-
Notifications
You must be signed in to change notification settings - Fork 0
/
rs.c
799 lines (765 loc) · 26.5 KB
/
rs.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
/*Copyright (C) 1991-1995 Henry Minsky (hqm@ua.com, hqm@ai.mit.edu)
Copyright (C) 2008-2009 Timothy B. Terriberry (tterribe@xiph.org)
You can redistribute this library and/or modify it under the terms of the
GNU Lesser General Public License as published by the Free Software
Foundation; either version 2.1 of the License, or (at your option) any later
version.*/
#include <stdlib.h>
#include <string.h>
#include "rs.h"
/*Reed-Solomon encoder and decoder.
Original implementation (C) Henry Minsky (hqm@ua.com, hqm@ai.mit.edu),
Universal Access 1991-1995.
Updates by Timothy B. Terriberry (C) 2008-2009:
- Properly reject codes when error-locator polynomial has repeated roots or
non-trivial irreducible factors.
- Removed the hard-coded parity size and performed general API cleanup.
- Allow multiple representations of GF(2**8), since different standards use
different irreducible polynomials.
- Allow different starting indices for the generator polynomial, since
different standards use different values.
- Greatly reduced the computation by eliminating unnecessary operations.
- Explicitly solve for the roots of low-degree polynomials instead of using
an exhaustive search.
This is another major speed boost when there are few errors.*/
/*Galois Field arithmetic in GF(2**8).*/
void rs_gf256_init(rs_gf256 *_gf,unsigned _ppoly){
unsigned p;
int i;
/*Initialize the table of powers of a primtive root, alpha=0x02.*/
p=1;
for(i=0;i<256;i++){
_gf->exp[i]=_gf->exp[i+255]=p;
p=((p<<1)^(-(p>>7)&_ppoly))&0xFF;
}
/*Invert the table to recover the logs.*/
for(i=0;i<255;i++)_gf->log[_gf->exp[i]]=i;
/*Note that we rely on the fact that _gf->log[0]=0 below.*/
_gf->log[0]=0;
}
/*Multiplication in GF(2**8) using logarithms.*/
static unsigned rs_gmul(const rs_gf256 *_gf,unsigned _a,unsigned _b){
return _a==0||_b==0?0:_gf->exp[_gf->log[_a]+_gf->log[_b]];
}
/*Division in GF(2**8) using logarithms.
The result of division by zero is undefined.*/
static unsigned rs_gdiv(const rs_gf256 *_gf,unsigned _a,unsigned _b){
return _a==0?0:_gf->exp[_gf->log[_a]+255-_gf->log[_b]];
}
/*Multiplication in GF(2**8) when one of the numbers is known to be non-zero
(proven by representing it by its logarithm).*/
static unsigned rs_hgmul(const rs_gf256 *_gf,unsigned _a,unsigned _logb){
return _a==0?0:_gf->exp[_gf->log[_a]+_logb];
}
/*Square root in GF(2**8) using logarithms.*/
static unsigned rs_gsqrt(const rs_gf256 *_gf,unsigned _a){
unsigned loga;
if(!_a)return 0;
loga=_gf->log[_a];
return _gf->exp[loga+(255&-(loga&1))>>1];
}
/*Polynomial root finding in GF(2**8).
Each routine returns a list of the distinct roots (i.e., with duplicates
removed).*/
/*Solve a quadratic equation x**2 + _b*x + _c in GF(2**8) using the method
of~\cite{Wal99}.
Returns the number of distinct roots.
