diff --git a/dev/LICENSE-text.html b/dev/LICENSE-text.html index 51f5660b..7062ef38 100644 --- a/dev/LICENSE-text.html +++ b/dev/LICENSE-text.html @@ -10,7 +10,7 @@ r2dii.analysis - 0.3.0.9000 + 0.4.0.9000 diff --git a/dev/LICENSE.html b/dev/LICENSE.html index 3669f0a1..a16e79e0 100644 --- a/dev/LICENSE.html +++ b/dev/LICENSE.html @@ -10,7 +10,7 @@ r2dii.analysis - 0.3.0.9000 + 0.4.0.9000 diff --git a/dev/apple-touch-icon-120x120.png b/dev/apple-touch-icon-120x120.png index 4042fa12..8a793813 100644 Binary files a/dev/apple-touch-icon-120x120.png and b/dev/apple-touch-icon-120x120.png differ diff --git a/dev/apple-touch-icon-152x152.png b/dev/apple-touch-icon-152x152.png index ec3ec782..dc2a6994 100644 Binary files a/dev/apple-touch-icon-152x152.png and b/dev/apple-touch-icon-152x152.png differ diff --git a/dev/apple-touch-icon-180x180.png b/dev/apple-touch-icon-180x180.png index bab4d342..38512b1b 100644 Binary files a/dev/apple-touch-icon-180x180.png and b/dev/apple-touch-icon-180x180.png differ diff --git a/dev/apple-touch-icon-60x60.png b/dev/apple-touch-icon-60x60.png index 7b934991..30feef58 100644 Binary files a/dev/apple-touch-icon-60x60.png and b/dev/apple-touch-icon-60x60.png differ diff --git a/dev/apple-touch-icon-76x76.png b/dev/apple-touch-icon-76x76.png index c51cac11..c526d62e 100644 Binary files a/dev/apple-touch-icon-76x76.png and b/dev/apple-touch-icon-76x76.png differ diff --git a/dev/apple-touch-icon.png b/dev/apple-touch-icon.png index 450ed7d9..8c4283d9 100644 Binary files a/dev/apple-touch-icon.png and b/dev/apple-touch-icon.png differ diff --git a/dev/articles/index.html b/dev/articles/index.html index 43f63249..bf6509d3 100644 --- a/dev/articles/index.html +++ b/dev/articles/index.html @@ -10,7 +10,7 @@ r2dii.analysis - 0.3.0.9000 + 0.4.0.9000 diff --git a/dev/articles/production-percent-change.html b/dev/articles/production-percent-change.html index 42b395e4..d0d52030 100644 --- a/dev/articles/production-percent-change.html +++ b/dev/articles/production-percent-change.html @@ -32,7 +32,7 @@ r2dii.analysis - 0.3.0.9000 + 0.4.0.9000 @@ -143,20 +143,20 @@ Weighted Production) summarize_weighted_production(master) -#> # A tibble: 231 × 5 +#> # A tibble: 168 × 5 #> sector_abcd technology year weighted_production weighted_technology_share #> <chr> <chr> <int> <dbl> <dbl> -#> 1 automotive electric 2020 973775. 0.114 -#> 2 automotive electric 2021 1018967. 0.118 -#> 3 automotive electric 2022 1064159. 0.122 -#> 4 automotive electric 2023 1109351. 0.126 -#> 5 automotive electric 2024 1154543. 0.130 -#> 6 automotive electric 2025 1199735. 0.133 +#> 1 automotive electric 2020 436948. 0.481 +#> 2 automotive electric 2021 442439. 0.480 +#> 3 automotive electric 2022 447929. 0.480 +#> 4 automotive electric 2023 453420. 0.479 +#> 5 automotive electric 2024 458910. 0.479 +#> 6 automotive electric 2025 464401. 0.479 #> 7 automotive electric 2026 NA NA #> 8 automotive electric 2027 NA NA #> 9 automotive electric 2028 NA NA #> 10 automotive electric 2029 NA NA -#> # ℹ 221 more rows +#> # ℹ 158 more rows Weighted Percent Change in Production @@ -186,20 +186,20 @@ Weighted Percent Change in Produc # using the master dataset defined in the previous chunk: summarize_weighted_percent_change(master) -#> # A tibble: 231 × 4 +#> # A tibble: 168 × 4 #> sector_abcd technology year weighted_percent_change #> <chr> <chr> <int> <dbl> -#> 1 automotive electric 2020 0 -#> 2 