-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
55 lines (54 loc) · 1.98 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
app = Flask(__name__)
@app.route("/")
def home():
return render_template("index.html")
@app.route("/get", methods=["POST"])
def chatbot_response():
msg = request.form["msg"]
if msg.startswith('items'):
name = msg[11:]
ints = predict_class(msg, model)
res1 = getResponse(ints, intents)
res =res1.replace("{n}",name)
elif msg.startswith('hi my name is'):
name = msg[14:]
ints = predict_class(msg, model)
res1 = getResponse(ints, intents)
res =res1.replace("{n}",name)
else:
ints = predict_class(msg, model)
res = getResponse(ints, intents)
return res
# chat functionalities
def clean_up_sentence(sentence):
sentence_words = nltk.word_tokenize(sentence)
sentence_words = [lemmatizer.lemmatize(word.lower()) for word in sentence_words]
return sentence_words
# return bag of words array: 0 or 1 for each word in the bag that exists in the sentence
def bow(sentence, words, show_details=True):
# tokenize the pattern
sentence_words = clean_up_sentence(sentence)
# bag of words - matrix of N words, vocabulary matrix
bag = [0] * len(words)
for s in sentence_words:
for i, w in enumerate(words):
if w == s:
# assign 1 if current word is in the vocabulary position
bag[i] = 1
if show_details:
print("found in bag: %s" % w)
return np.array(bag)
def predict_class(sentence, model):
# filter out predictions below a threshold
p = bow(sentence, words, show_details=False)
res = model.predict(np.array([p]))[0]
ERROR_THRESHOLD = 0.25
results = [[i, r] for i, r in enumerate(res) if r > ERROR_THRESHOLD]
# sort by strength of probability
results.sort(key=lambda x: x[1], reverse=True)
return_list = []
for r in results:
return_list.append({"intent": classes[r[0]], "probability": str(r[1])})
return return_list
if __name__ == "__main__":
app.run()