrnnJqrjmSOc67aI6JWV58uhWyxIvPsKIVcUXat0et+Uw6rwhENRuOY9YQ1qw8FrJX+Go4lEI4lsyKiVrEtF5mOqJp6Vn8kjlAskUoJtNkIl470YG+NO6LHZr1orLNhuKfFlNTcWU8Ia7uadGndAiiCX+q+04FJN5ICuHhjty62VEo5qa5AOspoeI2orfRU4nmvkppbmmqusEDqD7M6sPILdHY/wxyOaMp50Xa75TpFnJqrjlyR46qPiNbQsc/KRKiSL2Skaq4VBktWhSM6JkeWlNROLbBSH9ElWfxHESuymqLvcpaCaUdUjUOf6wX4ko3dOL3gx5KswFuL7J904/z1nai320yJwM+4w1jX2azb+m0liBXtG18CEbB7g0UdUZTXMzN9bhubmktlRHDnvWHU2Qg9Leoi5JyayxiNlR2ArBrRAqm5Wr8sl+tUKNkqVnhRtTI5U3Plv+NVuu8SqX631Wl/JlkDQCbaUQpGpEZbabBhVTiiiqiN5qm5FhnpXwrEACArNRcw9iby1CkHRj56f0rgphAuf4bCr4rax3RKYNoRvWxEStGs1fTcWCKJw9MeXDQk9cu02Yx/KMx6QljTqV+krpTBnL3jS9g+0I7OZuvVhwKV1IiG0VBnM+V7lVqjO++NYKC9ETabugi5rYyoK8NUQi4FU6uQK2KW63Ot0/HKfam1UuqelUmlPuc4vtXqxIscUd5qJfP0rZZzOWmAk2il63uVOKKSHPpIn3aiK1ZKzXXLEdHM1FzA2JGObz5+GgCK9veMxpPwReLoVVJz1UREU3V06ajRhUOdqLcTnh93VWK2ZTkx50MknsSuDZIjanSNaCyRxIIvgnW6OqLqrqFkUuCFiSXLpuUCFdSIyj1E9Up/LoSNqLQaUV9YtVARkNG+xSL3Sab2Sb1AW/CcKyaaolc0t1wH18qtcKxELqfBSoqk5WBWv1s9yHzGVcupbEQP37TCuPk7ZVU4omcdAazpaEJLQ51m67QRWSbMvxSUI6Kt2RFRIx8gx+d8AICOIpGdVBpxq/p61pSyaMZLcFO9Heev78S+sdqMiB6YcgMAdskRUSJCwsATbsEXgRDA2i79UnPVppAv+CLwheM4b227brZUSvk1ohEMthtbH6pQar/hBW+kpBRipVdptTz8merHyqm5xV6I9UrHKzfl14ioTC2QK7KkV3TbKKysPl0qySIDQFZEOX/0zILjPqIGI7X+0LYXohmpkvnIVSMKGHvRueRazWIPO2W+3tbsetZC+3LeG0Frgx1tjdkDCZeN9ODglAfhWCLvsomkwHefPIvPP3AMR2e078+mF/sn3OhpbcBwj+QIlppGWSmz7hAAYK0FIqITLqnGe0OvPv1MtUC55ko9QvO+sOFCRQqlnFOJpMC4K4ChbvVZJVwjyhhNOk3SXDtykV0jmisimpR/61Ujyqm5epArelXtqblWau1RKcWuOytiROskK/VcXhWO6JgjgE39GjuiFhIEUgR7lDqzcnoEVoI/Ek/9XWx0RXFEuzPatwCFbc33sn7Jxm5E5VrKfPzu5AL+6f5j+M8nzuKzDxwtaJuVODDlxkVDnSkHx2gl5BmPlA69TseIqNreqJOyIzrcrZ8tWlDOYMGCN4IBg4WKFEo5pyZcQYRjSexYoz4qnWrfYpUbJVPzWLnlSPE+ovJvjU1Pt4Iocbmk8tt6+9JKJFPRq/S0anfirZxZUCqZ94Jq+Tp6KWhnbcNC52jNO6IOfwRLwZimrVuA0lpP6M24K4iB9kY01dsBGB+JODabjjQW2+TyiKgaWxe84Zwv65fKNYOF2rjcd2AWnc31+IuXb8XTZ5yYWgoWNtAC+CNxnFrw46LhrtQ0m81Ycaw5jxQR1VusSG1ElAhYb3FHtNR7gj8Shz8SNzEiSqofdCfmpGv8nFIcURun5jLGkq5rNNmQHBTtI6pTzVa8zPVaeV9aiVzRz4Ts9ceNrKfRkFo69sXUqq2IEQNq6YEv83dKzTuiL05ItXaZL/VaUErrCb05u+jH5oyIr9FiRZkRyWLRj+UR0bSyZv5lFnyRLMVchd62Rmzua8VjxxdyXrDhWAIPHZ3HTTsH8abLhiEE8IsXpot+H7M5OOWGENnnrI2MvWHMuMNoa6xDR5N+aq5qBb8mXUGs7WhCY51dN1u0QIqIqp9/wbtShMtIShFcOz7nAxGwbaCUiKj02yoDdkztY2WBnWL9DPWqK0yWmSZaS1ExPcl1zlkp2lQOqe9klZfcCijWv9eKGFFjrJQCWGGfrAJHdAl1NsIF6zs1XS/BGgcQkMSYNvene6SWK5xSLqcX0kq5xS4ctyyspKQRF7NVCJFSFs3F267ciD2jLjx8dH7FZw8dnYc/EserL1qH4Z4WXD7Sk3M+q3FgUnLsFaEiwPi+tXOesK7RUEB9evvkUhDDPdopXutFqf17Uz1ETRIrstvUn1Mn5nzY2NOC5gb1gwFmqHczqxtllN+K51xmRkvO1Fyd6sLKFSUxopdhLZDLaSvX+bcKLFZkLkb0+ExFRLlGVH9enHDjvHUdqbRVrTC6Zi8frkAU7mWpx6kaUYNOsHFnMOVQFnux9YRiaG2wo94unXrF6lm94TjCsWTe9MU/fslG7Bhsx2fuP4poPIn//N0ZvP+He/GNx07jCw8cw/bBNrxkcy8AYOtgG6ZlER4rc2DSjY29LamoMWB8TbLDH0F/m76ROrWCXxOuIDZUgSNaao3ogtyWqJSWKFpSyjl1Yt5XUn0okB5kqtaXMab6UK4/qwwSZ1LshViJUOilmlvqPhEpZ0RTc2qOZI79ZCVF0nIwwhEyimIDQFbEiIi0lbJHatoRTSQFDky5sVvjtFxAfomzwEjCWblv55aMiKjRKXFjzrQqcbHRFU8oloqGAsVtVWo680Xn6u023HHTDky6Qvjrn+zH5399HIenvfjigycw4wnj87ddgDrZ6V3X2QRXIFpQZdcKHJr24MKh7HNWarVh3A3DFYiip62h+IwVoMYRCscSmPdGqiMiitKO0bzJqblqVYvDsQTGHAHsWNNR0vrtqRpR8x90zOrAyumkmU5JrmtCr5qtchU4q70FiVHkUpit9miysJCTUinZqbkmGlICKSVmHc8fvWrSy0G7xpoW5MScD8FoArs3dGu+7lLqq/TkjOyIZtWIpuou9bcvEk9gxh3C9ecM4uxioOiF4wnFsnqNptP3ci93aEpKU925Ln9q9fXnDGBTXyvuPzSL7YNt+PWHXorHTyzAE4rhko09qfnWdEpiN3OeMEY0Fq/SikRSYM4bxoaebGEeGxl7w3AGoilBKb1QI+6jDERUT0RU/fzz3ghacrQlMgq14kqnF/xIitKEigBOzWWMJ1d0yiqIrIjoys/1ajCvCOaUqptjZafeSuSqB6321Nxqd6QzqeYaUT2vPStFvWs6InrvwRnYCLhSTs3UErWtJ/Tm7GIADXZbVn8/MvAFcGophKQAtsiOcLEL3bssIpqyNU8k9cCUBx1NdRjpze+I2GyEd189AgD4mxu3w24j3HDuIG67eChrvnVyVHXGY4303AVveEV01uGPIJEUWLMsXdPI1NxYIglPKIYenR1RNYJfU0vSsRqyuGIuUPoxkmqfm1LXgNHYVWZ1HJ/zAQC2D5bqiEq/q/VlzOoQURMRPUdEB4joCBF9Wp7+AyIaJaL98s8us201CitHcjKzhXJdE3qlc5ab5pdOc9bUnJojvX/T0+JV7sRbuda6VKq5j6gRjqgVMh5qNiIajSfx0+cnccO5g7qIrthsQMwC0txnHQFs7G1JpcEB6RfAfEqyJ+Z8mqkIjzsDAJBOzVVRI7oxw6m0F0nNPTDpxkXDXUVf1t96xUact64DFxeIfivnwaw7XHBdRuALx/CyLz6OOhvhU6/ZiT+8RHKa5+T+nUr0VkFtGqUWKH1pe/WuEVUhwKTsj7U69jPVjBKP0YI3goF2c9JyAfXn1Ik5LxrqbAUHg3Kv37jMjFVKBMD1Qgg/EdUDeIqIfi1/docQ4ucm2mYKVo7kFG3fkkqh1We7Jafm6iSeVGskc6RUK+dfvEr3nZUHdEqlWCaCFTFErMhC98qajYg+eGQOzkAUb7tigy7rt4pY0Yw7tCJaVCgl7sM/P4jXfuP3cPgjmmx/zCGlTiqqvWpSc7NqRAukEYdjCZyY9+HCoeKKx3Yb4ZKNPQUd1rVKaq7XfEf06IwXoVgCCSHw7SfOpqYrtpkZEXUu6/WqF2ocoVlPGEQw1WFTi63EyOa8L2xaD1FAvcrviXk/tg20pWqt1VJMiIypDCGhSJbXyz+rem9bOTW3WK1aIqFPO4Vyo3PpqJgFd6aFyJVGGS/T+bcKtZSWXY0R0XIHj0ohV22zWdSsI/rYiQX0tjbgpdv6dVl/qa0a9EJqs7EyegbkPsEeO7EgfaaR8ePOANob69AnC9sUO6eXO6KF0oiPzHiRSIoVwj3l0txgR1dLPWYsoJx7ZMYLAHj97vU4ueCDNyy1tUkJ2HRmO16SOJYxJ5zS61Xv1FxSkRo65wmjr60xpbJsZUqJWhdrS2QENpv6iGipirnK+gFrPOhqFSKyE9F+AAsAHhZC7JE/+iwRHSSirxBRzpOMiN5HRHuJaO/i4qJhNuuJlV6ullNUNVeepPXLZ7lpfsr8FtyVliJn+5YqjyjmSjeuVjKvp2o5GulrTz+LrTRYYv23uzLZP+HG7g3dqYib1pTaqkEPwrEEnIEo1i5LPSbkjzL6wnH5M21sGHMGsSEjNbjQSR2NJxGKJXKq5ubal6cXpNq089aWptZZiLWdzal0TzM5MuNFX1sjbj5/DYSQzldAcrzqbIS+1mWOqEqnQQusFBGd84ZXnN9WpZQsiWJtiYzArsJedzCKeW8EO0qsDwXSg0xWqEGpVYQQCSHELgBDAC4novMBfAzAOQAuA9AD4CN5lv22EOJSIcSl/f36DNgajZWdp+zIzMrPlfYtWl8vKbGiEh/65artrjbSTmd6WjqiZYZFlVNLfUQz3y3NfmdXi14K2plY6V5Zk47oUiCKs44ALt6ofdsWBRtRxaMrB6fcqehTOSx4pfTa5TWw6Z6e+ZfV6gSf9UipwWrqwZSoX2dLLtXclfN7QtL8XRnzV8razibMWMIR9WDnug7sGu4CEfDCxBIAyfEa7GhaMYCiVuFUC5xy2rYxNaKF55nzmJu+WgqkQnxJQYl8m9VDFFCX7q0IFZUTEbWnUnMt8KSrcYQQbgCPA7hZCDErp+1GAHwfwOWmGmcgVo5EFa0RVVJhdYqIsmquPhRKzbVC/V05WElRtVKyBoCqZGAgPQik3zasJFZUk47o/kkpurR7WPu2LQqViseMOgK47ZtP4/0/3AshBIQQODztKemlbVZWf10eMVJTm6XVDXLWE8bazmZVLWMUxyJNs2MAACAASURBVFJtH1FfOA4bAa0N2mlqre1sSu03s4jEEzi94MfOdR1ob6rHjsF27BuXHVFP7nRNu4Eqza5AFDYCupq1GwDIhZoI4qwnVDURUSrhGE3L6eHru8ysES1+Dzs5Lzmi55TYQxTg9i16Q0T9RNQl/90M4BUAjhPRWnkaAXgdgMPmWWksVq5rzBJNyXFRpB1GbW0vt1+gldOcrUSu6GHSQi/55WDlAZ1SKZYSb0WU80fPQVwrDTTVpCP64sQSbARcNFxc5KZc1NS3FeJLD55APCnw/NgSfnN4Dt/63Vnc+rWn8PQZp+p1KMI2KxxRFbVZWqTb+CNx+MJxDHY0paIfhUZwFEe0o2lljWgue7yhGNoa6zRNr17X1Qx3MIZgNK7ZOkvl5Jwf8aRI9Ua9dKQb+8aXEIzGMecN51R5tpFxDzVnIIrulgbd0toVijlCwWgcXvn8qgZKSddX6pTXmagGrEa1+PicD53N9WXVsnL7Ft1ZC+AxIjoI4HlINaL3AbiLiA4BOASgD8A/mWijoaTVPk02JAfZEdGVn6dTaPXZbuk1ovLvKokimUW6/2t6mvKsrlbV3FoahMh2RE00pASMUKwud4BKD2qyfcv+KQ92rOlAi4aRtOVUEhE9PufF/Ydm8ecv34KHj87jg3e/mDop9oy6cPXWPlXrmc3b6iN3dDLzhNPCqUm11uhsUuX8phzRjEibvUD01heOo71J26icojA8tRQquS+iVhycliL2F6yXHNHXXLQeP3p2AvcfnMW8J4yXbV9Zr2WkSrPTH9FdqAgonpqbeX5VAwT1x2jGHYLdRhhoNzc1t9iD7sScDzsG28vqdUoq0vWZ8hFCHASwO8f0600wxxJkPteEEJr36E0kBZJClCWeligSmdGrnUKl7Vv4+i1MymnI2E9WeskvByurT5dK9ulbHV/IiIGAhIUG7WoyInp20Y/tg226bkNNfVs+fvTsOBrrbHjvNZvx3+++Am+7YiNeur0fm/ta8aJcK6iGOU8YbY11aGvMdrjzKdEuBdP1qFrcIJU6tzWdTepqRHOl5hZwYL3hONqbtB1MGOqWeiFOuoKarrcU9k+40dPagOEeySm+bKQbm/ta8d0nRxGIJla0bgEqj8CXgisQRW+bEY5o4fMl3VO1OhxRKSKqbt4ZdxhrOpqy+v8ajc1WuEZUCIGTc76y6kMBpL4bv8cyRlFMEKhSvvrbk7j9W8+UtWzmdZArE0EvsaJyHcpqTy81