diff --git a/lectures/geom_series.md b/lectures/geom_series.md index 010c251e4..a6fafae36 100644 --- a/lectures/geom_series.md +++ b/lectures/geom_series.md @@ -626,7 +626,7 @@ $$ Similarly, applying the Taylor series to $G^{T+1}$ about $g=0$: $$ -(1+g)^{T+1} = 1+(T+1)g(1+g)^T+(T+1)Tg^2(1+g)^{T-1}+\dots \approx 1+ (T+1)g +(1+g)^{T+1} = 1+(T+1)g+\frac{T(T+1)}{2!}g^2+\frac{(T-1)T(T+1)}{3!}g^3+\dots \approx 1+ (T+1)g $$ Thus, we get the following approximation: @@ -920,4 +920,3 @@ plt.show() Notice here, whether government spending increases from 0.3 to 0.4 or investment increases from 0.3 to 0.4, the shifts in the graphs are identical. -