forked from cmuparlay/pbbslib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
alloc.h
357 lines (300 loc) · 10.4 KB
/
alloc.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
#pragma once
namespace pbbs {
void* my_alloc(size_t);
void my_free(void*);
}
#include <atomic>
#include <vector>
#include <new>
#include "utilities.h"
#include "concurrent_stack.h"
#include "utilities.h"
#include "block_allocator.h"
#include "memory_size.h"
#include "get_time.h"
namespace pbbs {
#if defined(__APPLE__) // a little behind the times
void* aligned_alloc(size_t a, size_t n) {return malloc(n);}
#endif
// ****************************************
// pool_allocator
// ****************************************
// Allocates headerless blocks from pools of different sizes.
// A vector of pool sizes is given to the constructor.
// Sizes must be at least 8, and must increase.
// For pools of small blocks (below large_threshold) each thread keeps a
// thread local list of elements from each pool using the
// block_allocator.
// For pools of large blocks there is only one shared pool for each.
struct pool_allocator {
private:
static const size_t large_align = 64;
static const size_t large_threshold = (1 << 20);
size_t num_buckets;
size_t num_small;
size_t max_small;
size_t max_size;
std::atomic<long> large_allocated{0};
concurrent_stack<void*>* large_buckets;
struct block_allocator *small_allocators;
std::vector<size_t> sizes;
void* allocate_large(size_t n) {
size_t bucket = num_small;
size_t alloc_size;
if (n <= max_size) {
while (n > sizes[bucket]) bucket++;
maybe<void*> r = large_buckets[bucket-num_small].pop();
if (r) return *r;
alloc_size = sizes[bucket];
} else alloc_size = n;
void* a = (void*) aligned_alloc(large_align, alloc_size);
if (a == NULL) throw std::bad_alloc();
large_allocated += n;
return a;
}
void deallocate_large(void* ptr, size_t n) {
if (n > max_size) {
free(ptr);
large_allocated -= n;
} else {
size_t bucket = num_small;
while (n > sizes[bucket]) bucket++;
large_buckets[bucket-num_small].push(ptr);
}
}
const size_t small_alloc_block_size = (1 << 20);
public:
~pool_allocator() {
for (size_t i=0; i < num_small; i++)
small_allocators[i].~block_allocator();
free(small_allocators);
clear();
delete[] large_buckets;
}
pool_allocator() {}
pool_allocator(std::vector<size_t> const &sizes) : sizes(sizes) {
timer t;
num_buckets = sizes.size();
max_size = sizes[num_buckets-1];
num_small = 0;
while (sizes[num_small] < large_threshold && num_small < num_buckets)
num_small++;
max_small = (num_small > 0) ? sizes[num_small - 1] : 0;
large_buckets = new concurrent_stack<void*>[num_buckets-num_small];
small_allocators = (struct block_allocator*)
malloc(num_buckets * sizeof(struct block_allocator));
size_t prev_bucket_size = 0;
for (size_t i = 0; i < num_small; i++) {
size_t bucket_size = sizes[i];
if (bucket_size < 8)
throw std::invalid_argument("for small_allocator, bucket sizes must be at least 8");
if (!(bucket_size > prev_bucket_size))
throw std::invalid_argument("for small_allocator, bucket sizes must increase");
prev_bucket_size = bucket_size;
new (static_cast<void*>(std::addressof(small_allocators[i])))
block_allocator(bucket_size, 0, small_alloc_block_size - 64);
}
}
void* allocate(size_t n) {
if (n > max_small) return allocate_large(n);
size_t bucket = 0;
while (n > sizes[bucket]) bucket++;
return small_allocators[bucket].alloc();
}
void deallocate(void* ptr, size_t n) {
if (n > max_small) deallocate_large(ptr, n);
else {
size_t bucket = 0;
while (n > sizes[bucket]) bucket++;
small_allocators[bucket].free(ptr);
}
}
// allocate, touch, and free to make sure space for small blocks is paged in
void reserve(size_t bytes) {
size_t bc = bytes/small_alloc_block_size;
std::vector<void*> h(bc);
parallel_for(0, bc, [&] (size_t i) {
h[i] = allocate(small_alloc_block_size);
}, 1);
parallel_for(0, bc, [&] (size_t i) {
for (size_t j=0; j < small_alloc_block_size; j += (1 << 12))
((char*) h[i])[j] = 0;
}, 1);
for (size_t i=0; i < bc; i++)
deallocate(h[i], small_alloc_block_size);
}
void print_stats() {
size_t total_a = 0;
size_t total_u = 0;
for (size_t i = 0; i < num_small; i++) {
size_t bucket_size = sizes[i];
size_t allocated = small_allocators[i].num_allocated_blocks();
size_t used = small_allocators[i].num_used_blocks();
total_a += allocated * bucket_size;
total_u += used * bucket_size;
cout << "size = " << bucket_size << ", allocated = " << allocated
<< ", used = " << used << endl;
}
cout << "Large allocated = " << large_allocated << endl;
cout << "Total bytes allocated = " << total_a + large_allocated << endl;
cout << "Total bytes used = " << total_u << endl;
}
void clear() {
for (size_t i = num_small; i < num_buckets; i++) {
maybe<void*> r = large_buckets[i-num_small].pop();
while (r) {
large_allocated -= sizes[i];
free(*r);
r = large_buckets[i-num_small].pop();
}
}
}
};
// ****************************************
// default_allocator (uses powers of two as pool sizes)
// ****************************************
// these are bucket sizes used by the default allocator.