ARTICLE{Wal99,
author="C. Wayne Walker",
title="New Formulas for Solving Quadratic Equations over Certain Finite
Fields",
journal="{IEEE} Transactions on Information Theory",
volume=45,
number=1,
pages="283--284",
month=Jan,
year=1999
}*/
static int rs_quadratic_solve(const rs_gf256 *_gf,unsigned _b,unsigned _c,
unsigned char _x[2]){
unsigned b;
unsigned logb;
unsigned logb2;
unsigned logb4;
unsigned logb8;
unsigned logb12;
unsigned logb14;
unsigned logc;
unsigned logc2;
unsigned logc4;
unsigned c8;
unsigned g3;
unsigned z3;
unsigned l3;
unsigned c0;
unsigned g2;
unsigned l2;
unsigned z2;
int inc;
/*If _b is zero, all we need is a square root.*/
if(!_b){
_x[0]=rs_gsqrt(_gf,_c);
return 1;
}
/*If _c is zero, 0 and _b are the roots.*/
if(!_c){
_x[0]=0;
_x[1]=_b;
return 2;
}
logb=_gf->log[_b];
logc=_gf->log[_c];
/*If _b lies in GF(2**4), scale x to move it out.*/
inc=logb%(255/15)==0;
if(inc){
b=_gf->exp[logb+254];
logb=_gf->log[b];
_c=_gf->exp[logc+253];
logc=_gf->log[_c];
}
else b=_b;
logb2=_gf->log[_gf->exp[logb<<1]];
logb4=_gf->log[_gf->exp[logb2<<1]];
logb8=_gf->log[_gf->exp[logb4<<1]];
logb12=_gf->log[_gf->exp[logb4+logb8]];
logb14=_gf->log[_gf->exp[logb2+logb12]];
logc2=_gf->log[_gf->exp[logc<<1]];
logc4=_gf->log[_gf->exp[logc2<<1]];
c8=_gf->exp[logc4<<1];
g3=rs_hgmul(_gf,
_gf->exp[logb14+logc]^_gf->exp[logb12+logc2]^_gf->exp[logb8+logc4]^c8,logb);
/*If g3 doesn't lie in GF(2**4), then our roots lie in an extension field.
Note that we rely on the fact that _gf->log[0]==0 here.*/
if(_gf->log[g3]%(255/15)!=0)return 0;
/*Construct the corresponding quadratic in GF(2**4):
x**2 + x/alpha**(255/15) + l3/alpha**(2*(255/15))*/
z3=rs_gdiv(_gf,g3,_gf->exp[logb8<<1]^b);
l3=rs_hgmul(_gf,rs_gmul(_gf,z3,z3)^rs_hgmul(_gf,z3,logb)^_c,255-logb2);
c0=rs_hgmul(_gf,l3,255-2*(255/15));
/*Construct the corresponding quadratic in GF(2**2):
x**2 + x/alpha**(255/3) + l2/alpha**(2*(255/3))*/
g2=rs_hgmul(_gf,
rs_hgmul(_gf,c0,255-2*(255/15))^rs_gmul(_gf,c0,c0),255-255/15);
z2=rs_gdiv(_gf,g2,_gf->exp[255-(255/15)*4]^_gf->exp[255-(255/15)]);
l2=rs_hgmul(_gf,
rs_gmul(_gf,z2,z2)^rs_hgmul(_gf,z2,255-(255/15))^c0,2*(255/15));
/*Back substitute to the solution in the original field.*/
_x[0]=_gf->exp[_gf->log[z3^rs_hgmul(_gf,
rs_hgmul(_gf,l2,255/3)^rs_hgmul(_gf,z2,255/15),logb)]+inc];
_x[1]=_x[0]^_b;
return 2;
}
/*Solve a cubic equation x**3 + _a*x**2 + _b*x + _c in GF(2**8).
Returns the number of distinct roots.*/
static int rs_cubic_solve(const rs_gf256 *_gf,
unsigned _a,unsigned _b,unsigned _c,unsigned char _x[3]){
unsigned k;
unsigned logd;
unsigned d2;
unsigned logd2;
unsigned logw;
int nroots;
/*If _c is zero, factor out the 0 root.*/
if(!_c){
nroots=rs_quadratic_solve(_gf,_a,_b,_x);
if(_b)_x[nroots++]=0;
return nroots;
}
/*Substitute x=_a+y*sqrt(_a**2+_b) to get y**3 + y + k == 0,
k = (_a*_b+c)/(_a**2+b)**(3/2).*/
k=rs_gmul(_gf,_a,_b)^_c;
d2=rs_gmul(_gf,_a,_a)^_b;
if(!d2){
int logx;
if(!k){
/*We have a triple root.*/
_x[0]=_a;
return 1;
}
logx=_gf->log[k];
if(logx%3!=0)return 0;
logx/=3;
_x[0]=_a^_gf->exp[logx];
_x[1]=_a^_gf->exp[logx+255/3];
_x[2]=_a^_x[0]^_x[1];
return 3;
}
logd2=_gf->log[d2];
logd=logd2+(255&-(logd2&1))>>1;
k=rs_gdiv(_gf,k,_gf->exp[logd+logd2]);
/*Substitute y=w+1/w and z=w**3 to get z**2 + k*z + 1 == 0.*/
nroots=rs_quadratic_solve(_gf,k,1,_x);
if(nroots<1){
/*The Reed-Solomon code is only valid if we can find 3 distinct roots in
GF(2**8), so if we know there's only one, we don't actually need to find
it.