automotive electric 2021 0.0881 -#> 3 automotive electric 2022 0.176 -#> 4 automotive electric 2023 0.264 -#> 5 automotive electric 2024 0.352 -#> 6 automotive electric 2025 0.440 -#> 7 automotive electric 2026 NA -#> 8 automotive electric 2027 NA -#> 9 automotive electric 2028 NA -#> 10 automotive electric 2029 NA -#> # ℹ 221 more rows +#> 1 automotive electric 2020 0 +#> 2 automotive electric 2021 0.0000626 +#> 3 automotive electric 2022 0.000125 +#> 4 automotive electric 2023 0.000188 +#> 5 automotive electric 2024 0.000250 +#> 6 automotive electric 2025 0.000313 +#> 7 automotive electric 2026 NA +#> 8 automotive electric 2027 NA +#> 9 automotive electric 2028 NA +#> 10 automotive electric 2029 NA +#> # ℹ 158 more rows diff --git a/dev/articles/r2dii-analysis.html b/dev/articles/r2dii-analysis.html index 9c8ee042..e3f2bb8b 100644 --- a/dev/articles/r2dii-analysis.html +++ b/dev/articles/r2dii-analysis.html @@ -32,7 +32,7 @@ r2dii.analysis - 0.3.0.9000 + 0.4.0.9000 @@ -149,7 +149,7 @@ Match your loan matched <- match_name(loanbook, abcd) %>% prioritize() matched -#> # A tibble: 168 × 28 +#> # A tibble: 177 × 28 #> id_loan id_direct_loantaker name_direct_loantaker id_intermediate_pare…¹ #> <chr> <chr> <chr> <chr> #> 1 L6 C304 Kassulke-Kassulke NA @@ -162,7 +162,7 @@ Match your loan #> 8 L26 C280 Ankunding, Ankunding and … NA #> 9 L27 C278 Donati-Donati Group NA #> 10 L28 C276 Ferraro, Ferraro e Ferrar… NA -#> # ℹ 158 more rows +#> # ℹ 167 more rows #> # ℹ abbreviated name: ¹id_intermediate_parent_1 #> # ℹ 24 more variables: name_intermediate_parent_1 <chr>, #> # id_ultimate_parent <chr>, name_ultimate_parent <chr>, @@ -198,20 +198,20 @@ Market Share Approach ) market_share_targets_portfolio -#> # A tibble: 1,501 × 10 +#> # A tibble: 1,076 × 10 #> sector technology year region scenario_source metric production #> <chr> <chr> <int> <chr> <chr> <chr> <dbl> -#> 1 automotive electric 2020 global demo_2020 projected 324592. -#> 2 automotive electric 2020 global demo_2020 target_cps 324592. -#> 3 automotive electric 2020 global demo_2020 target_sds 324592. -#> 4 automotive electric 2020 global demo_2020 target_sps 324592. -#> 5 automotive electric 2021 global demo_2020 projected 339656. -#> 6 automotive electric 2021 global demo_2020 target_cps 329191. -#> 7 automotive electric 2021 global demo_2020 target_sds 352505. -#> 8 automotive electric 2021 global demo_2020 target_sps 330435. -#> 9 automotive electric 2022 global demo_2020 projected 354720. -#> 10 automotive electric 2022 global demo_2020 target_cps 333693. -#> # ℹ 1,491 more rows +#> 1 automotive electric 2020 global demo_2020 projected 145649. +#> 2 automotive electric 2020 global demo_2020 target_cps 145649. +#> 3 automotive electric 2020 global demo_2020 target_sds 145649. +#> 4 automotive electric 2020 global demo_2020 target_sps 145649. +#> 5 automotive electric 2021 global demo_2020 projected 147480. +#> 6 automotive electric 2021 global demo_2020 target_cps 146915. +#> 7 automotive electric 2021 global demo_2020 target_sds 153332. +#> 8 automotive electric 2021 global demo_2020 target_sps 147258. +#> 9 automotive electric 2022 global demo_2020 projected 149310. +#> 10 automotive electric 2022 global demo_2020 target_cps 148155. +#> # ℹ 1,066 more rows #> # ℹ 3 more variables: technology_share <dbl>, scope <chr>, #> # percentage_of_initial_production_by_scope <dbl> Or at the company level: @@ -230,20 +230,20 @@ Market Share Approach#> arguments to `FALSE`? market_share_targets_company -#> # A tibble: 15,876 × 11 +#> # A tibble: 14,505 × 11 #> sector technology year region scenario_source name_abcd metric production #> <chr> <chr> <int> <chr> <chr> <chr> <chr> <dbl> -#> 1 automoti… electric 2020 global demo_2020 Bernardi… proje… 324592. -#> 2 automoti… electric 2020 global demo_2020 Bernardi… targe… 324592. -#> 3 automoti… electric 2020 global demo_2020 Bernardi… targe… 324592. -#> 4 automoti… electric 2020 global demo_2020 Bernardi… targe… 324592. -#> 5 automoti… electric 2021 global demo_2020 Bernardi… proje… 339656. -#> 6 automoti… electric 2021 global demo_2020 Bernardi… targe… 329191. -#> 7 automoti… electric 2021 global demo_2020 Bernardi… targe… 352505. -#> 8 automoti… electric 2021 global demo_2020 Bernardi… targe… 330435. -#> 9 automoti… electric 2022 global demo_2020 Bernardi… proje… 354720. -#> 10 automoti… electric 2022 global demo_2020 Bernardi… targe… 333693. -#> # ℹ 15,866 more rows +#> 1 automoti… electric 2020 global demo_2020 Bernardi… proje… 17951. +#> 2 automoti… electric 2020 global demo_2020 Bernardi… targe… 17951. +#> 3 automoti… electric 2020 global demo_2020 Bernardi… targe… 17951. +#> 4 automoti… electric 2020 global demo_2020 Bernardi… targe… 17951. +#> 5 automoti… electric 2020 global demo_2020 Christia… proje… 11471. +#> 6 automoti… electric 2020 global demo_2020 Christia… targe… 11471. +#> 7 automoti… electric 2020 global demo_2020 Christia… targe… 11471. +#> 8 automoti… electric 2020 global demo_2020 Christia… targe… 11471. +#> 9 automoti… electric 2020 global demo_2020 Donati, … proje… 5611. +#> 10 automoti… electric 2020 global demo_2020 Donati, … targe… 5611. +#> # ℹ 14,495 more rows #> # ℹ 3 more variables: technology_share <dbl>, scope <chr>, #> # percentage_of_initial_production_by_scope <dbl> diff --git a/dev/articles/target-market-share.html b/dev/articles/target-market-share.html index cd6f2d2b..3632cb2c 100644 --- a/dev/articles/target-market-share.html +++ b/dev/articles/target-market-share.html @@ -32,7 +32,7 @@ r2dii.analysis - 0.3.0.9000 + 0.4.0.9000 @@ -195,7 +195,7 @@ How to calcu prioritize() matched -#> # A tibble: 168 × 28 +#> # A tibble: 177 × 28 #> id_loan id_direct_loantaker name_direct_loantaker id_intermediate_pare…¹ #> <chr> <chr> <chr> <chr> #> 1 L6 C304 Kassulke-Kassulke NA @@ -208,7 +208,7 @@ How to calcu #> 8 L26 C280 Ankunding, Ankunding and … NA #> 9 L27 C278 Donati-Donati Group NA #> 10 L28 C276 Ferraro, Ferraro e Ferrar… NA -#> # ℹ 158 more rows +#> # ℹ 167 more rows #> # ℹ abbreviated name: ¹id_intermediate_parent_1 #> # ℹ 24 more variables: name_intermediate_parent_1 <chr>, #> # id_ultimate_parent <chr>, name_ultimate_parent <chr>, @@ -226,20 +226,20 @@ How to calcu matched %>% target_market_share(abcd, scenario, regions) -#> # A tibble: 1,501 × 10 +#> # A tibble: 1,076 × 10 #> sector technology year region scenario_source metric production #> <chr> <chr> <int> <chr> <chr> <chr> <dbl> -#> 1 automotive electric 2020 global demo_2020 projected 324592. -#> 2 automotive electric 2020 global demo_2020 target_cps 324592. -#> 3 automotive electric 2020 global demo_2020 target_sds 324592. -#> 4 automotive electric 2020 global demo_2020 target_sps 324592. -#> 5 automotive electric 2021 global demo_2020 projected 339656. -#> 6 automotive electric 2021 global demo_2020 target_cps 329191. -#> 7 automotive electric 2021 global