std::vector<size_t> default_sizes() {
size_t log_min_size = 4;
size_t log_max_size = pbbs::log2_up(getMemorySize()/64);
std::vector<size_t> sizes;
for (size_t i = log_min_size; i <= log_max_size; i++)
sizes.push_back(1 << i);
return sizes;
}
pool_allocator default_allocator(default_sizes());
// ****************************************
// Following Matches the c++ Allocator specification (minimally)
// https://en.cppreference.com/w/cpp/named_req/Allocator
// Can therefore be used for containers, e.g.:
// std::vector<int, pbbs::allocator<int>>
// ****************************************
template <typename T>
struct allocator {
using value_type = T;
T* allocate(size_t n) {
return (T*) default_allocator.allocate(n * sizeof(T));
}
void deallocate(T* ptr, size_t n) {
default_allocator.deallocate((void*) ptr, n * sizeof(T));
}
allocator() = default;
template <class U> constexpr allocator(const allocator<U>&) {}
};
template <class T, class U>
bool operator==(const allocator<T>&, const allocator<U>&) { return true; }
template <class T, class U>
bool operator!=(const allocator<T>&, const allocator<U>&) { return false; }
// ****************************************
// Static allocator for single items of a given type, e.g.
// using long_allocator = type_allocator<long>;
// long* foo = long_allocator::alloc();
// *foo = (long) 23;
// long_allocator::free(foo);
// Uses block allocator, and is headerless
// ****************************************
template <typename T>
class type_allocator {
public:
static constexpr size_t default_alloc_size = 0;
static block_allocator allocator;
static const bool initialized{true};
static T* alloc() { return (T*) allocator.alloc();}
static void free(T* ptr) {allocator.free((void*) ptr);}
// for backward compatibility
static void init(size_t _alloc_size = 0, size_t _list_size=0) {};
static void reserve(size_t n = default_alloc_size,
bool randomize = false,
size_t _max_blocks = 0) {
allocator.reserve(n);
}
static void finish() {allocator.clear();
}
static size_t block_size () {return allocator.block_size();}
static size_t num_allocated_blocks() {return allocator.num_allocated_blocks();}
static size_t num_used_blocks() {return allocator.num_used_blocks();}
static size_t num_used_bytes() {return num_used_blocks() * block_size();}
static void print_stats() {allocator.print_stats();}
};
template<typename T>
block_allocator type_allocator<T>::allocator = block_allocator(sizeof(T));
// ****************************************
// my_alloc and my_free (add size tags)
// ****************************************
// ifdefed to either use malloc or the pbbs allocator
// ****************************************
#ifdef USEMALLOC
#include <malloc.h>
struct __mallopt {
__mallopt() {
mallopt(M_MMAP_MAX,0);
mallopt(M_TRIM_THRESHOLD,-1);
}
};
__mallopt __mallopt_var;
inline void* my_alloc(size_t i) {return malloc(i);}
inline void my_free(void* p) {free(p);}
void allocator_clear() {}
void allocator_reserve(size_t bytes) {}
#else
constexpr size_t size_offset = 1; // in size_t sized words
// needs to be at least size_offset * size_offset(size_t)
inline size_t header_size(size_t n) { // in bytes
return (n >= 1024) ? 64 : (n & 15) ? 8 : (n & 63) ? 16 : 64;
}
// allocates and tags with a header (8, 16 or 64 bytes) that contains the size
void* my_alloc(size_t n) {
size_t hsize = header_size(n);
void* ptr;
ptr = default_allocator.allocate(n + hsize);
void* r = (void*) (((char*) ptr) + hsize);
*(((size_t*) r)-size_offset) = n; // puts size in header
return r;
}
// reads the size, offsets the header and frees
void my_free(void *ptr) {
size_t n = *(((size_t*) ptr)-size_offset);
size_t hsize = header_size(n);
if (hsize > (1ul << 48)) {
cout << "corrupted header in my_free" << endl;
throw std::bad_alloc();
}
default_allocator.deallocate((void*) (((char*) ptr) - hsize), n + hsize);
}
void allocator_clear() {
default_allocator.clear();
}
void allocator_reserve(size_t bytes) {
default_allocator.reserve(bytes);
}
#endif
// ****************************************
// common across allocators (key routines used by sequences)
// ****************************************
// Does not initialize the array
template<typename E>
E* new_array_no_init(size_t n) {
return (E*) my_alloc(n * sizeof(E));
}
// Initializes in parallel
template<typename E>
E* new_array(size_t n) {
E* r = new_array_no_init<E>(n);
if (!std::is_trivially_default_constructible<E>::value)
parallel_for(0, n, [&] (size_t i) {
new ((void*) (r+i)) E;});
return r;
}
inline void free_array(void* a) {
my_free(a);
}
// Destructs in parallel
template<typename E>
void delete_array(E* A, size_t n) {
// C++14 -- supported by gnu C++11
if (!std::is_trivially_destructible<E>::value)
parallel_for(0, n, [&] (size_t i) {
A[i].~E();});
my_free(A);
}
}