ilwKp0a039ATK/WYrJRimQhWxAgnMWmhc7TmHNFoPIkZdwgbe0prvl4qauqrcuGPxPHLF6Zx64Xr0N3agDWdTfjUa3biB++6HFdu6cX+Sbfqi19q3ZI7jRNY+bBbzOgdqsXDZTYjYmUvkGKrkLtGNL8D6w3HsqKnWqA4f1NL5tWJHphy46KhztSAARHhjZcN48S8Dw11Nly8cWVts91g1dzeVv3bihQTy0lF/KskNbeUlk4z7hDWmVgfChRPJZ52h+CLxMt2RAvVfzOMHmQ3r9f+vJt2h8pu/5UokpGkl1hRpRFRvnwLowwQZx3fKk9tFWUOXlgR5TvU2YzLKqsUI2rdrZTxUHOpudPuEJIC2NDbqut2SlUx/fS9RxCMJOCPxhGIJvBHV25YMc/FG7rxP3smcHrRryptdDZPa4t8IiEOXzoiqsUoyJws+jPY0YRIPJlzm5l4gisd0UJ9RH3huOZiLv1tjWiqt5kWEfVH4ji14MctF6zNmv6uq0ewua8VV2zuzdo/Ckam5roCUUNSc4tdQ3Pe6oqIUik1op4QLt6gn5iaGooNBKSFispzRAvVfzOMHhRTptVi/eWut1itmm4R0WTpDqUkoCj9bYUXVSuTK3pV9RHRKnekM1EOQbEMICthROskpSbdCse45hzRMWcAALCxV9+IaCmpubFEEnc9O4GoPMzxkZvPwe4cL6G7N0jtZl4YX1LliM55Qtg+kKueUPq9/ARb9KfblmiR5jnrCaOntQFN9XbE5O9WaDTXE4qhud6Ohrp0IL5QH1FfOIb2Jm3rOIkIQ90tmFwyxxE9OOWGEMCu4ezWQo11drxy55q8y5USbauEWCIJdzBmWGpuoWto3BlAX1ujrrXeWqJ2sCCRFJjzhE0VKgJkAawCJ5XSumVbmbXUnJrLGE22cqn2648nRdkCNMXUOxM5ImtaUE6bhlxOFZObXAqzuepGq4l0javJhmiA8m5ZZysuzmcVjKgxNqJFjFqq4w2vBCackoOhvyOqfiTh1Lwf0UQSf3Pjdly1pReXjvTknG9zXyv62hrw7Fkn3nz5yohpJsmkwKIvgoEcapb5REIWfdqm5mb2eFReOgut1xOKrYj2FWrx4AvH0aFxjSgADHc3Y9JlTmruwSkPAOCiodJ63JaiyFoJSh1xr0FiRYWuoTFnECM6X8daYiN1UggOfwSxhDDfES2SqnR2MYCB9sacEXpV6+fUXMZgMl+cdYmIJkTZjlmmbblM06vBfDnRucx5+fLNT77IcbWLFdVSNFw5BHabcS3wKiU9uKHfNqwU9a65GtFxZxAtDXb0t+lb46amGbzCkRnJ+bjlgrV5nVBAciCv2tKHp047izodS8EokgLoy/E98/URdfg1Ts3NSA1WI1aU2xFFzuWEEHJEVPtelmZGRE/N+zHY0YjuEh09u624wqkWuALSOdJjRI1okbrXMUcAI336pthridp7gtJDdJ3JKcfFsjomXUFsqKDW3sapuYzB6N0zMJ4s3xHNUs3NsY64kpqrdUS0DOGZXE4Vs5IscazM9i3yB9XavsVK9YOVonyHerutar6PEUJh6fZM5u+Too4oEX2PiBaI6HDGtB4iepiITsm/zS12ymDCFcCGnhbNZduXU4pY0ZEZL5rr7dik4qX6mm19cPgjOCHXZ+XDKTsMuR1R6XehiKgWF2SmWFLKES1wUnvDKx3RfHVkgWgCSQHNVXMBSbDIF46nalaNZNThV3UeLKeUgY9KcPkVR9SoGtHcnwWjcSz4IlUVEYXKe4JSn2x6RLSIvVNLoVS7o3Kg1H2o7FUwTEno3TMwkUyW7VxkqaoWSs3VqUa0tNRcfR36WiGfAFW6t2h17jsjInJGoXwXezWJFeVQYtYaZeDLCsdYTUT0BwBuXjbtowAeEUJsA/CI/L8lGHNWNoqvllJqRI/OeHHeug5VrRqukXuIPnXKUXA+h+xU5qrly5fuqmX7lngiCWcgioF2yRFWvltBsaJQfIUKbr4+or7wyp6jWjEst3CZMEGwaNQRwOb+0lsLlarS/KlfHcH1X34cT55aLGk7jtQAh1E1orm/07icYl9tEVE1ubm/OTyH7pZ6bO4397tRgT6isUQSs54Qhiu4l6ZrRC3wpGNWBYmMU02P8y6eFGU/OxNFUnMVsSK9VHNLWW01trwwg8xncub5FjcgoqUnSQNUW40i5YgaNJivBXrVi2eS1GngqxyKOqJCiCcAuJZNfi2AO+W/7wTwOo3tKgtvOIYJZ7CsiFOpqK0RTSYFjsx4sHNdh6r1rutqxkhvC54bXb7Ls1EchlwpyJQnIuoOxlBvL17LqQbXslpCxccudOF4c6Xm5ukj6g3FAegTEb1wuAtEwMNH5zRfdyGWAlEsBWPYXGZEVO0h84VjuPv5CUw4g3j3D56HI6NtTzFc8rxGREQLRXnHHJLo2IjO6tdaouaeMO8N46Gj87j90mE01tkNsiw39gLn1Kw7jKRID9qUQ6H6b4bRg+z2LdqvP1GBWFGiSJRRr4hoKrpVSmquzrW2tUK+FGYrCcGUQ02l5srHwK5WxMECJMsYPCoVK9Uxl1sjOiiEmAUA+fdAvhmJ6H1EtJeI9i4ulhadKZWfPj+JaCKJV1+0TtftAOoVMn9zZA6BaAKX5OgNmY/u1gaEYomC86QjooVqRLPt84RiKQejUjW05bWERFQ0aucJxdDRnO1Y5hNWUiKietSIru9qxst3DODHz0+m1H6N4KzsXJUTCSulRvTXh+cQjiXx8VvORSwhig5qZOIKREEEdLWYK1Y0ZpDomJYQit8TfrZ3EomkwFuKiJEZQaEa3Sm5hrqS1NzU4FQNvMww1YHe7VviFby8FetxqlfLBqVNA6fmak++yHHqPKnSfZcevDDZEA1I9RG1V19qrp5OopUGG3QXKxJCfFsIcakQ4tL+/pWtRrQikRS485kxXDbSjfPXd+q2HQVSEaEKxxL47P3HcM6adtx6oXrn2F4gZU7BGYjAbiN05ek5CawcTXEHoynHseKIaI5aQnsBxyKeSMIfiatWzfWF9YuIAsDbr9yIRV8EDx2Z12X9uTi76AcAbOrTJjU3FE3kvFH94oUpbOprxdtfshEtDXY8e9apejuOQBTdLQ2q0sgrhSj/jVZq3dKgy0CEXlCRdjQA8OKEGzsG2w3J2ihGoYEARcyrktTcfANiDKMXWeIxeqjmViBCUyzdVS/npRwHNzt6q6k5NUW2EvLK6Gg1Cj3VWg9Z5StUU42oEWJF5dSO60W5jug8Ea0FAPn3gnYmlcf+ySVMukL4oys3GrI9KQ2v8Dz3HpjBtDuET956Xkkv9nYbFX3QOXxR9LY2wJZjvSmxoswHX1LAE4qlUmkrHWlRxJIya1RtRHlTUbyyY5lPNXf5y6pXqRHVyRF56fZ+tDfWYc+oeietUkYdAdTZCMNlRJmWp+aGYwlc+flHcO/Bmaz5hBB4ccKN688ZQL3dhktHekpyRF3+qCGtW4DC6cbjBtV6a4kaQSmpRth8JxQoLBY16QrBRkiJkZWDGiVthtGSzOeIHqddJc5itsJqjoioTs5LOVHc5e8OTG5y9Q4F1B/LMUcAvzk8q49xZaL3YI7RpCKitiqqETUgWqmcm1Y4xOU6or8C8A7573cAuEcbc8rn6KykMluoPYqWSC/RhY/gQ0fnsb6rGVdt6S1p3XYbFb35OwORnGm5QGa6a3qaPxpHUqQjmJU+7NKpuRmOaIFUP09IcizVRkQVx1WPPqKAtI+3DbbhxFxhdWItGXUEsKG3BXX20i+75dFmTygGTyiGOU84az6HP4pIPJly4q7c3IOT837VdaKuQNSQ+lCgcE3ltDuE9RXUJ5qBzVY4+hdLJDHhMqaGXQ32Avt/cimItZ3NqC/jXFVIK2mXvQqGKQm9U3MVQaFyIqLJIralVCw1vl7KESuqNWdEL7Kdz/T0uEpH9K494/i7nx3UxbZyqTWhqnQfUVvVZOekW6vouA0LRe3VtG/5MYBnAOwgoikieg+ALwC4kYhOAbhR/t9Ujs960d5UZ1hvvmLCJKFoAk+eWsQrzh0ouZWMmojooj+aV9k0V5RRaVWSckQrvCCdci1hd8uy1Nw8dudzRJVds/xi0LNGVGH7YDtOzvsMuznNeMJYX2bLDhtlH7NARHLUl58ny2v7dg9LtclHZ7yqtiMNcBgXEc11uiSTArOeUNn7yiyK1YhOLYUQT4qyVJP1oFBqbqWtW4CMa7tKHv5M9aN3/8tUvWU5jqhsW75sKt3EispIwUvovB9rhXyDC6l06CL7PBJPImoxRaNaqw9WjkGdjapFqyhDrEjHiKiFakSLhpuEEG/J89ENGttSESfmfDhnTbvu/UMVCqW1AcATpxYRjiXxyp1rSl63mlx2hy+SV33VlqOVilt2RLVKzXUFIuhqrs9KObYR5b3x5nNE7XnqyHzhOOrthKZ6/cqYtw+24+7nJ+HwR9Hfnju6rCUOXwRbyoyGKTXJQggQEQIRScxq+XGcWgoBAIbkaGJro6TMGo2re9g5DYyIUh5HaMEXQSwhsL5CR8hoionyjTqUGmFrRESJKO+I64w7hJeUmMmxHG7fwhhN5u1Qj9Ouktq/9AuxLY9qbrLsdRei0tRcvnzzky9yrFaRNJ4UlnP0sxxRi9lWDsrzRwrwWMvpz4cR9ZuVCK9pje5iRUYghMCJeR92rGk3bJuFFGLDsQS++ttT6G1twOWbSk8VrrNRauQ1F0IIOAORohHRTPvcITmVtk2biGiuFE5bgZTivKm5efqPekMxtDfV6zqwoJwvJ+f1T8/9/+x9eZzcZn3+80ozs/d9eH0f8RXbsZ3YcU5ykqtAEiCEJFwFSoAWmlJaKBQolIYftBRKgUJCKBCg3CSBkIQchDgmsRM7vm9n7d313ruzs3Nf0vv7Q3oljUaa0cxIM5plns8nn43nkDQ63+/7PN/noZRiKpxAd5EFr2r8Iv07kjRjRKVClBVxrBiwcrzTgohANIWuJueLcoDliGa/PhyQWd1qY0TzTE71T8quyS4pRM1UHWlBxHiwePZeXX4tvqWG8sJpNqeUQpQ9Gz28cW88e+Q7ZlZUCCPqsMR5rsCIOaaUKve8fOdJWhAhiNRVk3VzTprLrjvOfOLVbWDnFSMfnEA5ImKsYk4UoiOzcYTiaazts5bVaQdyGa188fFjODoaxJffsqmoHqt80TCRpIB4SrTQI6opRHWMaKmzcNPhZFbBwudoBjfvEUXWtgISI+qUYy7DqnmSRLIchWgokUYiLZpOHuQDr8tbZdJc/X47OxNFR6MXzXUe+XtyIWrheM+wc6Ss0tzs7RoOSH2v1caISq655vu5fyqC9kYvOsrEOOeD2f4fDyUgUmB+W6mFqPTXbTP+NcxdiJRqnin2L99q758R2Fc8Joonp+R4WlMSq4NaMxOeGjJhxBxrz418+64UqbdTmGv9wez3cFXomgs4VygKRUxQOYU5UYgeG5X639aWkRHN1SP6wqtTuGZtL65eaxqvmhMePnd8y7RsPNNtUojq2TMACMRYj6j0nVIvSENGlJif1EF5/a1ZPaLmOaJOOeYy9DTXoaPRW5ZClOW+mh2zfGD7ie3fsGmPaEyR5QLSoMfoc0aYjkjbWGmzomGZ1V1QZYxorsmpF05N4aXTftfIcgHziaPRANv/pfXbczVpbg1lhihK0lfAYUa0iGWz73p5zvD5nlakuSVsYI71AtYHtZnMsr3bM5dgxMBrn7VWpLn671Qac80xWeuaWy2PIqd7tDMielxwjOdEIXp6SpK8rewtnwlILtZyKpwsaRDH5ckRZcxVR6NxoWbEMs5GM11uS33Y+SNJRearrtfcSTgYS6HOw6Hey2d9B8iWaAbLwIgSQrC2rxWHhq0Z+ZSCKTl3tdheVP1+iiaNe0SHA5kmM6pzaf6bzVRI3sYii+VCYSZlHQ5E0dagsrrVArPCesgfxV0P7MKrk2Fctbq4ySknYNZeMBywZyKgJs2todwQKYWHd24CRCkWc7TOmEEZEJtIc5ls0O6BYQZDZ3HZgkk+Zg2ZYPtTOwmvvafmKzDTDvUFl4K5NgnBfg7PEdAqsSty3v3bXdL7OVGIBqIpcMS5zEkjmA2iU4IIfyRZNPMFSBdMrhlX5iirZxcZjAaAgWgKjT5eMf8p5WEnihQz0ey8yVwF9GwslSXLlb4jL9OAEXW6EAWALUs7cGQ0iKjcc+kUpvKw2Pmg309GrrmUUpydiWb09jF2wMqM62RYksQW28daKNTiWldMz1SfYy5gbr707HEpZvnJv7sC97x2Vbk3yxRmDO6oHAk0v0QHcrNru4YanIIgUqUdwYlBdCmMqMrMGJsVKUWJ3dLcIvpmnXYfnivIOKbM9biAQb4izXXRPbKY88XNYL/Hy3NVU1g73euezpicsn3xBWNOFKKzsRRaG7yKFKwc4Ez6wVi+ZqmFaC6zopCcsWlWqBGDAWAglspwuS3lxheIpTIySbXbbXZSs2OkhxlrIvWIOj+xsGVpBwSRYt9QwNH1lFqI6ns9mWuu9qE3HUkinhIzGFGeL5wRLeXcLQRmvVxShmgVFqIwHvw+c3QCy7oasWpe+VoHrIAjxoPM0UAMLfWekq8/RU5eLU//GqoeIlXbEZwcwAlFuJ4oPaK88YSVYlbkCkZ0brFiTsHomBayv5XzqQiG3SmwUzNfRGG1gP0GK2kUboH29uLE9afdD25QPMyZQtSIbXMSZhmIk3IvYClxIHwes6J8GZtGTFMgmkJbo0+JSyllcOg36SXkOPOT2uwYmeeIpsvCcF+wRMrZfGVgxtH1TIUS4Ejx/ZdEV7Az11ztfmPnXm+rymSx422FEZ0KJ+DzcGgtAxMNaB2TM7dtNFC6Y2slwJHs/JZoMo0X+6eL7hd3EmbmDcOBOBaUaFQEaONbSl5UDTVYAqUUHp6pfuxfvqCYyxTxXa17p8E1ITjFiBYhwxMVFsncCb8G/TE1KkRzf9+NPaLqb6oeBjEXFGluDg8Ht8HpHtFCDLXKgTlTiJZTlguYzxZNlsh8AdLsWq4bUzCWmxE1YhlnY0m0a1jjUmaGxmblgqclU7qXL0fUqBA1yhoURIpwwvkeUQBoa/RiVW8zdjtciE6GJXMnvkjWnn2N7Scjae6M3Afc0agWuyqTmn/kNBlOoKe5roxZvNJf7bkYTwkIJdJlyXW1GxyXfV29dNqPZFrE1WtcWIiaSnNjJRsVScuX/lbLLHQN1Q+B0rIwosXkEbKCzstzhsWdYCDttAMZhajFzc4sRmrXrxnYvvF5OPX4FSCrTAvu6xFVjr0Jc19tYNcaX0W/x2nDKKcZ10IxZwrRcjOiRB7E6RlAhZUqYSDNkdyzkKF4CoQAzT6zQlT6q49vaW/0KgxZKSf3oF/KeVza1ZjxOl9Uj2h20RzOIz22G1uWdmDPwIyjD4OpcKKkyQn9flLiW7SFaEQ2sWpS97OHs86AT4bMs2mdgJFRlSphdkfESSEgyH7QHR2VHJk3LW6vxCblhNlk2uhsHPNtYKTZ8XXDjGsNfx4QRa1Zkf3LZ/fRYtjWfNJcJb7FSWmuZUZU+jtXihGnwM4DD8cpY8GCpLlC8RMbToEdbk+OXPhqgqj5PdVyKjvdp6s939xwjOdEIRqskDQXyH7YldoLCEgXTK4HRjCeRrPPY9oTq5dxAmohqA4Oi948DPqj8PEc5rXqGNEcF3ohZkXBPGZMduOSc7oQiqdxcHjWsXWUXIjqCsqw3COajxFl37MmzU2WlYk0OvbMXbhcfap2wkCZixPjIcxvqy/7/ckKjJy/4ykB/kgS81vtYERr0twayguRAl7ZoM2JCRA2gCumcGDbw5u09ZTDrMjqZKsqzZ0b8kynwPZt8T2iLmRE59ixFzOuu+r4QWIRk0eFwG2GVHOjEI0bG+E4CUUqqXt9MpRAc50HDT4+6zuWl82RnM3roXg65+/VyzgBaR+1NXghP6NLmgUZ8kexqKMhS2ZqZn4iiNR0m41yRJVCtEyM6OUruwEAO05OOrYOqRAtnuXTH1Pm8pvJektFXHtjcYxoqcVyoTBiw1lGblcVFqJGfePHx0JY7TKTIgbOwFxMMVuzYUJCmWiYC6OZGqoCItW65tp73okiVa7vYgoHSik4Yt6brS67lK3MRjE9oka9jzVkQ1uwK47KRZgVualHVDQorqsZ2uuuWn6OtlB0Ypu182humASp+kKUUloZsyKTh91UOFmyrJDP0WsJ5I824XTFXSItIJ4S0VLvscU1d9AfxeLOxqzXzXpEmblSLmmu9muqK3B5jmlXcx3WL2jF9pNTjiyfUirLXu2X5mYyolJET51HnQSxerwFkWK6zIWo0SREVUtzdU7aaUHEqckw1vS5tBA1cP6elhlpfTRTccuv5YjWUF6IGrMiu90gSzUQEUQKjhDT3mzGjpkN/gPRJGblDPFC18tg2axI289aLaP3CkDUFOxsNxUihVbiW1x0k1R/09w49gKVrjvJ1b46fo/gcKFYY0RtRiwlICXQiknf9AdxMhQvWd7I5zMrslqIyiczK+xatdLcEntEF3dm95DxHDF8+M/GchWi0l/tfswXT+MELl/Vjb2DM0qBZyciSWkioBSWKStHNClJczN6RKPJDFkuoClE82ixZ6JJiLS8BaDC8mpuutUszdUPMAf8USTTonsZUQOp0nSEMdKlnweKI7YLHnQ1/HlAFLXxLfYuu5gYFC1EKk1gm3kpGOVQavH3P9+PTzx0oIj1FiPNlf56eOKI+/BcgWrswyn3uYwMSIvS3FxxfeWGKs2dG8depFAmgNxQdFmBWMTkUSHQjgfdMAdS9YVoriLHSZj3iCZLHkTzec2Kcmds6t1IgzEmdVVzRIuVy81GU5iNpbDEjBE1WC5z+c3FiGq/F4qr21suXLW6FymB4rkT9stzp0Kl9w3r95PKiKpPCmZIpYUS15PnZsaYyJ6W0nsDrULP3LPtaK7zoN5bvLS9UtCb/5wYk4yK1ri6EM18jUlzO5tKnwgghJjmLddQOggh9YSQlwgh+wkhhwkhn5NfX04I2UUIOUkI+RkhpPrkBUVCYkRLN+QzQroApssIIqXgCQExMQnLx4hOhxOKYqEQaIscy665TJ5Zk+bmBDslvBoZayHniZpL6559zM6RasrdzAWRUhDC4gUrvTXWkDmZYf/ynY6HKRS1QrRImEUTTIYSJTOiHi43IyoVojkYUV1+X1BhRD2WCxMzDM1IjrmGhahJPlpORtQga5AVzuVkRLct70R3sw+PHhixfdl2yE31Ex/hRHaOqD+SzYhynDTwyXezmQoxJrL8jKjerKgaZbmAVHhpd/PJiTAIAVb2Nlduo3KAkOzBulqI2nMMqmkWugqRAHANpXQTgM0AbiSEXAzgSwC+SildBWAGwHsruI1lRWZ8i83L1hR0xfT0SdJc89gkJsczK6CTAi1qvRmMaBHSXDcMVN0KUVuwGzDaeRlRF7rmZhpVVf+xpzIjqn8+uxlCEddsQct3mHEtFNVfiEYry4hqT+xEWsBsLIWeEhlRLg9rGYrnzk3VD/C1jGi+ZecDi24x7hE1PqmLl+aW75jyHMFNG+bjD8cmbJfn2uGkrJhMUQpKKaKyNFd7QwlEk+gwKCDyTWwAwGQ4Lm1jGV1zjdydp8OJqjQqAgCCTPbPH0mipUTjMidh5CI4HUnCyxPbjMIklYQtG6nL3gAAIABJREFUi6pBByohLP/TK/9HAVwD4Jfy6z8AcGsFNq/soJSCUuNsajtQauSBSCk4jhjmDbP3AfOBZ0oQldzJQpAuYtBZc821Bq00l+0zbU2Z77nrxhzRTLOiCm+MDRCVCaDqUec4Lc3NYFxdsE+qvxCtECOql78CwPisVHD0tZUmb2QzukY3MUppfkZUN8DXx6HwJvEw8ZSAPQN+xFOC6bJPT0UAGDOiZr0v7Bi1NmRvs1FBH0qkUe/l4POU9/R83cb5iKdE2+W5k7KcqhSmXCtjTaRFZT/rzYo6GrOvA95CHtjorFSI9tkQ22EVKsubKc2tVkZUz3RIvdzui21hMFIwTIcT6GzyKZMEpa+jeh7+1QhCCE8I2QdgAsBTAF4FEKCUstm0swAWmnz3bkLIbkLI7slJ5xzDywV2mnllsyIne0SLYiY1ZkWG0ly5KDEjx1KCiFQRvYSFMHT673h4Y9+HGiSoBbtWmisqr1Wja67qmCxfRy7atmLAekSNcr7dCoFS+Hjn9n8xcn0nUStEi4QyiNYcxNHZGABgfltpYfBmjrwAEE+JSIu0wB5RWZorf4c3YClenQzjwn97Gm/+1ov4xe4h02UfGwthYXuD4frNbOlzHSOjgj4Yq8wA/oIlHeAIcGw0aOtyp0IJEFKa3FFbiGoZW212WTCeQntj9jp4kp8RHQ3E0dbgRVNd+eTQKhuuvjYVTlYtI6pnOsJ5JowqDaNeNX8kaUt/KENNmussKKUCpXQzgEUAtgE41+hjJt+9n1K6lVK6taenx8nNLAuUnE6H4lvSRRR0WogyW0sIMczxVuJbTLY7LdCiJJxFSXNZgcVxNbOxHFCluRJzTClVXvNZkLa6skdUmdBx5joqNxQlAnGHMY8ViCLUXncHtrmYe4KTmDOFqBHb5iSMJKVjQZlVsokRNTT+iefvn9QzTSojKn3HSBp0aHgWIbnAYT2lRjg2GsS5843NVzhiPLsyG0vByxM0GBjQGLFi+Rhfp+DzcFjQ3oABWX5sF6bCCXQ0+pSZ+mKgZY4jCZWxZjNbs7EUKIUpI5rvQTcSiGF+iedtodCbFaUFETPR0s2+KgX9jGs4kUZzGQv7QmHUqzYdSdoS3aJdR7U8/KsZlNIAgD8CuBhAOyGEnXiLANjf+O5CaIsC7b/tQqmMqBQjAfAmEkFWZJrdq5OCWJS7qvY7VgseNlEtuebWLmAzsP3kVSKD1P3t8+Tvr2UsuJsY0ezrqJJbUzpE+bojpHrYfUGkBWXAF7N8Bjfsk6ovRFVjm8rniCryxhIH9GyAbnRzChVQiLKvh+Ip8JxaCBpJaMfkbQfMrcQTaQH9UxGs7Ws1fN9M8styXo3kfkbS3GCeHlgnsayrCWem7S9ES5Wbaic+wgaM6ExUkv/qzYoA2Vo+XyE6G8fC9tKY/EKhZ8P90SQoBXqqVJpLSCb1VKkJFaswyiuWGFH79r8Vo6waigMhpIcQ0i7/fwOA1wI4CuBZALfJH3sXgEcqs4XlhagUBcaO9qWiVIMPSnNLc7WTuEbFX0oQkSqREbX6dbVPkKsap9FKQCvNBaTJBnZP9Xny99eqjKgL9JEytLJsYI4wojnye90IgVKlNc2R+Jaaa669mI1JmZpMjlMuGBmtjM3G0VLvKZkFyRWxojjgFmRWlEZrvUfZZs6AIRsLxtHk48ERcwe3UxNhCCLFmj4zRtT4ARuMpZT+1HzbClR2AL+0qxED0xFbl2lHpI9yvolANJmWX1MfZDOy26k+vgWQjkteae5sDPPbK8OIskNvZ3RIJaB/0IUTaTS7uUfUQJo7HU7akiHKYJYtXIMtmA/gWULIAQAvA3iKUvoogI8D+HtCyCkAXQC+W8FtLBu0xRNg/wBLew8thpkURKpIc40esfmcMtMCLXq9DAWbFZlMLtcggY3RtHJwUcOSWu4RdVGOqNaoSvvvaoVI1SixavktlFLHlB2Aek/gCAzbBMoN907XW0Qwni57fyigFlDaQdborD3yxlxmRSFNFIsZ9EVyMJ5ZCBrlQ40H45jXVo+z/pipIcKxUSkX0VyaayzjYYxorm3V3rCD8VTZ2TmGZV1NCERTmI2m0GZQ1BWDyVACmxe3l7QM7YOOMaItdR5lf8/I7tGGjChHcs64RpNpBKKpknubC4XWCRhQHbCNiulqgP5BF4qnXC3NJXLhTCkFIQSJtIBwIl2T5lYJKKUHAJxv8Ho/pH7RPytosy8BZ6W5xRRnggiZmcneNkopBFEyKEkKkhmdvpMlaYNZkdXt1rJi1TJ4rwQEfdEmqhP5Pp5DIp2b6XSla64mRxSofmkuVaS51fNbBJGiwee8NNfLc66YKK56RrRSfVhGktKx2Tj6bBjM5zIrUqW5+RlRpUc0lil1NZLmjgcT6Guth4c3L1qOj4fg83BY1tVk+H4+aa7Zd6RtVV+rJCO6pEtyAx7w28eKStLcEiN9NMxxTI5uaan3KpMVrFfaqIiTekTNlz0SkGTZ5S7+9dfQrCZmqBpBdIqAUDxtWwyKEygHIy3NuFb+QVfD3Ad1eACtVQoVMziklILjjJVDVgxiUoJYlFlRMQ6c7GMennOFq6ZboewnLSOqkebmOk9EkSrfd2OPqCI3dtG2FQNRmQCqnkkVQaTwOtijy+4DPpfkBFd9IRpPCRXJ6TOSlI7OxtHXWvogLhcjyhxwcxVqKiMqF6LxdAaDauRuOzYbx7zWeng4YjrrenI8hBXdTYr0SQ/ORHKUqxA1luaaS3mdBiuy7eoTjSbTiCYFdLeU2iOqDq6iSiHqUW4iTK5r5HrL52FEVbfn8kpzjc5ToPwO2HaBELWoS6ZFJNKiqxlRdhmzQnE6zApRexlRN8y41jD3oR9A233eZTCLRZsVEVmRlPmewqJ5jGXFgkgzjHAKQVqgBRcVbKDqNXHCr0GCsp80/XzsGHn53I7D6RLPJ6egKguYAZN7tq0YMJMwQoixfbgLIVJnpdEKk2+hj7kcqPpCNJYUDN1YnQYbRLNjmBJETIYT9jCiSj9g9hkyFZaySnMNFvWxGPkYUVGkmAjJhSjPmc66np2JGeaHatdr2CMaz1WIZs5eJ9Mi4ikRLRUawLPfNzBlDyM6FZIG96X3iEp/RUoRTWUXosxJt9FgUsbDGccFMIwEpEJ0QdkZUemvlrkHyu+AbRe0PaJMPt3sYkZUPxHAGFE7e0TNJqdqqMFuZMe32Lv8UgsHkUrPXqPYJFHnvqq/ZlKypCWVS9piul7V+MSyNFfTb1srRM0haAp2QDpuWkY0FwOtHWe5ihHNMiuq5NaUDm18S7UU1YJI4fWY1wGlgp1vXpe4Yld/IZqqTCGqLxYnQglQag+rxG4ARjeniVAcHY1e1HnMf7Necqd3odXnKfmjSaQEir7WOrmfMHu9lFKcnYlhcY5C1Kj3VBQpgjl7ROXPyd+z4grsJBp8PHpb6jBoU4QLYxvntZZ2XmgNrGJJxop7lWMVS6ZBCFBvcF5weRjRkUAchJS+jYWCwFiaW4kMWTtAoJ7H4bh6jNwK/X0iEGN9xvZtczUZRNRQ3ShnfEtRhahIQYhxbBIrSsxYkGQJMR+CSBUVk9Vdou0hE2n1DODLDb1Blkip