Note that we're also called by the quartic solver, but if we contain a
non-trivial irreducible factor, than so does the original
quartic~\cite{LW72}, and failing to return a root here actually saves us
some work there, also.*/
return 0;
}
/*Recover w from z.*/
logw=_gf->log[_x[0]];
if(logw){
if(logw%3!=0)return 0;
logw/=3;
/*Recover x from w.*/
_x[0]=_gf->exp[_gf->log[_gf->exp[logw]^_gf->exp[255-logw]]+logd]^_a;
logw+=255/3;
_x[1]=_gf->exp[_gf->log[_gf->exp[logw]^_gf->exp[255-logw]]+logd]^_a;
_x[2]=_x[0]^_x[1]^_a;
return 3;
}
else{
_x[0]=_a;
/*In this case _x[1] is a double root, so we know the Reed-Solomon code is
invalid.
Note that we still have to return at least one root, because if we're
being called by the quartic solver, the quartic might still have 4
distinct roots.
But we don't need more than one root, so we can avoid computing the
expensive one.*/
/*_x[1]=_gf->exp[_gf->log[_gf->exp[255/3]^_gf->exp[2*(255/3)]]+logd]^_a;*/
return 1;
}
}
/*Solve a quartic equation x**4 + _a*x**3 + _b*x**2 + _c*x + _d in GF(2**8) by
decomposing it into the cases given by~\cite{LW72}.
Returns the number of distinct roots.
@ARTICLE{LW72,
author="Philip A. Leonard and Kenneth S. Williams",
title="Quartics over $GF(2^n)$",
journal="Proceedings of the American Mathematical Society",
volume=36,
number=2,
pages="347--450",
month=Dec,
year=1972
}*/
static int rs_quartic_solve(const rs_gf256 *_gf,
unsigned _a,unsigned _b,unsigned _c,unsigned _d,unsigned char _x[3]){
unsigned r;
unsigned s;
unsigned t;
unsigned b;
int nroots;
int i;
/*If _d is zero, factor out the 0 root.*/
if(!_d){
nroots=rs_cubic_solve(_gf,_a,_b,_c,_x);
if(_c)_x[nroots++]=0;
return nroots;
}
if(_a){
unsigned loga;
/*Substitute x=(1/y) + sqrt(_c/_a) to eliminate the cubic term.*/
loga=_gf->log[_a];
r=rs_hgmul(_gf,_c,255-loga);
s=rs_gsqrt(_gf,r);
t=_d^rs_gmul(_gf,_b,r)^rs_gmul(_gf,r,r);
if(t){
unsigned logti;
logti=255-_gf->log[t];
/*The result is still quartic, but with no cubic term.*/
nroots=rs_quartic_solve(_gf,0,rs_hgmul(_gf,_b^rs_hgmul(_gf,s,loga),logti),
_gf->exp[loga+logti],_gf->exp[logti],_x);
for(i=0;i<nroots;i++)_x[i]=_gf->exp[255-_gf->log[_x[i]]]^s;
}
else{
/*s must be a root~\cite{LW72}, and is in fact a double-root~\cite{CCO69}.
Thus we're left with only a quadratic to solve.
