forked from jrising/county-data
-
Notifications
You must be signed in to change notification settings - Fork 1
/
database.py
526 lines (405 loc) · 18.2 KB
/
database.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
from __future__ import unicode_literals
import os, csv
import numpy as np
import pandas as pd
from metainfo import *
from prompt_toolkit import prompt
from prompt_toolkit.contrib.completers import WordCompleter
def standardize_fips(fips):
if isinstance(fips, list) or isinstance(fips, np.ndarray) or isinstance(fips, pd.core.series.Series):
return map(standardize_fips, fips)
if isinstance(fips, str):
return '0' + fips if len(fips) < 5 else fips
if np.isnan(fips):
return np.nan
return standardize_fips(str(int(fips)))
def localpath(relative):
return os.path.join(os.path.dirname(os.path.realpath(__file__)), relative)
def variable_filtermap(column2variable):
return lambda columns: set(filter(lambda variable: variable is not None, map(column2variable, columns)))
class RawDatabase(object):
def get_variables(self):
"""Return a list of variables."""
raise NotImplementedError()
def get_fips(self):
"""Return an ordered list of FIPS codes for the data. FIPS should always be 5 character strings."""
raise NotImplementedError()
def get_years(self, variable):
"""Return a list of years available."""
raise NotImplementedError()
def get_data(self, variable, year):
"""Return an ordered list of data values, in the same order as the FIPS codes."""
raise NotImplementedError()
class Database(RawDatabase):
def __init__(self):
self.metainfo = Metainfo()
def set_metainfo(self, metainfo):
self.metainfo = metainfo
def describe_variable(self, variable):
"""Text description of a variable."""
return self.metainfo.describe_variable(variable)
def get_unit(self, variable):
"""Canonical unit for variable."""
return self.metainfo.get_unit(variable)
def get_tags(self, variable):
"""Return a list of tags for each variable."""
return self.metainfo.get_tags(variable)
class CSVDatabase(Database):
def __init__(self, filepath, variable_filter=lambda vars: vars, index_col=False, **readkw):
super(CSVDatabase, self).__init__()
self.filepath = filepath
self.variable_filter = variable_filter
self.df = CSVDatabase.guess_read_csv(filepath, index_col=index_col, **readkw)
@staticmethod
def guess_read_csv(filepath, **kw):
if filepath[-4:] == '.csv':
return pd.read_csv(filepath, **kw)
elif filepath[-5:] == '.xlsx':
return pd.read_excel(filepath, **kw)
elif filepath[-4:] == '.txt':
return pd.read_csv(filepath, **kw)
else:
raise RuntimeError("Do not know how to read files of type of " + filepath)
def get_variables(self):
return self.variable_filter(list(self.df))
def make_index_column(self, id_func, indexcol='index'):
self.df[indexcol] = self.df.apply(id_func, axis=1)
self.df.set_index(indexcol)
@staticmethod
def smart_import(filepath):
df = CSVDatabase.guess_read_csv(filepath)
column_completer = WordCompleter(list(df))
# Try to guess the FIPS column
if 'FIPS' in df:
fips_column = 'FIPS'
elif 'fips' in df:
fips_column = 'fips'
else:
fips_column = prompt('Enter the FIPS column: ', completer=column_completer)
# Try to guess a year column structure
if 'YEAR' in df:
year_column = 'YEAR'
elif 'year' in df:
year_column = 'year'
else:
year_column = None
for year in range(1960, 2050):
if str(year) in df:
year_column = 'columns'
break
if year_column is None:
year_column = prompt('How are years represented (none/columns/indexed)? ', completer=WordCompleter(['none', 'columns', 'indexed']))
if year_column == 'indexed':
year_column = prompt('Enter the year column: ', completer=column_completer)
# Instantiate an appropriate class
if year_column == 'none':
return StaticCSVDatabase(filepath, fips_column)
if year_column == 'columns':
return MatrixCSVDatabase(filepath, fips_column)
return ObservationsCSVDatabase(filepath, fips_column, year_column)
class StaticCSVDatabase(CSVDatabase):
"""A simple CSV file, with a row for every county and a column for every variable."""