0gbjK4gRdc9snSITd9Asp5ygVCvNrfTWWIOgMStyorVFzLi+K79T5kQhWl8BaS7z6GXHkMWf9NkwmGcDRKOH3Xgwgd6W3OvQF3fBWGbPJcdlzoKMaWJnvDxnKM2dCicRSwlY3GHOmnEGvafhZBoiNZdb6nNEVTOmyg3gm+o8iKWE/B+0AJZJujRHAW8FRtLcpjqPcpOKJAU0enmlv1gLD0dySrrOzsTQ21KnzJqXC1nuzvEUWurK74BtF7QDzFBCKurcLM3V7/9ZOQKorcHO+Jaa62YN5QEbyztlVlRMHqcWIpVcc40mZ9i215kwl6m0ampTaFHITJAK2W62DqeicOYK1EJUjW9RJhXy9Ihqzyc3MaJZ8S0u2rZioOaIVk9RLYqqnN6JOQp2jPNNlpQLVV+IxiskzdU7fjLJbE+LHT2i5jNRE6EEevP0oWqLu2RaRCwlZLnmak++8aBUiM5rrQfPEcXJTYuzM1JBlYsR5Qx6X5gTqpkBTXbmaeWZJC+fu3ArBIPTUfAcwcIcBbwVaCcXYkkBdR4uYzujyTQafMZFjxFTrcXx8SBWzzN2QnYS2kgaQGJEKzkBUSo4Tsvss5gl9xairOBnDyXmvGxnj64U32Lb4mqowRTs2uPLkCNanGuummeY1QOa5b6a+b62UCnUOVebSVioay7vUFE/V2DEHirSXN66NNdNxR7Vn4vu2bSiIMqMKDFQIrgVWkbUiWtPO4HihnOv6gvRiktzdUYfpfYCAqqJiFExNBGM52VEtcUdk7pqB8T6HtGxoMqIenjjzMmhGUliuqgjhzTXYMYpkCeSg7EybHuCFZbmAtJEQDHuhEY4Mx3BwvYG5aZeLLRS8GhSQKOPh0dTYEaTAprqjK8DnjPPEU0LIk6Mh3Hu/NaStq8YGObdVnEhSjTSHybNrY4eUenfgagUN2MnM16T5tZQLqjZl84M4Ep1zWUDYs5gcibLrEgvzU2LWZ+1vF5R48ZrcbvZ0ENhUmvXsCH07CGlUKW5ntz53a5lRLN6rd2zbcVApEwSL/3b7TJzSiVjMm+Bk0eFQO0RrZkV2YJYhVxz9YO4aQsmQlahL3IZRJFiMpTAvLyMKJTvq6Ypmh5RHUM2EUyAEKCnuQ5ejjMsgIdkiemiAqW5M7Lcr8NkvxDZvEGV5lY+wsPLmzsHF4pBfxRLu0qT5QKZBhxSIeoBz3HKDSWSkF4z+67ZwOnMdATJtIi1feVnRI17md1buOUDgeY8riJpLtvmQCxpu2Ox0T2hhhqcgNP5h9rzuBjFjBVprpm7rdakqNBnU1oUC2a3qIYxkf5d0Cr/bKA6NavSZ9bv6cvTf1eq1NspqFFChcm53QpRo0QA3M/wqiy7M+7fQGYPuBuOb1UXoqJIEU+JqK8IIyr9ZSfJdCSJ1np72AQzsyJ/NIm0SNGbR/6rLZKZm2qzhi3TM6KBaBKt9V54eE5mz4ykuTF0NfkM40EY9L2ngKYQzWGAom0iD8bzx9M4DalP1iZGdCpiSyGakSOaSqPBx4Pn1BtKNJk2dMwFYGpABQBHR0MAgLV9FWBEdfL2YLVLczX28NVkVqRlRM2UC8VCG2lTQw1OQh/fYj8jaoc01zhHNMusSPf4SWcUwYU9mwSx8KJClebOjWLEKSgOsxr2UGVE8/SIutw1d670B0s9osQwKtCN0BaJ0r/tX4dWPu4GhriqC9GELFeprDRX+vdUOGGLLFe7bP1NbCIosa5W3E2ZVTXLl9SyZZKLqvrZQEwdgHpNpLlnZ6JYlMdwhzdwJZuJsEI0d9yMthgBKsuIemzqEQ1EkwjG00o2aSnQRm2o0lxOU4gKpoUoR8wlQsfGgvBwBOf0lr6NhSIrRzSHu3I1QHsehxKVn1DJB/2DORBN5rxOi0G+/uQaarAL2sgRwP6+u0zX3OJiVDiOZEj4lfc0xQuQT5pb2O8SRFGR2Fq9FgVloDo35JlOgQ0TPJoJBEEzqZDLcdi1OaJzrD9YpFCuO+nf7v49yoSax7keUTb+93rcYSZY1YUoczZt8Jb/Z+gHcVPhhG35ex6TWcjxkNTLmc+sSNo+aQAYURxWNYwol3lyB6IptMsFAG/isHp2JpZTlgtIDJf+pLZigKJ9MIdc0Fvn5TmkbOgRHZiW5My5sletgtMVog1ePkP2GE2m0WQizc3VkH50NISVvc0544Ccgn4yJxhPV3QColQQou7nUDwND0cUF0w3gjkss20OxFJos5kRNWJ/aqjBCShy0rLkiBb+fZFS8DIzk21GpMo5peWbS3MLL0Q1ZkUWv6tmSc4NwxqnoGcPJUY0k9Ey23cZPaI2tQLZgSy5cZXfv6nGNVf6d2W3Jx+ys2mdKESl+4mHq/WIlow4K0Qr2iMqS3PDSXQ12cSIykdF/9CYlBnRfGZFgCp3jSayGdEsaW4shTaZCfEYyFIppRidjWFBnoxUjmQXPJLs16M80Iy/lxnf0lzhCA8PR2yR5p6ZjgAAlnWXzjbyGofZGGNEeVISI0opxaHh2YoYFQGZ8va0ICKcSKO1wb0MYj4Qggxpbku9R7lPuBGG0lybGWlCiCPSohpq0IOdx07FtwgZZkVFMKKidM0Z5m1nOZXqC9XipbkiLVyunLUv3TBadSH02bUCpQpLWpen+E+XeD45BVE3oeMG6WYpUEzCdJ4UboXeQduJiQCFEc3j7FwuVHUhyhjRyvSIZp7U05Gk7Yyo/qHBYlasRMSwzCSFEdVJc7XLno0mlQGolzfIAk2kEU+Jeddr9ICdiaZMjYqU7dGwJqF4quJyRi9vbNhUKNjxmp+ngLcCbXyL1A/q0TGiAhpNXHPNekTPzsQwEUrggiXtJW9fMch0d5YmTKpbmqu6YYYTaVc75gKZqg5RpA5Jc6t/IFNDdUCRFMoDOLvPu0xzmcK/L1AKjsv0RNAvz4y5TGmkuaWZFRXWI1ro9/7coBYNatEm6Pt9LUhzXdUjqpcbu2fTikJKEMFx1dMjqqoRnDNXUqT3Hncolqq7EE0yaW7lzIpEmc2ZiSbRZVOPqBLfou8RDSXQ3ui1VHizQbHSI5rLrEjTI8pzHFIG6wXyM7FmrrnteQa3nIY1CbqkELWDEfVHUvDyxBbnVG3RFktKTtEeTR5sJJHO4ZprbJrwyuAMAGDL0s6St68YaIvrWRf0BpcKAmROqNS5+7doVR3hZBoiNY9ZKhY1aW4N5YIa3+K8a24xDBaVTVPYJLEWerMi/f06mSHNLSK+RSlwLX6HRV44tC/nCsSsgj17UsE8Os3dPaJOmX7lwmwspUzgiyLFvb87gt1n/CUtc3Q2jnktdaZpFG5D1iSQA+eG9rx1w7nn7in7PKikNFdbGMxEU6AU6LGJEWVOdfoTcHQ2hj4LRkXS9knfZ665ekaUnXyiKBUBCiPKkayH7KRSiOaLjcnORwtEU3mZYu2DOeSCPkGzLNVCEZCLcDvkmVqH2WhKkuGy4yiIFIm0aCrN1brrarFnYAZNPh5rKhDdAmT2vbL82Kp2zdXkA4bi7mdEtXLvQCR/L3cxMDJmqaEGJ5Ad32IzI2qDa269lxg+J1WzImP5YCn9hAKlqlmR1R5RTT8r+3cN2VDZQ9VgUnEkzSfNLaHv10lkyY3LuG0f+OEevHTGj9u3LsLizkZ85/nTeGUwgF998NKc3wtEpegx/VhLFCkG/VFcs7ZXfc09u9oQTrcYAOr5Nid6RAkhZwghBwkh+wghu+3aKKtQzYoq0SMq/RUpxXREKtRsY0SJcXyLZBhkzfhG6RFNpkEIUK8xdOI1LEUwLhXRao9otlkRY0TzSXM5kv2A9keS6MzDiPIcyegRdQUjmi6dEZ2JJnPG1hQCXlO0RTWMKKBGhZiaFXGc4Sz67jMzOH9JR8X6cbXy9mCs+qW5+gmVFhdniAKZkxuBWH5366LWYcD+1FCDE1AG0A5J2gRl8FZcNq5ApYkZo2siy6xI935mjqj1ZxOVzXPMlmu6rayftUpYpEpBEDOLNkkhZ43Rcqtrrl4aWq5Df2QkiBf7p7FpURt+vvss/v2J42ip82DPwAwODc+afm8kEMO2e5/BL/eczXpvPBRHMi1iSWejMt6Ae3a1IfSuuU6cG+wYzyVp7tWU0s2U0q02LKsgMGlupXtEp8PSIK4rTy+k5WUbmBVRSjHkj+Z1rmVQekQTApp8maYpvOZBGpBdbRkj6uGyZakTslQinzSXN3hAByxKc1Xn1FTFsxe9PMmSJxeDmWgq72+3Cnb80gJFMi2i0asaOjE20UwZIPXuZr4WSwo4NhasWH8okClvV6S5VWxWpO8RrfSESj5oGWnlPmCzNFc76VVDDU5Cz+TY3iOqDN6Kk7NRSsET4xaWLKfSnNJc6+tmH/V6jCPhzL+n9rMW8j2nEU6k8fDe4UpvhgImYVZYeDG7b9Ss+M/MEXWPWZESSeNwfMtsNIX/9/hR3PyNHdgz4Md3nu9HvZfD//7lhfjVBy/FzZsW4GfvvwSNPh7/u+O06XKeOzGJpCDiR7sGs947MyUlFyzraqoadl8vzXVic9V4JndIc6u7R7SirrnSX0oppsL2MqJGkohANIVIUrBciHIyyygZ2/BZ77GbTSCWOQD1GJgVTYYT8Hm4vEWCVpoISNlnkaSQlxXkdExSpYsRD8cV7ExohICNjCi7iYYVF2Q+qxBtMjEr4jmS9aAbnY1BpMDynvLnhzKoPYrqb6hqRhTqeVwNZkXa/T8TlSbT7Jo4YZCctG1dZA01GELv9umUa26dhytKSimIFDxHsp6T0nvSX7PsQK1BUSGMqL731GpxLoiSNNdtkRdPHBrD3/1sH4b80UpvCgC5YNdJmAVRlI6z0vpQXT2iSgySyaSIHRgOxHDr//wJ92/vx9mZGN78rRfx0N5h3HHhErQ3+rB5cTv++87zsW5BK+7atgQP7RvG4RFjVvT5k5MAgP1DAbz9gV34qx+o4sxBv5RcsLSrUdPv7J59bQR9fIszrrnqMXbD7ii1EKUAniSE7CGE3G30AULI3YSQ3YSQ3ZOTkyWuLhPxCkpztT2idjOizKxIewIOzUg33sUWMykZyxhJCmjSSQR5TY5ZQBmAahlRXSEaTKCnuS5vr6NemqssO89+YX1klFLZNbfSjGj2PigGM9GUbVJHVnRG5EJUK81ljrPmZkUEgu73jMtRQPMsRAE5Be3DOzgHzIo4QkChnsfNLjcr0sruZmPOMKLEQK5fQw1OwGm3Ty0jWqiByNHRII6NhRRmplCzoox+wgKeTUrvaYFFhcSIEsf6bYsFM19MpIUKb4kEQZTuo5ymaBBE6ZnL5ykkMiN53LF/AYMcSwc27QM/3IOpUAI/u/sSPPP3V+Ijr12Nb799Cz71unOzPvvha1aho9GHf/3tEcNt/dOpaVy9pgcejmDHqSk8fXQcw4EYAODMdBQejmB+W33GxGu5MR6M4xt/OKmoOHOhHNJcLevqhudzqYXoZZTSCwDcBOBvCCFX6D9AKb2fUrqVUrq1p6enxNVlopKuudoe0UAsBULsY3N4hRFVHz5nZ6QLyzIjKj/soolsRlQroWUD0LYGuUfUgD2bCCXQ25qf7dW78c7Icj8rjCilkuFOSqAVlzR6+dJzRCmlmIkk80bXWAWb+NAyouw1tRA1YUQJybrZTIRkubVF8ysnoMrbpUKI54jpb6gGsGvOLedxPmgnApg0125GWtv/XUMNdmBgOoLvbO/POq+0PZzaf9sFNplX5+ELYkQppfjMI4fQWu/Bh65ZaegkzR65LHtSX+iminTNzc4ktPY9UWRMn7ukuYx8SNjg4WAHFHdhzbOMGT2xQtSsyHRtj6huQsfu+/fYbBwHh2fx4WtXYtvyTnQ0+XDPa1fhxg19hnnzbY1e3H3FCuw67cfZmUwm/ODwLGZjKdx6/kJ85a2bce8bNwAAnjk6DgAYnI5icWcjPDwHRqNU4nn09T+cxJefPIF3f/8lZTLFDPr7mBPbq3VGdsMkU0mFKKV0RP47AeAhANvs2CiriKWkm1FlXXNl9sPnUWbFSgWv3PzV15gUxapZEVEY0XSWiQ3RPAgDumLRUJobSuR1zAVUq3d24fgj1gxQ2IPZqcFwobDDNTecSCMtUtukuWziQ1uIMjOBkCxrNWVEDY4ps0ifZ2GCwSmo0iVJmmvkeldVkHtE2TFyeyFKNPs/nEijwcsrA1a7YJSZWEMNpeD/XhrEvY8dxZBfmpyNpwQ8tPcsfiz3iHl4ZwZwGYxoAct+eN8wXj4zg4/fuFZxUddfEyojasyiJTOkudbXLVg0zsn6HpVkxOqEu+VVOoq4POZLuqUQleXWvIZtSwsUHi6/0RNjuQmprGsupRTPHp9QinwnTb9iSQF/OjUFALh8pXVi6rXnSq63z5+cynj9maPj4Ahw+cpu3LxpAd520VKs6G7CU0ekQnTAH8ESWUWoTBaU/CsKQyIt4Lf7R7Gqtxm7TvvxT786mPPelK9f3A5IknLV16LSk8VFjzoIIU2EkBb2/wCuB3DIrg2zAtYjymYRywmtWZHdUQ08uwFoTsCzMzG01nssF2mMZYwmhYwMUSDTQERf/BnJUidC8byOudI6M2dPmTTXSiEqiFDdh21iEYuFR87dLCW/STV/sZcRVaW5nixG1KxH1MjlcTyYQKOPtyXjtFhk5oim0erywi0f2DwUkxlXct9agZYRDcVTjvS0GmUm1lBDodBKU0+MhQAA+88GAAAf+r9X8JGf7cdv948A0DqY2rsNrMfTw2U7y5shFE/h3t8dw6bF7bh962IAmutOs4FK5IfN0lw1uN6aa64oUnzyoYP40c5ByTXXQVamGLBiyS2FqKCLuWHxLVpZs3l8i/R6vYevKCP61JFxvPt7L+N9D+5GLClopLn2FkLf3XEamz73JO7f3o/OJh/WFhAbd05PM+a31WP7icz2vscPjWHb8s4Mf5bXrpuHnf3T8EeSOD0ZwbIuVohK7xf6PKKU4qtPncAbvr5DmWRmCEST+MwjhxQywAjPHJ3AbCyFT79+HT563Wr8Zv8IfmHg8MvALnWn3L+lddAM+XilJ5pKqeDmAdhBCNkP4CUAv6OUPmHPZllDPCWg3stVhEXRD+LsZD+M4luGZqKW+0Ol7SOya242I5rhmhtLoqXOo0gieI5kPPSSaREz0VRex1z2XUB92E3LjGhnnsKS46SL3a98vnIsHaA+tFMluKzMWCzCrULtEZUexI0ZPaIyI+o1Pgc5ks3wjgfjmNdaX1EGUttnHYylqjpDFFB/TzDOGFF3/x79ZJoTcTOSWZE7BrE1VB8SaQH/7/GjWPcvv8cPXjgDADjOCtGhAGYiSTx7fBJ/cV6f8h11AGfGpZNNAAAgAElEQVQ/I8oGb1aXvePkFKbCCfzTjWsVxZARU6ZEfpiaFRUpzdVI8IyWq8ePdg3g/2RmeSqcUCeXXVOISr/dDg8HO0CpNNmmNcLRmlKx14zAnsl1XuN4tXLh2eOT8PEcdpyawr/85lAWI2rHJMRLp/34wmNHkRZFHB8P4dJzugpSEBJCcMWqHuw4OYV/fugg/nh8AqcmQjg1EcZNG+ZnfPaG9X1ICRSff/QIIkkBl6+SmFfteKMQfPHxY/jaMydxcHgWTx4ey3jvdwdH8eCLA3j80BieODSGX+weyhg/T4Ti+NITx7CgrR6XrezGX1+1Esu6GvHk4fGs9fz3MyfxgxfOZDGihd7HYkkBDzzfj9moeXEsiJkmW5WWhhc98qCU9gPYZOO2FIxYUqhIfyiQ6TgpZV/aN+g0anI/OxPDim7rDqdqjqhg6JrLzrvZaAptGvmoXpbKHIELYUTZZk+EEiAE6G62Js31WyxcnQYr8NICRbFjc6v9sVbB6sUQY0S9vHIjZ4WPnvlmMGJEJ4LW5NZOgsUUUUoVaW41g93UZ6uEEdXeZ5zK7zWKDqqhBqv44YsDuO+5fizrasRnf3sYHU0+jMxKbQUHzs7ijycmIIgU77/iHDx2UBokOjXLL4iiJLnkrLdu9E9Jrp3nLWpTXuMMti+bEc1cTtHSXI2cGMgtzT0zFcH/e+wYzl/Sjr2DEtusbZ9wA+KySVFScItZEdU55GomLAxarLRIa1yY7SoEvvz74+hpqcO7Ll1m6fOUUjx3fAJXr+3B8u5mfPu5V7FteWdmJI0Nm/ajnQPoaPTif962BX/5vZdw/fq+/F/S4eq1vfjZ7iH89OUh/HjXoCK5vUG3rAuWtGNhewMe2juMRh+P16zqBqBRYBXwg6bCCXzvhTN44/kL8dJpPx7eN4I3XbBIeX9Xvx8A8OThcezsn0Y4kcZDe4fxg/dswz/+Yj+eOzGJRFrEj/7qImV/nreoHXvO+DPW89yJSXzlqRNY29eCLUs7AKj3gkIL0Yf2DuPffncUz52YxPffvc0wJ14QJfm4W5yEqz6+pVKFaCYjau8gThkgau5gM5EkugsoHNQc0bSha67KiKYynDI9uofsREgqRC31iOpmVyZDCXQ1+Qwb0DO/RxxxHy4WbHtLcbIL2ByHkS3NzWZE9cw3g2GPaEhiRCsJ7QzlbCxV1Y65gDo5xaS57u8Rlf6KlDoWN2PkEFpDDVbx+8NjOHd+Kx6/5wos62rCpx46CECKYzg4PIsnDo2ht6UO5y1sUwZwsaSgtKbYCS0jarVwOD0VQU9LXcaklPa6Y2CPep+JU2amNLcEsyKTrwoixT/8Yj+8PMG33rYFd1y4GK89t9d12Ytuk+bORJPw8JySdCBSqaVHMiuSXssrzfUWZn6VvRwRTx8Zx3Q4gW8/9yq+8eypTNm3SE2vhVMTYYzMxnHVml783WtXYWlXI1467c9ky2w49vuGArhwWSe2Le/E3s9ch5s3LSh4GTesn4dfffBSvPLp6/BXly/H0q5G3HPtKvS1ZY5jCCF43UaJJb16bS/q5RqB6IgSK3jwxQEk0yI+dM1K3LJ5AXacnMSkPCamlGLX6WkAwNNHxxFOpHHl6h688Oo0Hjs4iof3jeCCJR344XsvwgVLOpRlrl/QipHZOGZk4iWRFvDJX0v3tUF/NIuRtnq57xsK4IVXp/DkkTHUezk8f3IKD754xvCzgiwf5wzUGZVA1Rei9RVy2dS6pNkdOaLMpMnnBpWL3UIG6kwSZ8aIavs42xvUYon1R7Ib16RSiFqX5orKd+PotpCtyopmfyQJniMVZ8Z88g0gWYJzrmrUZFeOaGYhmpkjmgYhQL3X+HLWuxlTSmVpboUZUc0gJxhLV700V2Gt49VhVqS9h4XjabQ4EDdDiPVBew01ANKk1NHRIIb8UewZmMF16+ahwcfjbRctUdQfb9myCLGUgCePjOPac+eB4wj+520X4E0XLMT5S9oNnWlLBWMR9PfTXDgzFcHyrkwlk145BGTHt+SS5qYKuJ6YWZFHo34wwhOHxrB7YAb/8ob16GurxxffvBEPvOtCw4GqKFL8Zv8I0oIIKktRy4WELM11g2vuifEQHj80hhvX9ylFjkCpMmGRb5BfKiPqjyQxE0nix7sG8VcP7sb7HtyNtEgxGUpg75DEaB84G8Br/v1ZfPqRTPuW3x8ew1NHxvEfvz8OALhidQ/qvTzuvfU8AJAzZIsrUn67fwS33/eiUgz7I0kM+qPYtLhd/r3FjdkJIdiytANtDV586vXr8MP3XoSPXLfa8LO3bF4AjgC3aApeNt6gFu2KYkkBP3zxDF577jyc09OMGzf0QaTAzn6p+ByYjmI8mMC25Z0AgAVt9fjo9dL2/M+zr4IQ4D9v36RMkDGsX9AKADgyGgQAPLx3GMOBGK5d24toUsCEHK1XqDT3M48cwnu+/zJeODWNt1+0FJsWt+Pnu417UfUmW5V+Rrt7pJQH8QpKc7VSDNsZUWUmRL3pJgWxoHVwRPpeWqQGjKjGrCiWwvx2NRKG9ZKkRQovT5SYDyvSXK0LJyC77Vpg3Zhz13QkiY5Gr23uw8VCYURL6hG1OdJHH9/i9aiFaCyFRi9v2u+pZ7lDiTTiKbHijKj2QReMp9DaUNW3I+WeUC3SXC0j7ZRZES9f2zXUYARKKT7+qwPoaq7Dx29ci4lQHFf8+7OIp0TUeTiIFLh+3TwAwK3nL8QXHz+GOg+Huy5ain1DAazoacYHrzwHADCvtR5fuX0zAGfcmqUCgyuIET0zHcG1a+dlvGbENOmludmFqLaftHBG1MOTnCzxs8cn0Nbgxa3nL8x43Uie+dyJSfztT/bC87YL8OThMTy8bwTrF7TiNx+63FAGaCcYI+qGHtEvPX4MjT4eH7luNQblVAMlvoUjCqNlxnay1+u9fEHqq3AijR/vHMB/P3NSdmGWXn9lMICF7Q0YD8bx5JExLGxvwFvv24mUIOLHuwbxjouXYU1fC773p9P4nJzJyRHgn//iXCyUx4CXr+rGW7YswvaTk8qYoxBlAaUU//3MSZycCGPQH8Wy7ibsl4vizXIhWg6sX9CGnZ+8NoNAKbRH9Jd7hjATTeH9V64AAKzsbQYgxUcBUNjQf7h+Dd7+wC7ctmUR1s1vRZOPx/HxENb2tRgq4tYvkGT6h0dmccmKLty3vR/r5rfirouW4JljEzgjL99rYFpqhnhKwJGRoHJOXb++D4s6GvDZ3x7B8bEQ1uiModIya2/UJlAJuHuklAeVlOZq5TW2F6K63gIm9SuEMeIIyYj6yFi+Nkc0mkK7ZrkswzQtUHh5qZfQSp+ntN3SX/bwmwglsLI3vzMak+/5I4mK94cCmT2ixSIQTaK13ptXlmwVRF5M2ECaG06k0WAiywXUYyqKkhxjIlj5DFFAfTDEkgKSabH6pbny36AslXaisLMTnEY6FkqkHSmcOa7ysp+5CkLIYgAPAugDIAK4n1L6NULIZwG8DwCzmPwkpfSxymxlbvxi91ll1n7r0g6MzsYRT4n41OvOxYMvDsDDEYVB6G6uwy2bFyIQTaKzyYcH3nWh6XKdcGsWWCwHRyxJQ4PxFKbCSSzrNmZEc5kV6QvdpCCi3sshnhILc82Vl8MyQY0KaEopnj85ictXdmcVkmyco/3ertNSf9vhkVn88cQkupvrcHgkiD0DMwo75BQYE1ppae7YbBx/OD6BD1+9Ep1NPgzLOe+imN03mk+aWwgjOuSP4pZv/gn+SBKXrezCy2dmkEyLuOfaVfj6H07iti2L8MrgDH53YBSgUk/tw399Gd7+3V2497GjuPs1K/C53x7B9evm4Z2XLENnkw/r5OuL4Ytv3ohwPK0U14UIw14+M4OTE2EAwNHRIJZ1N2HfUAAcAc5b2Jbn2/ZCr+IzksSbQRApHthxGpsXt2OrzGg2+jyY11qH01PSftnZ70d3sw8XLuvA7z9yBRa2N8DDc7hgaQeePzmFi1d0GS67s8mH+W31ODwSxMP7htE/GcHX7tiMpbK77+kpVohac7oGpGsxLVK8+YJFmIkmsWVpB1b0NOHzvzuKh/cN4+M3rs34PJssMXLwrgTcPVLKg1hKqBjroAyiUwKSgr2DaL3ElcmRCom3IEQT66ErUjjZ9Y9SmtUjymZhUqKIBvCYDFvr89RvtyhSTIUT6LUg/2QPyBl5gFFpsBtAqgRp7kw0ZZssF1DPt2hCgIcj8Hm4DLmumSwXgNKrkhYpfBzBeNB636+TYDfBQMwd+bGlQo3TScHn4YqWIJUL2oFSOOFMfI42s7gG25EG8FFK6StylNoeQshT8ntfpZR+uYLblheRRBqf/90RbFvWiWA8hU/8+iAWdjRgRXcT3nv5crzjkqVIpMUMpceX37LR0rI5B5h4bY+olZ6+M/KAcnl3ptu9Is3VPF5Up0xjOWRaENHo8yCeShbk5s4KHA/HSS05Bjvl+HgI48EErljdnfUeZ8CKvSQzQU8dGUcgmsInblqL/3zyBJ48POZ4Iar2iFbWrOg3+4dBKfBG2biGaCbhj40F0ddanzWO04Mx2z4Pp7gB58Mv9pzFTDSJn919MS5a0YXHD47iD8cm8LfXrsIbNi3A4s4GvPDqNN79vZdx3/Z+XLu2F5sWt+Oj163GZ397BDv7p7Giuwn/fef5Su+kHjxH0NboBZlBzu0HJCJjz6AfV63uRTwt4KtPnUBLnQeRZBpHR4O46bz52DMwg9XzWrKUeeWG0blshl390xiYjuIfrl+Tcf9Z1tWEM9MRqT+0fxoXLe8CIQTLNZNN25Z1yoWo+bVwwdIOPH5oDH88Ponzl7TjDRsXKK1grBAtxCyKmYt9/KY1SgHe3VyHi1d04tljE7h962J89jeH8V9v3YxgPIWDw7O6+JZaj2jRiCUF04vJaTA2IehAPxivY+QYw1Joj6jCiBrkiLLBpyBSXY8oM0qSWc1gwlKfJ6CV5koFbkqg6LHUIyqbFUWS6KpwdAugLURLY0TtMioC1KJNmhmXjieT/kQSua8DhRGVbzbMCdnqcXUK7MHAom7mSo/obMyZKBS7wfZ/OJEGpc4wuE5IJGuQQCkdpZS+Iv9/CMBRAAtzf8s5HBqexb89ekQpFvLh94fHEIqn8Y83rsGX37IJ/kgSewcDuGGD1HNX5+GznnlE07uWCxyxf5ZfEEV4eOvxLaeVQrQ5a9uAzMHfmWmJZTFzzU0JVFF/FcOI8pzckmOwT1g24xWre7Le0w+GY0kBB4dnAQAnxiXm6+IVXbh0ZReePDLueN6o6ppbfkZ0x8kpfOyX+5FMi/j1K8PYvLhdKUDYfjo9FcGJ8TCuWzcvb/8da3/ycJyliQ1KKR7ZN4xLz+nCRTLbdtN58/Efb9kEniNY2duMOg+Pq9f04s5tUmbtO2X33Hddugy3b10EQaT40m0bLY2b82XIjgRieNO3/oT3fH83Xv/1HbjuK9ux6/Q0Pvm6c7G8uwlHRkM4NDyLHaemcN26eYbLKCdURjT/Z584LBn+XHtub8bry7ubcGYqgrMzMYzMxnGRQbF5y+aFeN1585XYGCN8/pYN2LCgFZFEGvfeeh44jqDey6OvtR4D8r2A5dNauY/tHZJk2XoW+JIVXTg2FsIDz/fjuROT+PXeYdx5/068OhHBX166LKO3uZKo6kI0XklpLpxzyNT3kDBms5AeOo4QhE0YUSbNDcgRI9r4Fp4VYfKs62QoblnCqY2DUEyOLDCivCZH1A2MKCvwSmFE/XK/q13gNIMvxn4qLGnSOiMKuMedWCncomyixf3FWy5oXXPdblQEGMXN2D8RwBtIJPcPBfD1Z04q662hdBBClgE4H8Au+aUPEUIOEEL+lxDSYfKduwkhuwkhuycnJ40+UhBOT0XwwI7T6J+M4Bt/OIlnjmZn5Wnx0N5hLOpowNalHdiwsA1/c/VKAMBf6HIBiwFHjNm/UsAYUQ9HchaDKUHER3++Hx/75QFwBIrkTtk2HQvxzWdP4Vt/fBWvWdWt9O3rB59JQUSdl7XNWJMFf+Gxo3jr/S8CAOq8vPzcz/7s9hNTWNXbjPltDVnv6aW5e4dmkBIoLpELIQ9HsKavBdev68OgP6rIMp1CJXNEf7N/GD/ffRZv+PoOHBsL4fati5X32LP4iUNShNB16+apxzlHIcrOJ8ECy71vKICB6Shu2Zx/rumzN6/HLz9wCa6UJxcIIfjSmzfixU9cgwuXWWOt8/VUfuaRQxgPJvD3162GIFKs7G3GD96zDXduW4Jz57fi6GgQX3riGNobvXjfFSssrdNJGJmEGUEUKX5/eAxXre5Fo27svKy7CdORJJ6W720XLc+W3y7pasQ333ZBTrVmZ5MPP737Emz/2NUZ0uglnY0YDkgyb445dOfZ4HhKwO4zfpy/JLsHl01Y/OzlIQDAfz11AiOzcXztjs14/5XnaPqAc67Ccbh/tJQD8ZRY8fgWNpiy03GSEGYRL92clB7RAhhRQmDaI8pYCrbt2h5Rr46NnQwlsGpe/j5PQBvUDcXkyIrbLkcIkoKIQDTlikLUm8dkwAoC0RTWWNxvVqAtRJnk0yMznZGkkFMGyhhRxnLPRJPgbDRSKhbsNykTIlXOiLJ7QtAh4x+7oeTQOhg3Y+Re+uzxCXztmZN4z+XLbV/fnyMIIc0AfgXg7yilQULItwB8HgCV//4ngPfov0cpvR/A/QCwdevWkocia2VDjANnA/jq0yfR5OPxh3+4ylB5MRGM40+npvA3V69UJnDuuXYVXrdxPlbbcN/kOPuluUr2noncfCIYx10P7IJIKfonI7jjwsW4RhMfwaBlIWJJAfc99yquXduL+96xBZOyWkU/+EwLInw8By9P8rrmPnFoFJ96+BCmI0m8fuMCXLKiC5ee02UYpRRLCnjpjB/vuHip4bL0hjUvn54BIcA7LlmKF/unsXpeC+q9vMIM7RsK2HL8zMDY9kq45p6RewOPj4dw57YlCusIqJO9+4YCWDe/FYs7GzEmezGYFRJpgcIrm19ZYbmfODwGL09w44b8GZx1Hh5bdQUnIcTSeIxBH8enRTSZxvaTU3jbRUvwt9euwt9euyrj/XPnt+LRA6MYDsTw2Tesc4X/g9Uoon1nAxgPJgz38zLZAfunLw2ho9GLVb3NWZ+xCp+Hw4L2zMmfJV2NeEnOGGV93bm2l1KKf35ImhB4sybflGHjojbUeTgk0iJ6W+owEUqgr7Ue16ztldchfa7SrrlVzYjGUgIaKhTf4nRmoCSflf6fSXMLiYjRSnOzXHM5ZDCiWgmph1fNEiilmAwnLDnmApmBwYwRteq2y+JOuiyYIjkNe3pEk+iwsajWekgojKh89SbTYk5GVG/dL7kT+yruTjzXpLmc5p7gdsdcIHN7AWekuYQQ6Cf7Dw3P4pye5or3DM0FEEK8kIrQH1NKfw0AlNJxSqlAKRUBfAfAtnJsy7LuJvh4Do/sG4EgUgTjaXzx8WOGn/3RzgGIFHijxqWV44htRYwT+bXMNdfDG/eI7hsK4NREGD6ew+dv3YAvvnkjrl+fPZjVshCP7BtGMJ7GB646R8qjNJFzpgQKL89JMs4czyVRpPjHXxxAd3MdHvmby/D1O8/HXRctQZ2HV7whtNh5ehrJtGgoywXUySr27Hj5jB9r+1pxkdwLygxolnc1ocnH48hI0HTbtEimRdzz0714ZN+wpc8zMEbUSbOiIX8UpwyY3TPTEbzx/IX4v/ddhH+7dUOGRFz7/6yAYQqxf3/iOF54dSpreWlRBM9L7rpWCoHtJ6awdWln2Yq6XPEtfzolnTd6R2iGDfJ5cddFS/AuWR5caViNo9nVLxWCVxpcE0yKfXw8hL84b77tY6hr16pSYC9PlBhGM3x3x2n86pWzuOfaVbh6bW/W+3UeXmFK//WW9SAEuHPbEmWcr1zfNbOi4hFLVbBHVC9rs7sQ1TCiRUlzNXWJvlhnpgWBmFQAaM2KWNGSEkTMRKU+T6umNrzmpJ4IWTfE4Yjat+gGRpQxjcUWoom0gGhScFCam8mIAkB9DkaU3WxYHI0/7A4JtP4acsOsaSlQGdE0VvQUP1NaLmTvfwfiWwxccw8OzyrSvhqKB5FGVt8FcJRS+hXN6/MppaPyP98I4JDR9+2Gl+ewoqcJL8o5e1es7sGjB0Zw7xs3wMtxuPmbO8ATgtu2LsaDOwdw3bp5jl0njuaIcpzh4HBIdk79yfsuzjkJya47fySJ+7b3Y21fi+LMqZftMqQEUeon5ElOWeqgP4pQIo13X7YMGxdlSvWM8k+3n5hEnYdTCkuzbRWptA17Bmbw1gsXo6u5Dv9001q8ZlW3st3rFrTikNw/qgelNNN06snjeGTfCJ48PI7Ni9uxVJe1aoaEYlZkXyFKqTQp39HkQziRxh337wQhwPMfu1rZ5kgiLacANOPSc8xNnQDgVlk6yyYVDg7P4oM/egWP3/OaDAYsLVJ4OA48l981dyIUx9HRID5245qSf69VqD2i2e/94dg4Wuo8puZUr1nZjZ/dfTG2Luu01NNdDmiluTORJDhCMtrSGA6PzGJRR4PhNby0qxGEAAvaGvBPN63Ner9U3HTefDz991dg+4kprF/QJvejZ39uJBDDD144g+88348b1s/DPTpGWovbtixGvZfHDev78OiHL8cqTZJFTZpbIgSRIpmupDRXOoBODaK1/RzBWAoejhT0W7U3xqz4FnmWRWFENUyUh1eLyUJYTe06RblHtNHHW2I9OEIwJfctuqFAUqS5Bg/8eErArtN+8IRIcieDGTEjprlUaNfDClGtkXGuCRmPbtbL7xJ3YvaAUhnRqr0dSdD2iFYB26cwovJElxM9ovqCYCIUx3gwocyY11ASLgPwDgAHCSH75Nc+CeBOQshmSNLcMwDeX64NWtvXgmNjIbQ1ePGOi5di+4lJ7Dkzg56WOhwaDqK7uQ6ffliqiz9wpXN9Y8wAT4vhQAwt9Z6in9WKay4xbtsY8kfRUufJmNg1Arvu3vHdlxCMp/D9d1+o3AvNGVERHp6Dl+dy5lsfGZUYyXXzs68vI0b0hVPT2La80/T5oX2mHx4JIpYSlB7DD8j5rQzrF7Th57uHlPgSBkop3nrfTnQ1+/CV2zfjwNkA7t/ej9dvnI/njk/i048cxoPvsUbaM7OiUtRKevxo5wA+85vDuO2CRZiOJJUevUPDQZy3SNqPLNtxmUnBrB0GLJF7grX7ICWI+OCPX8GD79mmtKCkBREe1nOcpxDdcVJiVK/IYYBjN8xkmwfOBvDo/lFcsaYHPo+xEovjiNKf6BawoyFSind97yV0Nvnw/Xdnn3dHRoJYN78163VAGmd9/pYN2LK0oyCFYiFY2duixB4Skr3/I4k07vrOTgzNxHDdunn4yu2bczKzt21ZhNu2SLJdlmHKoES4VbgSdf9oyQSsV6DBVxl1sb4QtV2aq+0RjUvmJ4XMLGk/2+g1MCuiVC2iG4wYUYrpCGM1rfUVaGdzJ0IJy0wqp7nYtA6+lQKTLRg98L+74zT+4/fHAQCv3zgfX7l9c9bNmBVWHTYWogCTm6nSXF7DiNblNCvSFaKRZEm9DXZBiW+JplDvdX/cST6w35NIi1VhVqS6/DoszdU84w4PSwPlcmfKzUVQSndAHV9pUbHM0DV9rQBGcN7CNlxyThc8HMH2k1NY0ikNzn/xgUtk18kotix1LuqDI5lun4JIces3/4Rr1vTiS7dJETCUUvzl917GGzYtUAZq7LP6PE3pdVFhRI0YrEF/FIs7G/M+p9nbU+EEvvyWTRkMm5lUjrnm5jNKOjIShIcjWDUv+/6uZ0SD8RROTEgSQzMohahI8bKcH3rhckPvK2xY2Ibvv3AGp6ciWKl5vrwyGFD63oZmXkA4nsbizgb8x22b8KOdA7j3saPYM+DPez4IIlXYYLsY0bQg4tvP9aOnuQ6/3jsMkVK89/Ll+P4LZ/DE4VG1EJX7Q/XGUwysFeP9msmVtX0t+Oh1q3HnRUuwZ2AGH/q/V/D2B3bh1399qTShIFDFhTkfI7r9xCS6mnymBZIT0E5CzESS+MOxCewZnMHDe4fR2eTDP91oPyPoJNhw6cx0FAfOzqLRx2dc69PhBARKcXo6ktMQ6u0m/dROgOdIxn1s9xk/vvnsKQz4o/jJ+y42zSq1CqNM40rA/aMlE8RYIVop19wsx0kHClGNa26h/XMZPYW6Yp3IGWszkSQavHzGbCiTe6ZFUZHLWmVEM8yKgvECekvN2dtKgDGiyXT2xXlyPIR5rXV4x8VL8eUnT2AkEMM333ZBhuMg63e1U5oLqOwSk+Hymv2WM76FZBeibmBE2U2QNdJXO7QqhGrof2QPYKcm04DsGI2Dw7MgBFhfK0TnJNb0SQXI+oWtaK7z4IKlHdhxahKre1vQ3ezDsq7GjMw9p8DpepP3nw1gMpTAywN+zWuzeO7EJALRJG7bsghHRoL46x/vwYA/is/dvB7vvGQZosk0njk6gddvnI+0wHJEjXuqBv1RrLQgNdbeJ16nKwLNcv1SgojWeg+8PJdTmntkNIiVvc2GzwO9zO/A0CwohaHbpn5bRQrsHvBjWVej6cT0hoVSkXTXd3bi5k0LcNN58/HA8/2Kcu0Lb9qALzx2DJOhBB58zzY0+Hi87eIl+NZzr+Jrz5zKy4pqY4Hsim95/NAYhgMxfOedW3HZyi54Zdb56GgQTxwawz/eIBVbCiNqcu52NdfhpX++NiOuzsNz+LAsmbxhfR++/JZNuOen+/C7A6O49fyFcnwLJzOiuft+d5yawmtWdZfV14Gti1Lg3seO4pd7zqLOw+GmDX342I1rs4x23A42znzikNS1EE0KOD4WUlxr7/rOLgRiSVAKrF9QvoI/F7Tu3zv7p3HH/Tvh83D4xE1rSy5C2fIB+6OuCt6Oiq69BMSS0k2pcjmi6iCu0bSw6H4AACAASURBVMcrLJpd0EtzC5UTsROM54iSTaYsW37PH01myYg8GsdYf0QaoHZaZPa0Uo7JcMIyk8q7rhA1Z0QH/FGs6G7Gh65ZhW/cdT6OjoZw7++OZnzGCWkuoB5TVZqr7rc6E4kMkHlMJZOqZMWjW4DMAVk1MIj5oB0iVEMhqjcr0sc82QF95uLR0SCWdTVVhZlTDYVj46J2tNZ7cKUsIbxydQ8ODQfx9NFxbF1avn4xvVnRH49NAAD6JyPKxMtjB6UB6f6zszg9FcGHf/IKokkBK3uacd9z/UgJIv7up/vw4Z/sxc5+v9QjysuMqK5QFEWKIX9UkWXmArtvL+tqzPJvUCcNM7+TEig8PDNKMi9aDo/MmrJmRDcp9Mqg5IC7OVchKj9WREpxYjycETWhx8qeZly/bh6WdDbigR2nccf9L+LxQ2N45tgEbjqvD288fxGe/Yer8NsPXa6YIzX6PIqEe0aewDWD1inXLkb0kX0jWNjegGvXSlEd7Nl/04Y+vDoZwamJEADgzFQEPS11Oe9bvS31Oc/vN2xcgFW9zfj2c6+CUiqZFXH5GdEjo0FMhZOmhlJOQesyu+v0NF57bi8OfvYG/Ncd51ddEQqoz7vHDo4pE997h2YASOP44+MhjAcl8mX9QhcVoqJ03X7hsaOY31aPPZ96Le6+4pz8X7YAfU5wpVC1hagqza2sWVEonnZkEC3JaJg0t/B1sO1r8PJZN0dWl/ojyaxiSWFEBalg4Yj1IkErK5oMWnfb1RorNbpggMrkyUYSqIHpKJZ1S4ON129cgI2L2pReWgYmzbWbdWT7iclwWYEJ5GFENXlms7EURApbHX2LBdEc92oo3PIhgxF1wYRKPmjNipp8vKEcsfR1ZLIwZ6ajZWHEaqgMupvrcOCzN+DSlZLc9J2XLMWq3mYE42lsXWYs6XQCekn4s8cnlUnO3+4fwRceO4pH949gRY90Lt55/068OhnBV9+6GR+9fg2GAzG89b4X8eQRKS/wpdN+xTXXiBGdDCeQSItY3Jm/EGXs2lVrsl0utYWfFik5viWXNJf1X5sVi/pMwr2DM1jZ05xzkpvd0+IpAQPTEaV3zQgensP979yKX3zgEtxx4WIsbG/AT+++GDdvWoAPyv2kzXUeRe7KwM6Lo6O5HXedYEQPnA1g2/LOLKaRuR0/fnAMKUHE7oEZrCjxvsVxBO+/8hwcGwvh6aMTkjTXQo/o9pNSxu/lq7JNkpwEO/YjgRiG/DFcck63aU9oNUB7hN95yVJ0NfnwykAAAHBYNtlqb/Sit6UOfa3WY26cBM9JLQQ/2z2EA2dn8dHr19jam+qW+JaqHf1VWpqbyeY4EASvYURD8RR6ugvr6WPFp1Ghzm66/kgyw6gI0LBnggh/gTEfbDY3mhQQSqQLNjkCKnc8tWCzovqHXTCegj+SzHD4a6rzKJmpDCojar80F1CLzgwn3Vw5okTLcrvHnTiXoVY1Qjvf44YJlXxQIqjiKcd6s7UsDKUUg9MRU4fOGuYeWuq9eOBdW/HZ3xzGDQZRJk6B4yT38pFADEdGgjg4PIv3X7EC923vx7/85rAy8Pr32zbi2398Ff1TEfzrLetx2cpupAURizoacODsLP72mpV48sg4Xjozrbjmegx6RAf9Ug/hEguF6GtWdeO/nj5pGGuhlcr1T4bxwI7TSKRETIYS2LCgFR6OMzXq+f2hMQDAZSuNCxZtjyilFHuHArhhXe5jwianTk2EIVJY8hYghOCLb96oOOXmkxCeKzO4R0aDygSGETIKURsY0fFgHBOhhGG/+rzWelywpF3K7vRwOD0Vwaded27J67xl8wJ84w8n8Z9PHkdfW73KsOeQWz9/Ygrnzm8tKAPUDrDn2S7WG1zGiSQnoB1v3LxpIfYNBfDiq1N4dTKMg3Ih+usPXgoArnL6PTwSxEN7h3HZyi686Xzz3tVilw/UekSLBpPmVrpHFLC/PxTQmRXF0gU7imoZ0axlE9acncTCRZkSC69GxhmIpgoqpths7rgc5Gy1749d9HUezhFWplAo0lzdw2FwWjYs0Aw2Gn08ogkh43NGvbd2QClEPSy+RcuIWjMrYlFAXU2V78nUHmonZKHlRiYj6v7fwytsh4jmDme2l9e45k5HkogkBVPDjxrmJpZ2NeF7Bu6UToIjBI8eGMWjByT57XkL2/DBq87BU0fH0T8ZwSduWov1CyRDpXN6mhGMp3C1zFB6eA4/ed/FoFRyQA3G0/jpy4NY1NEIniOyXM742WClEN2ytBNnvvg6w/cUaS6l+OrTJ/HYwVFlXao013jQ+NDeYazta1EKu6x9whElpqF/KoJANIULlprLcgH12bFvSGKOjEyQzGB1MN/dXIeeljocHQ3l/BzLEAVKK0QppfjF7rPKfWnTYuN+9Zs2zMe9jx3F4ZEgrls3D9eea5yZWQi8PIePXLca9/x0H46NhbB5cXvOYxpJpLF7wI/3XLa85HUXCnYuvnTGj0YfX1ajJCegPR2XdDXi9q2L8aGf7MUNX92O5d1NWNje4LrYNY4QHByeRXujF1+743zbe4RrhWiJYIxofcWkuc72t0kyGun/Jdfc4npEjZgmXsuI6gpNXmNWxBjRQtc5NisVotYZUZhuayWg9lRmPuyYpErLiDbXeRBJpjM+NxNN2W5UBKg3UtU1tzBprqBhRDuaKp/ZmcGIVgGDmA8ZjKhLzuVcKEePLqcxSBlQrp9aIVqDs2ADqy1LO3D9unl4xyVL0ejz4Oo1vWjy+fHey5crvg5blmYzPVqJ7bblnfj+C2dwaiKMVb3N8PBqIfrk4TEs727CgbMB1Hs5LCyxd44NNAPRFH5/eAx3bluMh14ZRiQpSMY2fDYj6o8k8fTRcbwyGMiZbah1p987KBWW5y/JzXIt62rCvNY6PH9yChyBY7L6c+e3KtJcfeYoA4tuAUqT5h44O4uP/eoAfLw08W0UdQMAt5y/ANtPTmLr0k68+/JlRa9PjzdsXID/fPIEBv1R2YXZvEd01+lppARa9v5QIDN384IlHbb7oJQbjFG/66IlACT59Z8+fg1u/sYOnJwI44b1pU802A1G7lyxqgfdzfaTB/pEhUqhakd/cRdJc50y+RBEEWlBRDQpFG1WZFSgsPdiKSHLjVcb3zITTVrqedFuMwCMKYyoxdgXpWh2x+nola9+vTvhwHS2hXujz5PNiEaze2/tANu/hZoVsc+lRYpp2RDCDYyodqxRDT2V+VBtUmOnVR1sHawoGFBYo1qPaA3OYsgvZUG+7zXLceMG1Zn2069fB1GkBTEL25Z3osHLI5YSIIg0gxH96M/3Y/3CVowE4rjMph46niN4eN8wkmkRb926BKcmwtjZ74ePJ/DqipafvTyIzz96FOFEGt3NPtyaI3ZC68D5yuAMWuo8eV1+eY7gls0Lcf/2fizranIsYmvd/Fb876unkUyLuPuHu9HR6MNX37o54zPaMV8pOaJ/PC71XCYFEWv7Wkx9Rnpb6vHD915U9HrMwHEEb7pgIf7r6ZOYDCdyuuZuPzGFei9X1v5qhtYGL27a0IeWeg8+eNXKsq/fblyxugefu3k93nrhYuW1npY6fPr16/DXP34FGxflVgdUAuw+ZodDrhHUyEVHFm99Oyq7+uJR+R5R9f+dyN9j/RxMSlkoY0FysIzaAkZf4DJZqiBLcwth9hRGNFgcI1op4yk9vB5WjGc+HAamI+hurssw1mmq4xFJpjOynmaiSUcYR3VyoTBGlBlQsTwwwIWMqEsmIUpBRmFdBQyvdjDuGCOqkeYOTEdBCLC4s/ocF2uoTly52sgQqDB5W3dzHX7zocvwl5cuwx3bFsMjm/6E4imEEmns7Pdj0B/FVWvsYa14QhCIprC2rwUbFrZikzxAppDUOqxlZDKUwKcfOYx1C1rxyN9chh0fvwZ9beaTvzxHlH7tvYMBbF7SbmlfvFHuS1vpYPb0ufNbkBRE/OSlQfzx+CR+d3AUkUSm0ijx/9u79+C4qvsO4N/frnYlWy/bki3JT/mFH9gYjDFgO8SAEwJNMFDCkIRX4gzTvAgzpI2b0IZOmg6lSTpJmwklhJYQWkJC0tCSTmBCCMMQg23ANsbYlh0by9iWbMt6S6vdPf3j3rO6knZXurt799679/uZ8Wi1Wkvn6K7uub97fud3zNTcmklleaXmvnSgDcubarCsqSZtwahiuOkiY9/ao2f6UtvqpNtC4+WD7bhsQZ0re2yHQ4If3nYxHrp5VUkUmIuEQ7hzXfOYa6VrVzTi4dtW47ZLi7c/qF2XLnCmroK1MrKbvH+1lEF/zDgRuRW8iKUGl3NrRIHWDuOOSFOWASadVLGidDOiWS5Aw6HhIOxsX8xWdVUdWJzqHEA4JBPeIkS31SuzYsOVg0cOdq0d/WMuoidHy5BUxvoV/V481zfkSHlzfdjSzYhmWyOq0zviCYWTXQOonRRxZWAbbeS+m+63J19e2w93PNZtk6rLnbkxEbZUL33vbB+aaio88d6j0jZryiRUlocLdn2wuKEaD1x/PgDgrWOdSCQVTnSOLFJXqKBGp53eta4ZIoJVc4xAtKWtB5FwCD1xI0D76bajiMWTePCmlRNa26ar5vYMxrH/ZBc+dNXiCbVnWVMNPnXpXHxgsXPpoesX1WNaZRTfeHYvQmKsAX35QDuuteyzqmdEqysiOQeiHb0xvHXsHO65ajG+fPXiou7LaTW3bjKa6yZj9bypqSy0hFJIJhTu/++3ceRMLx64/nwcbu/1dIBUCkRkRNaEF+VbsTkTfQ3g9j6i/g1Eh9zdR9S69YSTxYoOmvtY2SkSAGSfZbRegI6dEdWVNOOIxZM214gaH092DaC+yn61Xc/MiIaH05Ot2roHx6QyVZkBVG8snmp/e/fgiI2tC0UHOrpYkfU4lk9gRjSRVDh2dmww7Rbr26MUZkRDfpsRdTirQ/+M4RnR3gnts0iUr5f/6soRWSqFpAOH4+eGbxJPnRy1tYxlIm4wZyJ1IHqycwDz6iYjnlBo6x7AE9uOYtOyGRMusKK3Utp+5CySCrgoy/6ho33rxpX2O2BDfVU5Hr7tYnzq0W349Pr5eHrHMTz/zqmRgai5RrSmoiy136Ndrx46A6WADy6Z7loQqv3+KxshIvjhS4cAGOPzN//3HTy1/RgA4K7HtqMyGsbmC2e62UxyUVNtBaZXlztWxVd/39H7Iheb96+WMvDSGlFHUnPNYkUtbT0oC8mIAjkTEcoyI2pdcz56RlQvSNd7Y9pJzdUzdKe6BrCkMfN+Y2PaarbHK8GIiLG31+jU3PbuQaxbODJXX7e5bzABVBlb7fQMxm3PYE+EDjz1PqJh6z6i2bZvsdxxbe3ow3kNEz82TpISmxH13xpRZ7M69M9QyihAcvRMHz603HsFIaj0GOc8Zy7e9PlUZys9/pm1aCjgvoMXz5uKS5qnpW6yz6ytwOc2LsR1K5rw/RcP4lx/DHf8+HX0xxK4d9N5E/6+IXMrpWd2tqJ2UgSXO7TuLFdr50/Dq1uvRl1lFB29Mfx8Zyv2n+zGlg3z8bFVM1NVc2smRVK/e7t2Hz+HSFiwYmb6AkXFpM+/+sbGYDyJX715HDetnoVD7b3Ydewc7rlqEeocuKlN/vDq1qscXb+pz2Uux6H+DUT7YwmEQ5KavSo2p2c/hmdEe9BcX5lauzlR2SrRZtsDVZ8UT/foQNTGjKil0JGdGcFse566ZXRJ9YGhBDr7h8b0SwdQPeZ6Fl0xONtanVyNSc0dMSM6gWJFiSRaO/oLUoa+0LxyEyIffpvhtbbXyTWigLF1y5neGBZ6rDw+kV36fHrcDIaa6yoLUqRIe8bcy1ATEXz1I0Y13EhYUgVMHr1jDVak2QMzk3BIcKY3htf/dBafvHSua9lk2ei6Evd/dDma6yvx3O4TuO/nu/DAs3uxYLpxM76mIpJz1dy9x7uwpLG6oMcrX/r9dKi9B32xBC5bUIc7L2/Gv7x4EJ+9YoHLrSM3iQicDHH0NYDbVXO989doU/9QApMiYdc2nh0RzDkWiCocMkvG25VK4xynWNGYGVHza21depsP+2tEAdgqNZ2qmuuhgTEyauNwHZiPLsCUmhE1t3DR64YaC3iHXEsd03RrRLPMiOpjerJrAIPxJOZM9UZqrpVX1gfnZ/h4eGE/3PFkOw8U7mcYHw+e6gEALJzh/6IXFGzW1Nz6qmhRgxq9zCIaDtkujhQSwb4TXYglkrhlzZzx/4OLaidF8IUrF+G5ezbgPz59CRprK7CrtROAca7KZY2oUgp7jndipY3gvRj0eXi3uVfr+TNrsGrOFDx65yW2d0sgsiNkyZZztR2u/vQ89A8lXL2j53SFzLAI+mMJHDnTm1O1Ov2+mhwZ27bsgaiZmtuTQ2qu5ZcyzVYAa3z00rq6SFkoVZ0QGE5VnlGTfka0N2akiuuKwU21DhQrMv9aK8wLnzJrIJqtWJF5XI6cNvZxnF3gtUyFUAr7iPog9hxBsmRGFPpntJhr3RdN90ZaOFGu9Pm0taPPkcyXbPQe14sbqmzv67jjaAcA4M9WNmH5zJqCt80JIoKNS2bgxtXD29LkWqyotaMfnf1DON8DablWqUC0tRORsGDxDJ4jqTiG94plIJqTgVgCk6LuNT/k8PqqcEjQ0taDpMqtbPqgubA/3e8oa2quOdCd7s4lNXf4cS4zqZ5KzR21RrTN/H1Mrxp54aGD575RqbmjA9ZCCGebEc1WrMg8pkfMfRznTPVeIFoKM6Ihl7IzcjWiWJFDNwL07+TAqR6Ul4Uwy4Oz8UR26PPp8Y5+NNYU9/2s97he1mQ/kPzYBU2IhkN46OYLCt0sx1nXs1ZEQognVarS56uHTuPKb7+E6//1FRw905vxe+x935hR9dqMqL6hvPt4J85r8FbaMJU2fU2ZSBr1aJ744xE88ccjeW2PlAvfTkP0DyWypiM6rRiBqJ5ly2Vd1WBcb2+TfUZ0dNv1IKtnAGsn2d9HFLA3I6rz0z2VmhsOjaiam3FG1Pz96jWiJzoHUFcZdWS2PjQqEBURsypp9kBUH+/UjKgHgwE/rKkcj8/iUMcLrgHDqbkHTnVjfn2lL1KWibLRfzdt3YOOFKXLpmtgCACw1EYxQO07t1yIf/q4sl1vwguswaMO1GKJJCpCYbzwzikc7+hHLJHEc3tO4PMbF6X9HrtbOxEOia1CisWgz4ktbT24Zc1sl1tDQaInjxJJhc8/uRMHzCU0N66eXdQbIv47I5kGhhKuzqA5vfWB9YJtVg57Ug5mqSpsvQAdfWGoU3NjiSRqKspspf9Yv9c0GzOpw7O33glEjWJFw3eF2rsHIYIxe6PqYlB95k2DU10DBa2gaKUPmzUNV//Os6Xm6rteR8/2YUZ1uSeLVJRS1Vy/BKTW80CNw8WKDrb15JTZQeQ11iURxU7NbWkzLhRzmRE1ijv685LPeh0SDQ9fowDAuye6sXxmDZY2VuOVg6czfo9th89g5axaz41/ZZZqNCtnT3xLHaJ86fH5pf1tOHCqB39/wwrsuH9T0SeF/HlWghfWiDq79YQOMKJlIUyxsU5T0zOi6avmZv+5umt21zmOmBGtmngg2j+k2+qdWTFjRnRkam5dZXRMYK5Tc3stxYqcuks+ekYUGH6flE9g+5ZYPOnJ2VDAW8c+V/rt79aWUnZZU+mryp1dI3qWFXOpRCyYXpUKhgq9d+h4jpipp7nMiPrdi/d9EE9sWTs8IxpPQimFd092YWljNTYsqseOIx3oN28KW3UPDGFXayc2LKovdrPHFbaciK9fxT1DqXj0teFT24+hoaYct6yZg/qq8qLvsevjQDTpmQu+agcu4vQsVmNNRU6VgbPtszpeepxehzJzir2Ayvpt7cyI6rZ6ae9FY43oyNTcdJWAy8tCCIfE2EcUwMnOfsfukqdmPy1BZ1iMLYyyHVPrHddiXzhNVCnMiKa2IfLIeWk8xUjNtb4t9fYLRH62dv40bL9/E37ymbW4dkVjUX/2j+5YgxsunBnIvSUXTK/CBxZPT90EGEok0d49iI6+ISxprMb6xfWIJZLYcfRs6v/om8mvHT6LRFJhvQcD0Z4B4yb21Utn2FoKRZQv6/h876bzXFuf7NtpiIFYApMcSoG0K1taZK7C4eFANBfDa0TTzIiGRm6kPOZnhwRIADNtpgSPSM21MSM66MFANBIOIZ6wpuYOjNm6BTCCj8nRMHoG4xgYSqCjb8ixGVEd6JSPSs2tkOy/N2s1Yy8WKgKybz/jF/rt76UU82ysqcROFYuynhPm1TEQpdJQOymCK86zt31KIWxcMgMbl8wo+s/1EuuM6FGzAN/