@ARTICLE{CCO69,
author="Robert T. Chien and B. D. Cunningham and I. B. Oldham",
title="Hybrid Methods for Finding Roots of a Polynomial---With
Applications to {BCH} Decoding",
journal="{IEEE} Transactions on Information Theory",
volume=15,
number=2,
pages="329--335",
month=Mar,
year=1969
}*/
nroots=rs_quadratic_solve(_gf,_a,_b^r,_x);
/*s may be a triple root if s=_b/_a, but not quadruple, since _a!=0.*/
if(nroots!=2||_x[0]!=s&&_x[1]!=s)_x[nroots++]=s;
}
return nroots;
}
/*If there are no odd powers, it's really just a quadratic in disguise.*/
if(!_c)return rs_quadratic_solve(_gf,rs_gsqrt(_gf,_b),rs_gsqrt(_gf,_d),_x);
/*Factor into (x**2 + r*x + s)*(x**2 + r*x + t) by solving for r, which can
be shown to satisfy r**3 + _b*r + _c == 0.*/
nroots=rs_cubic_solve(_gf,0,_b,_c,_x);
if(nroots<1){
/*The Reed-Solomon code is only valid if we can find 4 distinct roots in
GF(2**8).
If the cubic does not factor into 3 (possibly duplicate) roots, then we
know that the quartic must have a non-trivial irreducible factor.*/
return 0;
}
r=_x[0];
/*Now solve for s and t.*/
b=rs_gdiv(_gf,_c,r);
nroots=rs_quadratic_solve(_gf,b,_d,_x);
if(nroots<2)return 0;
s=_x[0];
t=_x[1];
/*_c=r*(s^t) was non-zero, so s and t must be distinct.
But if z is a root of z**2 ^ r*z ^ s, then so is (z^r), and s = z*(z^r).
Hence if z is also a root of z**2 ^ r*z ^ t, then t = s, a contradiction.
Thus all four roots are distinct, if they exist.*/
nroots=rs_quadratic_solve(_gf,r,s,_x);
return nroots+rs_quadratic_solve(_gf,r,t,_x+nroots);
}
/*Polynomial arithmetic with coefficients in GF(2**8).*/
static void rs_poly_zero(unsigned char *_p,int _dp1){
memset(_p,0,_dp1*sizeof(*_p));
}
static void rs_poly_copy(unsigned char *_p,const unsigned char *_q,int _dp1){
memcpy(_p,_q,_dp1*sizeof(*_p));
}
/*Multiply the polynomial by the free variable, x (shift the coefficients).
The number of coefficients, _dp1, must be non-zero.*/
static void rs_poly_mul_x(unsigned char *_p,const unsigned char *_q,int _dp1){
memmove(_p+1,_q,(_dp1-1)*sizeof(*_p));
_p[0]=0;
}
/*Divide the polynomial by the free variable, x (shift the coefficients).
The number of coefficients, _dp1, must be non-zero.*/
static void rs_poly_div_x(unsigned char *_p,const unsigned char *_q,int _dp1){
memmove(_p,_q+1,(_dp1-1)*sizeof(*_p));
_p[_dp1-1]=0;
}
/*Compute the first (d+1) coefficients of the product of a degree e and a
degree f polynomial.*/
static void rs_poly_mult(const rs_gf256 *_gf,unsigned char *_p,int _dp1,
const unsigned char *_q,int _ep1,const unsigned char *_r,int _fp1){
int m;
int i;
rs_poly_zero(_p,_dp1);
m=_ep1<_dp1?_ep1:_dp1;
for(i=0;i<m;i++)if(_q[i]!=0){
unsigned logqi;
int n;
int j;
n=_dp1-i<_fp1?_dp1-i:_fp1;
logqi=_gf->log[_q[i]];
for(j=0;j<n;j++)_p[i+j]^=rs_hgmul(_gf,_r[j],logqi);
}
}
/*Decoding.*/
/*Computes the syndrome of a codeword.*/
static void rs_calc_syndrome(const rs_gf256 *_gf,int _m0,
unsigned char *_s,int _npar,const unsigned char *_data,int _ndata){
int i;
int j;
for(j=0;j<_npar;j++){
unsigned alphaj;
unsigned sj;
sj=0;
alphaj=_gf->log[_gf->exp[j+_m0]];
for(i=0;i<_ndata;i++)sj=_data[i]^rs_hgmul(_gf,sj,alphaj);
_s[j]=sj;
}
}
/*Berlekamp-Peterson and Berlekamp-Massey Algorithms for error-location,
modified to handle known erasures, from \cite{CC81}, p. 205.