demo_2020 target_sds 352505. -#> 8 automotive electric 2021 global demo_2020 target_sps 330435. -#> 9 automotive electric 2022 global demo_2020 projected 354720. -#> 10 automotive electric 2022 global demo_2020 target_cps 333693. -#> # ℹ 1,491 more rows +#> 1 automotive electric 2020 global demo_2020 projected 145649. +#> 2 automotive electric 2020 global demo_2020 target_cps 145649. +#> 3 automotive electric 2020 global demo_2020 target_sds 145649. +#> 4 automotive electric 2020 global demo_2020 target_sps 145649. +#> 5 automotive electric 2021 global demo_2020 projected 147480. +#> 6 automotive electric 2021 global demo_2020 target_cps 146915. +#> 7 automotive electric 2021 global demo_2020 target_sds 153332. +#> 8 automotive electric 2021 global demo_2020 target_sps 147258. +#> 9 automotive electric 2022 global demo_2020 projected 149310. +#> 10 automotive electric 2022 global demo_2020 target_cps 148155. +#> # ℹ 1,066 more rows #> # ℹ 3 more variables: technology_share <dbl>, scope <chr>, #> # percentage_of_initial_production_by_scope <dbl> @@ -252,20 +252,20 @@ How to calcu #> This will result in company-level results, weighted by the portfolio #> loan size, which is rarely useful. Did you mean to set one of these #> arguments to `FALSE`? -#> # A tibble: 15,876 × 11 +#> # A tibble: 14,505 × 11 #> sector technology year region scenario_source name_abcd metric production #> <chr> <chr> <int> <chr> <chr> <chr> <chr> <dbl> -#> 1 automoti… electric 2020 global demo_2020 Bernardi… proje… 324592. -#> 2 automoti… electric 2020 global demo_2020 Bernardi… targe… 324592. -#> 3 automoti… electric 2020 global demo_2020 Bernardi… targe… 324592. -#> 4 automoti… electric 2020 global demo_2020 Bernardi… targe… 324592. -#> 5 automoti… electric 2021 global demo_2020 Bernardi… proje… 339656. -#> 6 automoti… electric 2021 global demo_2020 Bernardi… targe… 329191. -#> 7 automoti… electric 2021 global demo_2020 Bernardi… targe… 352505. -#> 8 automoti… electric 2021 global demo_2020 Bernardi… targe… 330435. -#> 9 automoti… electric 2022 global demo_2020 Bernardi… proje… 354720. -#> 10 automoti… electric 2022 global demo_2020 Bernardi… targe… 333693. -#> # ℹ 15,866 more rows +#> 1 automoti… electric 2020 global demo_2020 Bernardi… proje… 17951. +#> 2 automoti… electric 2020 global demo_2020 Bernardi… targe… 17951. +#> 3 automoti… electric 2020 global demo_2020 Bernardi… targe… 17951. +#> 4 automoti… electric 2020 global demo_2020 Bernardi… targe… 17951. +#> 5 automoti… electric 2020 global demo_2020 Christia… proje… 11471. +#> 6 automoti… electric 2020 global demo_2020 Christia… targe… 11471. +#> 7 automoti… electric 2020 global demo_2020 Christia… targe… 11471. +#> 8 automoti… electric 2020 global demo_2020 Christia… targe… 11471. +#> 9 automoti… electric 2020 global demo_2020 Donati, … proje… 5611. +#> 10 automoti… electric 2020 global demo_2020 Donati, … targe… 5611. +#> # ℹ 14,495 more rows #> # ℹ 3 more variables: technology_share <dbl>, scope <chr>, #> # percentage_of_initial_production_by_scope <dbl> diff --git a/dev/articles/target-sda.html b/dev/articles/target-sda.html index 1fcb2827..ac7a56fb 100644 --- a/dev/articles/target-sda.html +++ b/dev/articles/target-sda.html @@ -32,7 +32,7 @@ r2dii.analysis - 0.3.0.9000 + 0.4.0.9000 @@ -230,7 +230,7 @@ Calculating SDA Targets prioritize() matched -#> # A tibble: 168 × 28 +#> # A tibble: 177 × 28 #> id_loan id_direct_loantaker name_direct_loantaker id_intermediate_pare…¹ #> <chr> <chr> <chr> <chr> #> 1 L6 C304 Kassulke-Kassulke NA @@ -243,7 +243,7 @@ Calculating SDA Targets#> 8 L26 C280 Ankunding, Ankunding and … NA #> 9 L27 C278 Donati-Donati Group NA #> 10 L28 C276 Ferraro, Ferraro e Ferrar… NA -#> # ℹ 158 more rows +#> # ℹ 167 more rows #> # ℹ abbreviated name: ¹id_intermediate_parent_1 #> # ℹ 24 more variables: name_intermediate_parent_1 <chr>, #> # id_ultimate_parent <chr>, name_ultimate_parent <chr>, diff --git a/dev/authors.html b/dev/authors.html index d964c458..6224e23c 100644 --- a/dev/authors.html +++ b/dev/authors.html @@ -10,7 +10,7 @@ r2dii.analysis - 0.3.0.9000 + 0.4.0.9000 @@ -103,14 +103,14 @@ Citation Axthelm A, Hoffart J, Lepore M, Hogedorn K, Halterman N (2024). r2dii.analysis: Measure Climate Scenario Alignment of Corporate Loans. -R package version 0.3.0.9000, +R package version 0.4.0.9000, https://rmi-pacta.github.io/r2dii.analysis/, https://github.com/RMI-PACTA/r2dii.analysis. @Manual{, title = {r2dii.analysis: Measure Climate Scenario Alignment of Corporate Loans}, author = {Alex Axthelm and Jackson Hoffart and Mauro Lepore and Klaus Hogedorn and Nicky Halterman}, year = {2024}, - note = {R package version 0.3.0.9000, + note = {R package version 0.4.0.9000, https://rmi-pacta.github.io/r2dii.analysis/}, url = {https://github.com/RMI-PACTA/r2dii.analysis}, } diff --git a/dev/favicon-16x16.png b/dev/favicon-16x16.png index 5f0841e5..6a3190a5 100644 Binary files a/dev/favicon-16x16.png and b/dev/favicon-16x16.png differ diff --git a/dev/favicon-32x32.png b/dev/favicon-32x32.png index 46dab972..466db898 100644 Binary files a/dev/favicon-32x32.png and b/dev/favicon-32x32.png differ diff --git a/dev/index.html b/dev/index.html index 4301bbe5..18554d8d 100644 --- a/dev/index.html +++ b/dev/index.html @@ -48,7 +48,7 @@ r2dii.analysis - 0.3.0.9000 + 0.4.0.9000 diff --git a/dev/news/index.html b/dev/news/index.html index 1de01f47..6b28fafa 100644 --- a/dev/news/index.html +++ b/dev/news/index.html @@ -10,7 +10,7 @@ r2dii.analysis - 0.3.0.9000 + 0.4.0.9000 @@ -71,6 +71,9 @@ r2dii.analysis (development version) + + +r2dii.analysis 0.4.0CRAN release: 2024-03-26 target_market_share now outputs target_* value for all years in scenario (#481). Complete deprecation of ald in favour of abcd (#466). @@ -109,7 +112,7 @@ r2dii.ana r2dii.analysis 0.1.10CRAN release: 2021-07-09 target_market_share() now sets all negative smsp targets to zero (#336). target_market_share() now only outputs sectors that are present in all input datasets (#329). -target_market_share() now always adds targets for green technologies (defined by r2dii.data::green_or_brown), even when not present in input data (#318 @Antoine-Lalechere). +target_market_share() now always adds targets for green technologies (defined by r2dii.data::green_or_brown), even when not present in input data (#318 @Antoine-Lalechere). target_market_share() now correctly groups by region when calculating technology_share (#315 @Antoine-Lalechere). diff --git a/dev/pkgdown.yml b/dev/pkgdown.yml index 0c57a9c7..6712b17e 100644 --- a/dev/pkgdown.yml +++ b/dev/pkgdown.yml @@ -6,7 +6,7 @@ articles: r2dii-analysis: r2dii-analysis.html target-market-share: target-market-share.html target-sda: target-sda.html -last_built: 2024-03-26T09:02Z +last_built: 2024-03-27T10:25Z urls: reference: https://rmi-pacta.github.io/r2dii.analysis/reference article: https://rmi-pacta.github.io/r2dii.analysis/articles diff --git a/dev/reference/index.html b/dev/reference/index.html index 44273279..5e986d43 100644 --- a/dev/reference/index.html +++ b/dev/reference/index.html @@ -10,7 +10,7 @@ r2dii.analysis - 0.3.0.9000 + 0.4.0.9000 diff --git a/dev/reference/join_abcd_scenario.html b/dev/reference/join_abcd_scenario.html index f56d07c9..0688c709 100644 --- a/dev/reference/join_abcd_scenario.html +++ b/dev/reference/join_abcd_scenario.html @@ -14,7 +14,7 @@ r2dii.analysis - 0.3.0.9000 + 0.4.0.9000 @@ -145,7 +145,7 @@ Examples scenario = scenario_demo_2020, region_isos = region_isos_demo ) -#> # A tibble: 15,207 × 45 +#> # A tibble: 14,592 × 45 #> id_loan id_direct_loantaker name_direct_loantaker id_intermediate_parent_1 #> <chr> <chr> <chr> <chr> #> 1 L6 C304 Kassulke-Kassulke NA @@ -158,13 +158,13 @@ Examples#> 8 L6 C304 Kassulke-Kassulke NA #> 9 L6 C304 Kassulke-Kassulke NA #> 10 L6 C304 Kassulke-Kassulke NA -#> # ℹ 15,197 more rows +#> # ℹ 14,582 more rows #> # ℹ 41 more variables: name_intermediate_parent_1 <chr>, #> # id_ultimate_parent <chr>, name_ultimate_parent <chr>, #> # loan_size_outstanding <dbl>, loan_size_outstanding_currency <chr>, #> # loan_size_credit_limit <dbl>, loan_size_credit_limit_currency <chr>, #> # sector_classification_system <chr>, sector_classification_input_type <chr>, -#> # sector_classification_direct_loantaker <dbl>, fi_type <chr>, … +#> # sector_classification_direct_loantaker <chr>, fi_type <chr>, …
# using the master dataset defined in the previous chunk: summarize_weighted_percent_change(master) -#> # A tibble: 231 × 4 +#> # A tibble: 168 × 4 #> sector_abcd technology year weighted_percent_change #> <chr> <chr> <int> <dbl> -#> 1 automotive electric 2020 0 -#> 2 automotive electric 2021 0.0881 -#> 3 automotive electric 2022 0.176 -#> 4 automotive electric 2023 0.264 -#> 5 automotive electric 2024 0.352 -#> 6 automotive electric 2025 0.440 -#> 7 automotive electric 2026 NA -#> 8 automotive electric 2027 NA -#> 9 automotive electric 2028 NA -#> 10 automotive electric 2029 NA -#> # ℹ 221 more rows
Or at the company level:
Axthelm A, Hoffart J, Lepore M, Hogedorn K, Halterman N (2024). r2dii.analysis: Measure Climate Scenario Alignment of Corporate Loans. -R package version 0.3.0.9000, +R package version 0.4.0.9000, https://rmi-pacta.github.io/r2dii.analysis/, https://github.com/RMI-PACTA/r2dii.analysis.
@Manual{, title = {r2dii.analysis: Measure Climate Scenario Alignment of Corporate Loans}, author = {Alex Axthelm and Jackson Hoffart and Mauro Lepore and Klaus Hogedorn and Nicky Halterman}, year = {2024}, - note = {R package version 0.3.0.9000, + note = {R package version 0.4.0.9000, https://rmi-pacta.github.io/r2dii.analysis/}, url = {https://github.com/RMI-PACTA/r2dii.analysis}, }
CRAN release: 2024-03-26
target_market_share
target_*
year
scenario
ald
abcd
CRAN release: 2021-07-09
target_market_share() now sets all negative smsp targets to zero (#336).
target_market_share()
smsp
target_market_share() now only outputs sectors that are present in all input datasets (#329).
sector
target_market_share() now always adds targets for green technologies (defined by r2dii.data::green_or_brown), even when not present in input data (#318 @Antoine-Lalechere).
r2dii.data::green_or_brown
data
target_market_share() now correctly groups by region when calculating technology_share (#315 @Antoine-Lalechere).
region
technology_share