-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathparams.py
78 lines (62 loc) · 3.54 KB
/
params.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import torch
import argparse
def get_params():
args = argparse.ArgumentParser()
args.add_argument("-data", "--dataset", default="NELL-One", type=str) # ["NELL-One", "Wiki-One"]
args.add_argument("-path", "--data_path", default="./NELL", type=str) # ["./NELL", "./Wiki"]
args.add_argument("-form", "--data_form", default="Pre-Train", type=str) # ["Pre-Train", "In-Train", "Discard"]
args.add_argument("-seed", "--seed", default=2022, type=int)
args.add_argument("-few", "--few", default=1, type=int)
args.add_argument("-nq", "--num_query", default=3, type=int)
args.add_argument("-metric", "--metric", default="MRR", choices=["MRR", "Hits@10", "Hits@5", "Hits@1"])
args.add_argument("-dim", "--embed_dim", default=100, type=int)
args.add_argument("-bs", "--batch_size", default=128, type=int)
args.add_argument("-lr", "--learning_rate", default=0.001, type=float) # 0.001
args.add_argument("-es_p", "--early_stopping_patience", default=3, type=int)
args.add_argument("-epo", "--epoch", default=100000, type=int)
args.add_argument("-prt_epo", "--print_epoch", default=100, type=int)
args.add_argument("-eval_epo", "--eval_epoch", default=1000, type=int)
args.add_argument("-ckpt_epo", "--checkpoint_epoch", default=1000, type=int)
args.add_argument("-b", "--beta", default=5, type=float) # 5
args.add_argument("-m", "--margin", default=1.0, type=float) # default: 1
args.add_argument("-p", "--dropout_p", default=0.5, type=float)
args.add_argument("-abla", "--ablation", default=False, type=bool)
args.add_argument("-gpu", "--device", default=0, type=int)
args.add_argument("-prefix", "--prefix", default="exp1", type=str)
args.add_argument("-step", "--step", default="train", type=str, choices=['train', 'test', 'dev'])
args.add_argument("-log_dir", "--log_dir", default="log", type=str)
args.add_argument("-state_dir", "--state_dir", default="state", type=str)
args.add_argument("-eval_ckpt", "--eval_ckpt", default=None, type=str)
args.add_argument("-eval_by_rel", "--eval_by_rel", default=False, type=bool)
args.add_argument("-embed_model", "--embed_model", default="TransE", type=str) # ["NELL-One", "Wiki-One"]
args.add_argument("-max_neighbor", "--max_neighbor", default=200, type=int)
args.add_argument("-lstm_hiddendim", "--lstm_hiddendim", default=700, type=int)
args.add_argument("-lstm_layers", "--lstm_layers", default=2, type=int)
args.add_argument("-hop", "--hop", default=2, type=int)
args.add_argument("--flow", choices=['none', 'Planar', 'Radial', 'RealNVP'], default='none', type=str)
args.add_argument("--K", default=10, type=int)
args.add_argument("--g_batch", default=512, type=int)
args.add_argument("--eval_batch_size", default=-1, type=int)
args = args.parse_args()
params = {}
for k, v in vars(args).items():
params[k] = v
if args.dataset == 'NELL-One':
params['embed_dim'] = 100
elif args.dataset == 'Wiki-One':
params['embed_dim'] = 50
params['device'] = torch.device('cuda:' + str(args.device))
return params
data_dir = {
'train_tasks_in_train': '/train_tasks_in_train.json',
'train_tasks': '/train_tasks.json',
'test_tasks': "/test_tasks.json",
'dev_tasks': "/dev_tasks.json",
'rel2candidates_in_train': '/rel2candidates_in_train.json',
'rel2candidates': '/rel2candidates.json',
'e1rel_e2_in_train': '/e1rel_e2_in_train.json',
'e1rel_e2': '/e1rel_e2.json',
'ent2ids': '/ent2ids',
'ent2vec': '/ent2vec.npy',
'rel2ids': '/rel2ids',
}