def __init__(self, filepath, fips_column, variable_filter=lambda vars: vars, year=None, **readkw):
super(StaticCSVDatabase, self).__init__(filepath, variable_filter=variable_filter, **readkw)
self.fips_column = fips_column
self.year = year
def get_fips(self):
if callable(self.fips_column):
fips = self.fips_column(self.df)
else:
fips = np.array(self.df[self.fips_column])
if fips.dtype == 'int64':
return map(lambda x: str(x) if not np.isnan(x) and x > 9999 else ('0' + str(x) if not np.isnan(x) else np.nan), fips)
elif fips.dtype == 'float64':
return map(lambda x: str(int(x)) if not np.isnan(x) and x > 9999 else ('0' + str(int(x)) if not np.isnan(x) else np.nan), fips)
else:
return fips
def get_years(self, variable):
if self.year is None:
return None
else:
return [self.year]
def get_data(self, variable, year):
return self.df[variable]
class MatrixCSVDatabase(CSVDatabase):
"""CSV file with a row for each county and potentially the same
variables repeated over multiple years in the columns.
"""
def __init__(self, filepath, fips_column, variable_filter=lambda
vars: vars, get_varyears=lambda df, var: None,
get_datarows=lambda df, var, yr: df[var], **readkw):
if fips_column is not None:
with open(filepath, 'rU') as fp:
reader = csv.reader(fp)
header = reader.next()
index_col = header.index(fips_column)
super(MatrixCSVDatabase, self).__init__(filepath, variable_filter=variable_filter, index_col=index_col, **readkw)
else:
super(MatrixCSVDatabase, self).__init__(filepath, variable_filter=variable_filter, **readkw)
self.standard_fips = None
self.get_varyears = get_varyears
self.get_datarows = get_datarows
def get_fips(self):
if self.standard_fips is None:
self.standard_fips = standardize_fips(self.df.index.values)
return self.standard_fips
def get_years(self, variable):
return self.get_varyears(self.df, variable)
def get_data(self, variable, year):
return self.get_datarows(self.df, variable, year)
class ObservationsCSVDatabase(CSVDatabase):
"""A CSV file which contains multiple instances of each county, with different rows
referring to different years."""
def __init__(self, filepath, fips_column, year_column,
variable_filter=lambda vars: vars, **readkw):
super(ObservationsCSVDatabase, self).__init__(filepath, variable_filter=variable_filter, **readkw)
self.fips_column = fips_column
self.year_column = year_column
def get_fips(self):
return self.df[self.fips_column].unique()
def get_years(self, variable):
return self.df[self.year_column].unique()
def get_data(self, variable, year):
## This would be very slow because of constant re-ordering. Use get_fipsdata(variable, year)
raise NotImplementedError()
def get_fipsdata(self, variable, year):
"""Return a tuple of the fips codes available and the data for those corresponding fips codes."""
rows = self.df[self.year_column] == year
return standardize_fips(self.df[self.fips_column][rows]), np.array(self.df[variable][rows])
class InterlevedCSVDatabase(CSVDatabase):
"""
Like an ObservationCSVDatabase, but where each variable type has a
given specified year, and there is no year column.
"""
def __init__(self, filepath, fips_column, filter_column, year, **readkw):
super(InterlevedCSVDatabase, self).__init__(filepath, **readkw)
self.fips_column = fips_column
self.filter_column = filter_column
self.year = year
def describe_variable(self, variable):
"""Text description of a variable."""
column, group = tuple(variable.split('.'))
return super(InterlevedCSVDatabase, self).describe_variable(column) + " for group " + group
def get_unit(self, variable):
"""Canonical unit for variable."""
column, group = tuple(variable.split('.'))