This finds the coefficients of the error locator polynomial.
The roots are then found by looking for the values of alpha**n where
evaluating the polynomial yields zero.
Error correction is done using the error-evaluator equation on p. 207.
@BOOK{CC81,
author="George C. Clark, Jr and J. Bibb Cain",
title="Error-Correction Coding for Digitial Communications",
series="Applications of Communications Theory",
publisher="Springer",
address="New York, NY",
month=Jun,
year=1981
}*/
/*Initialize lambda to the product of (1-x*alpha**e[i]) for erasure locations
e[i].
Note that the user passes in array indices counting from the beginning of the
data, while our polynomial indexes starting from the end, so
e[i]=(_ndata-1)-_erasures[i].*/
static void rs_init_lambda(const rs_gf256 *_gf,unsigned char *_lambda,int _npar,
const unsigned char *_erasures,int _nerasures,int _ndata){
int i;
int j;
rs_poly_zero(_lambda,(_npar<4?4:_npar)+1);
_lambda[0]=1;
for(i=0;i<_nerasures;i++)for(j=i+1;j>0;j--){
_lambda[j]^=rs_hgmul(_gf,_lambda[j-1],_ndata-1-_erasures[i]);
}
}
/*From \cite{CC81}, p. 216.
Returns the number of errors detected (degree of _lambda).*/
static int rs_modified_berlekamp_massey(const rs_gf256 *_gf,
unsigned char *_lambda,const unsigned char *_s,unsigned char *_omega,int _npar,
const unsigned char *_erasures,int _nerasures,int _ndata){
unsigned char tt[256];
int n;
int l;
int k;
int i;
/*Initialize _lambda, the error locator-polynomial, with the location of
known erasures.*/
rs_init_lambda(_gf,_lambda,_npar,_erasures,_nerasures,_ndata);
rs_poly_copy(tt,_lambda,_npar+1);
l=_nerasures;
k=0;
for(n=_nerasures+1;n<=_npar;n++){
unsigned d;
rs_poly_mul_x(tt,tt,n-k+1);
d=0;
for(i=0;i<=l;i++)d^=rs_gmul(_gf,_lambda[i],_s[n-1-i]);
if(d!=0){
unsigned logd;
logd=_gf->log[d];
if(l<n-k){
int t;
for(i=0;i<=n-k;i++){
unsigned tti;
tti=tt[i];
tt[i]=rs_hgmul(_gf,_lambda[i],255-logd);
_lambda[i]=_lambda[i]^rs_hgmul(_gf,tti,logd);
}
t=n-k;
k=n-l;
l=t;
}
else for(i=0;i<=l;i++)_lambda[i]=_lambda[i]^rs_hgmul(_gf,tt[i],logd);
}
}
rs_poly_mult(_gf,_omega,_npar,_lambda,l+1,_s,_npar);
return l;
}
/*Finds all the roots of an error-locator polynomial _lambda by evaluating it
at successive values of alpha, and returns the positions of the associated
errors in _epos.
Returns the number of valid roots identified.*/
static int rs_find_roots(const rs_gf256 *_gf,unsigned char *_epos,
const unsigned char *_lambda,int _nerrors,int _ndata){
unsigned alpha;
int nroots;
int i;
nroots=0;
if(_nerrors<=4){
/*Explicit solutions for higher degrees are possible.
Chien uses large lookup tables to solve quintics, and Truong et al. give
special algorithms for degree up through 11, though they use exhaustive
search (with reduced complexity) for some portions.
Quartics are good enough for reading CDs, and represent a reasonable code
complexity trade-off without requiring any extra tables.