SxhqsmlOL8rIQvvXcPmy9VuGl/e34z9few3P3bMArLadREQlh9Tzvpb5ecV49Pry8Af9w00q3m0IBM72qAg015bj9snn4xNq5rrXDt4Fov8trRK2c2MtUBw8NOQY1WWdE9b6dGX5/em2k3UA0171VBzyZmiuIJ0fOiC7KUFa9MlqGvlgcreYG505s3QIYgY6IMQurhUMyIrUnHWswMGeaN1Nzi50K4oSQ72ZEjY9V5WWO7cds/b7zPDobT0T+YQ1E3z3ZBcBIVZ4cLcO/3X4x7nt6F+769+2p1+842oFth8/gkuZpWZewuGX21Ml45I41bjeDAqh2cgSvfW2T283wdyDqtUXnhaSDh4Y0s3ATkW2NqP7emfbt1CmptlNzLcGEnQvbAU8WKwqlSlj3DsZxsmsg49YTk8vD6I0lUoUknCrKEhJBeVloxO82HAqNOyNfZglUvTojWgrEZzOiIsZ6cCc3TbfeX8hlrTsRkZVOzR2MJ7HvRDdmVJentovbuGQGXrxvI/ae6ERltAyf/NE27Dp2DgdOdeNDyxvcbDYRZeDbQHQglvDNzEMu9HYgua431DOi6YL10DgzotpMmzN74RxnVby4RjQSltRM7a7Wc0gq4KK56dN6KqNl6BuM41C7EYgudCoQDcmY41kWkhEzpOn/3/Bjr64RLSV+ukEWEnFsD1Fg+JxQXxV1bNaViIIjUqYD0QRePtCOdaPWfdZOjmDdQuO5xQ3V+M2eE0gqYIXH9g8lIoOPixUlMCnq2+aP63SPsW9lrluB6KzSXGZENfupubZenjKcmuudC/iy0PAa0TffOwcAWD1natrXVpaH0TuYwMFT3ZhZW+HYhX1Ixq6lDKcJTkfTM6LhkBR937sgSa3L9lUg6lyhIuP7GyeF2ZyJJ6ICKDdnRLcdPoszvTFcc37mmc6ljdXoMosBrWQgSuRJeUVyIvIREdkvIi0isrVQjRrPUCKJeFL56oLPrvZuIxDNtwJrujRBHWCNF/jZ/dm5rvNLrWf1UCAaCYcQM1OU3zjagYXTK1GbIbWwMlqG3lgcLe09js2GAsZF/eg03IkEonpGtKm2wta+sGTPQCzzumyvEhFUOxiIKhh/Q5yJJ6JC0GtE/2fX+4iGQ/hglqJRS8xtbuoqo7wJS+RROV+VikgYwA8AXAtgOYBPiMjyQjUsm/4saaelQs+I5lo1V0tXjbTXvGCuHKc4kN3Nr3NNzdUzSeO1p5giYUE8YexT9uaxc1g9N/1sKABMLi9Dz2Ach9p6HVsfChi/39HveSMQndgaUa4PdVZfzHs3VMYTdjg191SXcR6b49H9a4nIX3Qg+u7Jbly+sA7VWda460B0xaxaLg0g8qh8rkDWAmhRSh0GABF5CsBmAO8UomGZvH28E09tfw+Avy747NLpqjNq8tsvLN0sZV/MSFUZLzU3V7nOsHhpJqksHEJb9yA+99M3cLY3hovnZQ5EK6PhVBn5xRkq6xaCCFCeLhAdpxKgfgt4tWJuqej34Mz+eEKCrBdy+Tp21vi7YGouERWC9Qb5Xeuas752aWMNRIBVs5mWS+RV+eTpzQJwzPJ5q/ncCCJyt4jsEJEd7e3tefw4w+HTvXhm53HUTopgSYNzF/0TsWhGFe7dtNiR7/03H12O2VMn5Vxu/C+vWYK5GdLhLp1fBwD49PrmtF/ftGwGbr1kju2fWVlehuryMnxz8wpb/+8bH1uO+qqop7bwuGBWLWLxJHa+14EtG+bjxtVj3top1iJGTs6IrmmeissWTBvx3KXzp2FN87QM/8MgIli/qM6Vfe/Gc+GcKdiyYb7bzSgInSL2SRf347Lr8oX1WJPlJku+bl07F5GwYNOyYO99SESFEbUU57tyafbzyrTKKJ7ccim2fGCB080iohyJUmr8V6X7jyIfB3CNUuqz5ue3A1irlPpSpv+zZs0atWPHjpx+HpGXvdpyGn840I77PrxkxEBJRM4SkZ1KqcBtxCcicwD8BEAjgCSAR5RS3xORaQB+BqAZwBEAtyilOrJ9L47N5BfxRBIP/XY/br9sHteeE3nYRMfmfHIzWwFYp81mA3g/j+9H5FvrFtWPKSNPROSgOID7lFJviEg1gJ0i8gKAuwD8Tin1oFlEcCuAr7rYTqKCKQuH8LXrlrndDCIqkHymbrYDWCwi80UkCuBWAM8WpllERESUiVLqhFLqDfNxN4B9MJbHbAbwuPmyxwHc4E4LiYiIsst5RlQpFReRLwL4LYAwgMeUUnsL1jIiIiIal4g0A7gIwGsAGpRSJwAjWBWRtAvpRORuAHcDwNy5/lnXTEREpSOvsqlKqd8A+E2B2kJEREQ2iEgVgGcA3KuU6proNhVKqUcAPAIYa0SdayEREVF6rKpCRETkQyISgRGEPqmU+qX59CkRaTK/3gSgza32ERERZcNAlIiIyGfEmPr8MYB9SqnvWr70LIA7zcd3Avh1sdtGREQ0EXml5hIREZEr1gO4HcAeEXnLfO5rAB4E8LSIbAHwHoCPu9Q+IiKirBiIEhER+YxS6hUAmRaEXl3MthAREeWCqblERERERERUVKJU8YrliUg7gKMF+Fb1AE4X4Pv4TRD7HcQ+A8HsdxD7DASzUaWGKwAAB05JREFU34Xs8zyl1PQCfa9A4ticN/Y7OILYZ4D9DppC9HtCY3NRA9FCEZEdSqk1brej2ILY7yD2GQhmv4PYZyCY/Q5in4MgqMeV/Q6OIPYZYL/dbkexFbPfTM0lIiIiIiKiomIgSkREREREREXl10D0Ebcb4JIg9juIfQaC2e8g9hkIZr+D2OcgCOpxZb+DI4h9BtjvoClav325RpSIiIiIiIj8y68zokRERERERORTDESJiIiIiIioqHwXiIrIR0Rkv4i0iMhWt9vjFBE5IiJ7ROQtEdlhPjdNRF4QkYPmx6lutzNfIvKYiLSJyNuW59L2UwzfN4/9bhFZ7V7Lc5ehzw+IyHHzeL8lItdZvvbXZp/3i8g17rQ6fyIyR0R+LyL7RGSviHzZfL5kj3eWPpf08RaRChF5XUR2mf3+O/P5+SLymnmsfyYiUfP5cvPzFvPrzW62n+wLytgMBGN8DuLYDARzfA7i2AxwfPbM+KyU8s0/AGEAhwAsABAFsAvAcrfb5VBfjwCoH/XcQwC2mo+3AvhHt9tZgH5eAWA1gLfH6yeA6wD8HwABcBmA19xufwH7/ACAr6R57XLzfV4OYL75/g+73Ycc+90EYLX5uBrAAbN/JXu8s/S5pI+3ecyqzMcRAK+Zx/BpALeazz8M4HPm488DeNh8fCuAn7ndB/6zdbwDMzab/S358TmIY3OWfpf6+TpwY/M4/S714+2p8dlvM6JrAbQopQ4rpWIAngKw2eU2FdNmAI+bjx8HcIOLbSkIpdTLAM6OejpTPzcD+IkybAMwRUSaitPSwsnQ50w2A3hKKTWolPoTgBYYfwe+o5Q6oZR6w3zcDWAfgFko4eOdpc+ZlMTxNo9Zj/lpxPynAFwF4Bfm86OPtX4P/ALA1SIiRWou5S/oYzNQYuNzEMdmIJjjcxDHZoDjs/mp6+Oz3wLRWQCOWT5vRfY3jZ8pAM+LyE4Rudt8rkEpdQIw/oAAzHCtdc7K1M9SP/5fNNNcHrOkdZVkn83Ujotg3IkLxPEe1WegxI+3iIRF5C0AbQBegHH3+JxSKm6+xNq3VL/Nr3cCqCtuiykPJfO+naCgjs+BOFdnUNLnay2IYzPA8Rkujs9+C0TTReCluv/MeqXUagDXAviCiFzhdoM8oJSP/w8BLARwIYATAL5jPl9yfRaRKgDPALhXKdWV7aVpnvNl39P0ueSPt1IqoZS6EMBsGHeNl6V7mfmxZPodUEE7fhyfRyr141/y52sgmGMzwPEZLo/PfgtEWwHMsXw+G8D7LrXFUUqp982PbQB+BeONckqnP5gf29xroaMy9bNkj79S6pR5YkgC+BGG0z1Kqs8iEoFxwn9SKfVL8+mSPt7p+hyU4w0ASqlzAF6CsQZlioiUmV+y9i3Vb/PrtZh4ehy5r+Tet9kEeHwu6XN1JkE4XwdxbAY4PnthfPZbILodwGKzslMUxqLZZ11uU8GJSKWIVOvHAD4M4G0Yfb3TfNmdAH7tTgsdl6mfzwK4w6zYdhmATp024nej1lfcCON4A0afbzWrls0HsBjA68VuXyGYawp+DGCfUuq7li+V7PHO1OdSP94iMl1EppiPJwHYBGP9ze8B3Gy+bPSx1u+BmwG8qJTy5Z3mgArE2AwEfnwu2XN1NgE4XwdubAY4PpuP3R+fJ1rVyCv/YFTrOgAjn/nrbrfHoT4ugFGZaxeAvbqfMHKyfwfgoPlxmtttLUBf/wtG6sMQjLsuWzL1E0Z6wA/MY78HwBq321/APj9h9mm3+UffZHn9180+7wdwrdvtz6PfG2Ckc+wG8Jb577pSPt5Z+lzSxxvABQDeNPv3NoC/NZ9fAGPgbgHwcwDl5vMV5uct5tcXuN0H/rN9zEt+bDb7GYjxOYhjc5Z+l/r5OnBj8zj9LvXj7anxWcwfQkRERERERFQUfkvNJSIiIiIiIp9jIEpERERERERFxUCUiIiIiIiIioqBKBERERERERUVA1EiIiIiIiIqqrLxX0JE+RARXQIdABoBJAC0m5/3KaXWudIwIiKigOLYTOQ+bt9CVEQi8gCAHqXUt91uCxEREXFsJnILU3OJXCQiPebHjSLyBxF5WkQOiMiDIvIpEXldRPaIyELzddNF5BkR2W7+W+9uD4iIiEoLx2ai4mAgSuQdqwB8GcBKALcDOE8ptRbAowC+ZL7mewD+WSl1CYA/N79GREREzuDYTOQQrhEl8o7tSqkTACAihwA8bz6/B8CV5uNNAJaLiP4/NSJSrZTqLmpLiYiIgoFjM5FDGIgSeceg5XHS8nkSw3+rIQCXK6X6i9kwIiKigOLYTOQQpuYS+cvzAL6oPxGRC11sCxEREXFsJsoJA1Eif7kHwBoR2S0i7wD4C7cbREREFHAcm4lywO1biIiIiIiIqKg4I0pERERERERFxUCUiIiIiIiIioqBKBERERERERUVA1EiIiIiIiIqKgaiREREREREVFQMRImIiIiIiKioGIgSERERERFRUf0/ISTKJHc4+wEAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "M = np.array([[-beta-0.02]])\n", - "\n", - "Q = np.dot(M.T,M)\n", - "W = np.dot(M.T,S)\n", - "\n", - "#Sets up the four states of the world\n", - "v1 = world(A=A,B=B,C=C,R=R1,Q=Q,W=W)\n", - "v2 = world(A=A,B=B,C=C,R=R2,Q=Q,W=W)\n", - "v3 = world(A=A,B=B,C=C,R=R1,Q=Q,W=W)\n", - "v4 = world(A=A,B=B,C=C,R=R2,Q=Q,W=W)\n", - "\n", - "MJLQBarro2 = LQ_Markov(beta,Pi,v1,v2,v3,v4)\n", - "x,u,w,state = MJLQBarro2.compute_sequence(x0,ts_length=T)\n", - "\n", - "# Calculate taxation each period from the budget constraint and the Markov state\n", - "tax = np.zeros([T,1])\n", - "for i in range(T):\n", - " tax[i,:] = S.dot(x[:,i]) + M.dot(u[:,i])\n", - "\n", - "#Plot of debt issuance and taxation\n", - "plt.figure(figsize=(16,4))\n", - "plt.subplot(121)\n", - "plt.plot(x[0,:])\n", - "plt.title('One-period debt issuance')\n", - "plt.xlabel('Time')\n", - "plt.subplot(122)\n", - "plt.plot(tax)\n", - "plt.title('Taxation')\n", - "plt.xlabel('Time')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "With the lower interest rate, the government has an incentive to increase debt over time. However, with \"roll-over risk\", debt is periodically reset to zero, and taxes spike up. Consequently, the government is wary of letting debt get too high, due to the high cost of a \"sudden stop\"." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "anaconda-cloud": {}, - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.5" - } - }, - "nbformat": 4, - "nbformat_minor": 1 -}