return super(InterlevedCSVDatabase, self).get_unit(column)
def get_fips(self):
return standardize_fips(self.df[self.fips_column].unique())
def get_variables(self):
variables = list(self.df)
variables.remove(self.fips_column)
variables.remove(self.filter_column)
allvars = []
for group in self.df[self.filter_column].unique():
allvars.extend([variable + '.' + str(group) for variable in variables])
return allvars
def get_years(self, variable):
return [self.year]
def get_data(self, variable, year):
## This would be very slow because of constant re-ordering. Use get_fipsdata(variable, year)
raise NotImplementedError()
def get_fipsdata(self, variable, year):
"""Return a tuple of the fips codes available and the data for those corresponding fips codes."""
column, group = tuple(variable.split('.'))
rows = self.df[self.filter_column] == group
return standardize_fips(self.df[self.fips_column][rows]), np.array(self.df[column][rows])
class IDReferenceCSVDatabase(MatrixCSVDatabase):
def __init__(self, filepath1, id_column1, filepath2, id_column2, fips_column2, *args, **kwargs):
super(IDReferenceCSVDatabase, self).__init__(filepath1, id_column1, *args, **kwargs)
idref = pd.read_csv(filepath2)
self.idorder = idref[id_column2]
self.fipsorder = standardize_fips(idref[fips_column2])
def get_fips(self):
return self.fipsorder
def get_data(self, variable, year):
data = super(IDReferenceCSVDatabase, self).get_data(variable, year)
return data.loc[self.idorder]
class OrderedDatabase(Database):
"""Database with the order pre-specified."""
def __init__(self, fips, db):
super(OrderedDatabase, self).__init__()
self.fips = fips
self.db = db
self.set_metainfo(db.metainfo)
def get_variables(self):
return self.db.get_variables()
def get_fips(self):
return self.fips
def get_years(self, variable):
return self.db.get_years(variable)
def get_data(self, variable, year):
return self.db.get_data(variable, year)
@staticmethod
def use_fips(fipsdb, db):
return OrderedDatabase(fipsdb.get_fips(), db)
class OrderedVectorDatabase(OrderedDatabase):
def __init__(self, vector, variable, year, fips):
super(OrderedVectorDatabase, self).__init__(fips, self)
self.variable = variable
self.vector = vector
self.year = year
def get_variables(self):
return [self.variable]
def get_years(self, variable):
return [self.year]
def get_data(self, variable, year):
return self.vector
@staticmethod
def read_text(filepath, variable, year, fipsdb):
return OrderedVectorDatabase(np.loadtxt(filepath), variable, year, fipsdb.get_fips())
class ConcatenatedDatabase(Database):
"""All database must have the same order of fips."""
def __init__(self, dbs):
super(ConcatenatedDatabase, self).__init__()
self.dbs = dbs
assert not isinstance(dbs[0], ObservationsCSVDatabase), "Cannot use randomly indexed data for master dataset."
catalog = {} # variable -> db
for db in dbs:
assert np.all(db.get_fips() == dbs[0].get_fips())
for variable in db.get_variables():
catalog[variable] = db
self.catalog = catalog
def get_variables(self):
"""Return a list of variables."""
return self.catalog.keys()
def describe_variable(self, variable):
"""Text description of a variable."""
return self.catalog[variable].describe_variable(variable)
def get_unit(self, variable):
"""Canonical unit for variable."""
return self.catalog[variable].get_unit(variable)
def get_fips(self):
"""Return an ordered list of FIPS codes for the data."""
return self.dbs[0].get_fips()
def get_years(self, variable):
return self.catalog[variable].get_years(variable)
def get_data(self, variable, year):
"""Return an ordered list of data values, in the same order as the FIPS codes."""
return self.catalog[variable].get_data(variable, year)
class CombinedDatabase(Database):
"""Always uses first database for fips codes."""
def __init__(self, dbs, prefixes, infix):
super(CombinedDatabase, self).__init__()
self.dbs = dbs
self.prefixes = prefixes
self.infix = infix
self.indices = {} # {db: [indices]}
assert not isinstance(dbs[0], ObservationsCSVDatabase), "Cannot use randomly indexed data for master dataset."
def get_variables(self):
"""Return a list of variables."""