Note that _lambda[0] is always 1.*/
_nerrors=rs_quartic_solve(_gf,_lambda[1],_lambda[2],_lambda[3],_lambda[4],
_epos);
for(i=0;i<_nerrors;i++)if(_epos[i]){
alpha=_gf->log[_epos[i]];
if((int)alpha<_ndata)_epos[nroots++]=alpha;
}
return nroots;
}
else for(alpha=0;(int)alpha<_ndata;alpha++){
unsigned alphai;
unsigned sum;
sum=0;
alphai=0;
for(i=0;i<=_nerrors;i++){
sum^=rs_hgmul(_gf,_lambda[_nerrors-i],alphai);
alphai=_gf->log[_gf->exp[alphai+alpha]];
}
if(!sum)_epos[nroots++]=alpha;
}
return nroots;
}
/*Corrects a codeword with _ndata<256 bytes, of which the last _npar are parity
bytes.
Known locations of errors can be passed in the _erasures array.
Twice as many (up to _npar) errors with a known location can be corrected
compared to errors with an unknown location.
Returns the number of errors corrected if successful, or a negative number if
the message could not be corrected because too many errors were detected.*/
int rs_correct(const rs_gf256 *_gf,int _m0,unsigned char *_data,int _ndata,
int _npar,const unsigned char *_erasures,int _nerasures){
/*lambda must have storage for at least five entries to avoid special cases
in the low-degree polynomial solver.*/
unsigned char lambda[256];
unsigned char omega[256];
unsigned char epos[256];
unsigned char s[256];
int i;
/*If we already have too many erasures, we can't possibly succeed.*/
if(_nerasures>_npar)return -1;
/*Compute the syndrome values.*/
rs_calc_syndrome(_gf,_m0,s,_npar,_data,_ndata);
/*Check for a non-zero value.*/
for(i=0;i<_npar;i++)if(s[i]){
int nerrors;
int j;
/*Construct the error locator polynomial.*/
nerrors=rs_modified_berlekamp_massey(_gf,lambda,s,omega,_npar,
_erasures,_nerasures,_ndata);
/*If we can't locate any errors, we can't force the syndrome values to
zero, and must have a decoding error.
Conversely, if we have too many errors, there's no reason to even attempt
the root search.*/
if(nerrors<=0||nerrors-_nerasures>_npar-_nerasures>>1)return -1;
/*Compute the locations of the errors.
If they are not all distinct, or some of them were outside the valid
range for our block size, we have a decoding error.*/
if(rs_find_roots(_gf,epos,lambda,nerrors,_ndata)<nerrors)return -1;
/*Now compute the error magnitudes.*/
for(i=0;i<nerrors;i++){
unsigned a;
unsigned b;
unsigned alpha;
unsigned alphan1;
unsigned alphan2;
unsigned alphanj;
alpha=epos[i];
/*Evaluate omega at alpha**-1.*/
a=0;
alphan1=255-alpha;
alphanj=0;
for(j=0;j<_npar;j++){
a^=rs_hgmul(_gf,omega[j],alphanj);
alphanj=_gf->log[_gf->exp[alphanj+alphan1]];
}
/*Evaluate the derivative of lambda at alpha**-1
All the odd powers vanish.*/
b=0;
alphan2=_gf->log[_gf->exp[alphan1<<1]];
alphanj=alphan1+_m0*alpha%255;
for(j=1;j<=_npar;j+=2){
b^=rs_hgmul(_gf,lambda[j],alphanj);
alphanj=_gf->log[_gf->exp[alphanj+alphan2]];
}
/*Apply the correction.*/
_data[_ndata-1-alpha]^=rs_gdiv(_gf,a,b);
}
return nerrors;
}
return 0;
}
/*Encoding.*/
/*Create an _npar-coefficient generator polynomial for a Reed-Solomon code
with _npar<256 parity bytes.*/
void rs_compute_genpoly(const rs_gf256 *_gf,int _m0,
unsigned char *_genpoly,int _npar){
int i;
if(_npar<=0)return;
rs_poly_zero(_genpoly,_npar);
_genpoly[0]=1;
/*Multiply by (x+alpha^i) for i = 1 ... _ndata.*/
for(i=0;i<_npar;i++){
unsigned alphai;
int n;
int j;
n=i+1<_npar-1?i+1:_npar-1;
alphai=_gf->log[_gf->exp[_m0+i]];
for(j=n;j>0;j--)_genpoly[j]=_genpoly[j-1]^rs_hgmul(_gf,_genpoly[j],alphai);
_genpoly[0]=rs_hgmul(_gf,_genpoly[0],alphai);
}
}
/*Adds _npar<=_ndata parity bytes to an _ndata-_npar byte message.
_data must contain room for _ndata<256 bytes.*/
void rs_encode(const rs_gf256 *_gf,unsigned char *_data,int _ndata,
const unsigned char *_genpoly,int _npar){
unsigned char *lfsr;
unsigned d;
int i;
int j;
if(_npar<=0)return;
lfsr=_data+_ndata-_npar;
rs_poly_zero(lfsr,_npar);
for(i=0;i<_ndata-_npar;i++){
d=_data[i]^lfsr[0];
if(d){
unsigned logd;
logd=_gf->log[d];
for(j=0;j<_npar-1;j++){
lfsr[j]=lfsr[j+1]^rs_hgmul(_gf,_genpoly[_npar-1-j],logd);
}
lfsr[_npar-1]=rs_hgmul(_gf,_genpoly[0],logd);
}
else rs_poly_div_x(lfsr,lfsr,_npar);
}
}
#if defined(RS_TEST_ENC)
#include <stdio.h>
#include <stdlib.h>
int main(void){
rs_gf256 gf;
int k;
rs_gf256_init(&gf,QR_PPOLY);
srand(0);
for(k=0;k<64*1024;k++){
unsigned char genpoly[256];
unsigned char data[256];
unsigned char epos[256];
int ndata;
int npar;
int nerrors;
int i;
ndata=rand()&0xFF;
npar=ndata>0?rand()%ndata:0;
for(i=0;i<ndata-npar;i++)data[i]=rand()&0xFF;
rs_compute_genpoly(&gf,QR_M0,genpoly,npar);
rs_encode(&gf,QR_M0,data,ndata,genpoly,npar);
/*Write a clean version of the codeword.*/
printf("%i %i",ndata,npar);
for(i=0;i<ndata;i++)printf(" %i",data[i]);
printf(" 0\n");
/*Write the correct output to compare the decoder against.*/
fprintf(stderr,"Success!\n",nerrors);
for(i=0;i<ndata;i++)fprintf(stderr,"%i%s",data[i],i+1<ndata?" ":"\n");
if(npar>0){
/*Corrupt it.*/
nerrors=rand()%(npar+1);
if(nerrors>0){
/*This test is not quite correct: there could be so many errors it
comes within (npar>>1) errors of another valid codeword.
I don't know a simple way to test for that without trying to decode
the corrupt codeword, though, which is the very code we're trying to
test.*/
if(nerrors<=npar>>1){
fprintf(stderr,"Success!\n",nerrors);
for(i=0;i<ndata;i++){
fprintf(stderr,"%i%s",data[i],i+1<ndata?" ":"\n");
}
}
else fprintf(stderr,"Failure.\n");
fprintf(stderr,"Success!\n",nerrors);
for(i=0;i<ndata;i++)fprintf(stderr,"%i%s",data[i],i+1<ndata?" ":"\n");
for(i=0;i<ndata;i++)epos[i]=i;
for(i=0;i<nerrors;i++){
unsigned char e;
int ei;
ei=rand()%(ndata-i)+i;
e=epos[ei];
epos[ei]=epos[i];
epos[i]=e;
data[e]^=rand()%255+1;
}
/*First with no erasure locations.*/
printf("%i %i",ndata,npar);
for(i=0;i<ndata;i++)printf(" %i",data[i]);
printf(" 0\n");
/*Now with erasure locations.*/
printf("%i %i",ndata,npar);
for(i=0;i<ndata;i++)printf(" %i",data[i]);
printf(" %i",nerrors);
for(i=0;i<nerrors;i++)printf(" %i",epos[i]);
printf("\n");
}
}
}
return 0;
}
#endif
#if defined(RS_TEST_DEC)
#include <stdio.h>
int main(void){
rs_gf256 gf;
rs_gf256_init(&gf,QR_PPOLY);
for(;;){
unsigned char data[255];