variables = []
for ii in range(len(self.dbs)):
dbvars = ["%s%s%s" % (self.prefixes[ii], self.infix, variable) for variable in self.dbs[ii].get_variables()]
variables.extend(dbvars)
return variables
def get_database(self, variable):
chunks = variable.split(self.infix)
return self.dbs[self.prefixes.index(chunks[0])], '.'.join(chunks[1:])
def get_indices_byfips(self, dbfips, values):
fips = self.dbs[0].get_fips()
result = np.empty(len(fips))
for ii in range(len(fips)):
try:
result[ii] = values[dbfips.index(fips[ii])]
except Exception as ex:
result[ii] = np.nan
return result
def get_indices(self, db, values):
if db not in self.indices:
fips = self.dbs[0].get_fips()
dbfips = pd.Index(db.get_fips())
indices = np.empty(len(fips), dtype=int)
for ii in range(len(fips)):
try:
indices[ii] = dbfips.get_loc(fips[ii])
except Exception as ex:
indices[ii] = -1
self.indices[db] = indices
if isinstance(values, pd.Series):
return [values.iloc[index] if index != -1 else np.nan for index in self.indices[db]]
else:
return [values[index] if index != -1 else np.nan for index in self.indices[db]]
def describe_variable(self, variable):
"""Text description of a variable."""
db, dbvar = self.get_database(variable)
return db.describe_variable(dbvar)
def get_unit(self, variable):
"""Canonical unit for variable."""
db, dbvar = self.get_database(variable)
return db.get_unit(dbvar)
def get_fips(self):
"""Return an ordered list of FIPS codes for the data."""
return self.dbs[0].get_fips()
def get_years(self, variable):
db, dbvar = self.get_database(variable)
return db.get_years(dbvar)
def get_data(self, variable, year):
"""Return an ordered list of data values, in the same order as the FIPS codes."""
db, dbvar = self.get_database(variable)
if db == self.dbs[0]:
return db.get_data(dbvar, year)
if 'get_fipsdata' in dir(db):
fips, data = db.get_fipsdata(dbvar, year)
return self.get_indices_byfips(fips, data)
data = db.get_data(dbvar, year)
# Match up the data along the fips
return self.get_indices(db, data)
class CombinedYearsDatabase(Database):
def __init__(self, dbs, fips):
super(CombinedYearsDatabase, self).__init__()
self.dbs = dbs
self.fips = fips
self.indices = {} # {db: [indices]}
def get_variables(self):
"""Return a list of variables."""
variables = set([])
for ii in range(len(self.dbs)):
variables.update(self.dbs[ii].get_variables())
return variables
def get_database(self, variable, year):
for db in self.dbs:
if year in db.get_years(variable):
return db
def get_indices_byfips(self, dbfips, values):
result = np.empty(len(self.fips))
for ii in range(len(self.fips)):
try:
result[ii] = values[dbfips.index(self.fips[ii])]
except:
result[ii] = np.nan
return result
def get_indices(self, db, values):
if db not in self.indices:
dbfips = list(db.get_fips())
indices = np.empty(len(self.fips), dtype=int)
for ii in range(len(self.fips)):
try:
indices[ii] = dbfips.index(self.fips[ii])
except:
indices[ii] = -1
self.indices[db] = indices
return [values.iloc[index] if index != -1 else np.nan for index in self.indices[db]]
def describe_variable(self, variable):
"""Text description of a variable."""
return self.dbs[0].describe_variable(variable)
def get_unit(self, variable):
"""Canonical unit for variable."""
return self.dbs[0].get_unit(variable)
def get_fips(self):
"""Return an ordered list of FIPS codes for the data."""
return self.fips
def get_years(self, variable):
years = []
for db in self.dbs:
years.extend(db.get_years(variable))
return years
def get_data(self, variable, year):
"""Return an ordered list of data values, in the same order as the FIPS codes."""
db = self.get_database(variable, year)
if 'get_fipsdata' in dir(db):
fips, data = db.get_fipsdata(variable, year)
return self.get_indices_byfips(fips, data)
data = db.get_data(variable, year)
# Match up the data along the fips
return self.get_indices(db, data)