unsigned char erasures[255];
int idata[255];
int ierasures[255];
int ndata;
int npar;
int nerasures;
int nerrors;
int i;
if(scanf("%i",&ndata)<1||ndata<0||ndata>255||
scanf("%i",&npar)<1||npar<0||npar>ndata)break;
for(i=0;i<ndata;i++){
if(scanf("%i",idata+i)<1||idata[i]<0||idata[i]>255)break;
data[i]=idata[i];
}
if(i<ndata)break;
if(scanf("%i",&nerasures)<1||nerasures<0||nerasures>ndata)break;
for(i=0;i<nerasures;i++){
if(scanf("%i",ierasures+i)<1||ierasures[i]<0||ierasures[i]>=ndata)break;
erasures[i]=ierasures[i];
}
nerrors=rs_correct(&gf,QR_M0,data,ndata,npar,erasures,nerasures);
if(nerrors>=0){
unsigned char data2[255];
unsigned char genpoly[255];
for(i=0;i<ndata-npar;i++)data2[i]=data[i];
rs_compute_genpoly(&gf,QR_M0,genpoly,npar);
rs_encode(&gf,QR_M0,data2,ndata,genpoly,npar);
for(i=ndata-npar;i<ndata;i++)if(data[i]!=data2[i]){
printf("Abject failure! %i!=%i\n",data[i],data2[i]);
}
printf("Success!\n",nerrors);
for(i=0;i<ndata;i++)printf("%i%s",data[i],i+1<ndata?" ":"\n");
}
else printf("Failure.\n");
}
return 0;
}
#endif
#if defined(RS_TEST_ROOTS)
#include <stdio.h>
/*Exhaustively test the root finder.*/
int main(void){
rs_gf256 gf;
int a;
int b;
int c;
int d;
rs_gf256_init(&gf,QR_PPOLY);
for(a=0;a<256;a++)for(b=0;b<256;b++)for(c=0;c<256;c++)for(d=0;d<256;d++){
unsigned char x[4];
unsigned char r[4];
unsigned x2;
unsigned e[5];
int nroots;
int mroots;
int i;
int j;
nroots=rs_quartic_solve(&gf,a,b,c,d,x);
for(i=0;i<nroots;i++){
x2=rs_gmul(&gf,x[i],x[i]);
e[0]=rs_gmul(&gf,x2,x2)^rs_gmul(&gf,a,rs_gmul(&gf,x[i],x2))^
rs_gmul(&gf,b,x2)^rs_gmul(&gf,c,x[i])^d;
if(e[0]){
printf("Invalid root: (0x%02X)**4 ^ 0x%02X*(0x%02X)**3 ^ "
"0x%02X*(0x%02X)**2 ^ 0x%02X(0x%02X) ^ 0x%02X = 0x%02X\n",
x[i],a,x[i],b,x[i],c,x[i],d,e[0]);
}
for(j=0;j<i;j++)if(x[i]==x[j]){
printf("Repeated root %i=%i: (0x%02X)**4 ^ 0x%02X*(0x%02X)**3 ^ "
"0x%02X*(0x%02X)**2 ^ 0x%02X(0x%02X) ^ 0x%02X = 0x%02X\n",
i,j,x[i],a,x[i],b,x[i],c,x[i],d,e[0]);
}
}
mroots=0;
for(j=1;j<256;j++){
int logx;
int logx2;
logx=gf.log[j];
logx2=gf.log[gf.exp[logx<<1]];
e[mroots]=d^rs_hgmul(&gf,c,logx)^rs_hgmul(&gf,b,logx2)^
rs_hgmul(&gf,a,gf.log[gf.exp[logx+logx2]])^gf.exp[logx2<<1];
if(!e[mroots])r[mroots++]=j;
}
/*We only care about missing roots if the quartic had 4 distinct, non-zero
roots.*/
if(mroots==4)for(j=0;j<mroots;j++){
for(i=0;i<nroots;i++)if(x[i]==r[j])break;
if(i>=nroots){
printf("Missing root: (0x%02X)**4 ^ 0x%02X*(0x%02X)**3 ^ "
"0x%02X*(0x%02X)**2 ^ 0x%02X(0x%02X) ^ 0x%02X = 0x%02X\n",
r[j],a,r[j],b,r[j],c,r[j],d,e[j]);
}
}
}
return 0;
}
#endif