forked from karpathy/nanoGPT
-
Notifications
You must be signed in to change notification settings - Fork 18
/
run_vizier.py
242 lines (207 loc) · 8.01 KB
/
run_vizier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import argparse
from datetime import datetime
import json
import os
import subprocess
from rich import print
from rich.console import Console
from rich.table import Table
import torch
from vizier.service import clients, pyvizier as vz
import warnings
# Suppress all warnings
warnings.filterwarnings("ignore")
def parse_args():
parser = argparse.ArgumentParser(
description="Run vizier optimization based on json configuration file."
)
parser.add_argument(
"--config",
type=str,
required=True,
help="Path to the configuration JSON file."
)
parser.add_argument(
"--add_names",
action="store_true",
help="Include names of values of the configuration parameters in addition to values (may cause too long a file name).",
)
parser.add_argument(
"--output_dir",
type=str,
default="out",
help="Directory to place the set of output checkpoints.",
)
parser.add_argument(
"--vizier_iterations", type=int, default=20, help="Number of Vizier iterations."
)
parser.add_argument(
"--vizier_algorithm",
choices=[
"GP_UCB_PE",
"GAUSSIAN_PROCESS_BANDIT",
"RANDOM_SEARCH",
"QUASI_RANDOM_SEARCH",
"GRID_SEARCH",
"SHUFFLED_GRID_SEARCH",
"EAGLE_STRATEGY",
"CMA_ES",
"EMUKIT_GP_EI",
"NSGA2",
"BOCS",
"HARMONICA",
],
default="GAUSSIAN_PROCESS_BANDIT",
help="Choose the Vizier algorithm to use.",
)
return parser.parse_args()
def get_best_val_loss(out_dir):
best_val_loss_file = out_dir + "/best_val_loss_and_iter.txt"
if os.path.exists(best_val_loss_file):
with open(best_val_loss_file, "r") as file:
try:
best_val_loss = float(file.readline().strip().split(",")[0])
return best_val_loss
except ValueError:
print("val_loss file not found, trying checkpoint...")
# if contained file doesn't exist, try ckpt.pt file
checkpoint_file = out_dir + "/ckpt.pt"
checkpoint = torch.load(checkpoint_file, map_location=torch.device("cpu"))
best_val_loss = checkpoint["best_val_loss"]
return best_val_loss
def format_config_name(config, config_basename, add_names):
if add_names:
config_items = [f"{k}_{v}" for k, v in config.items()]
else:
config_items = [f"{v}" for _, v in config.items()]
return f"{config_basename}-{'-'.join(config_items)}"
def run_command(config, config_basename, output_dir, add_names):
formatted_name = format_config_name(config, config_basename, add_names)
base_command = ["python3", "train.py"]
config["tensorboard_run_name"] = formatted_name
timestamp_prefix = datetime.now().strftime("%Y%m%d_%H%M%S")
config["out_dir"] = os.path.join(output_dir, f"{timestamp_prefix}_{formatted_name}")
base_command.extend(["--timestamp", timestamp_prefix])
# Print the entered arguments before each run
console = Console()
table = Table(
title="Entered Arguments", show_header=True, header_style="bold magenta"
)
table.add_column("Argument", style="cyan")
table.add_column("Value", style="green")
for key, value in config.items():
table.add_row(key, str(value))
console.print(table)
# Create train.py command with argparse flags
for key, value in config.items():
if isinstance(value, bool):
print(key, value, "bool")
base_command.extend([f"--{'' if value else 'no-'}{key}"])
elif value == "True":
base_command.extend([f"--{key}"])
elif value == "False":
base_command.extend([f"--no-{key}"])
elif isinstance(value, list):
print(key, value, "list")
for val in value:
base_command.extend([f"--{key}", str(val)])
else:
print(key, value, "else")
if isinstance(value, float) and value.is_integer():
value = int(value)
base_command.extend([f"--{key}", str(value)])
print(f"Running command: {' '.join(base_command)}")
subprocess.run(base_command)
return config
def run_experiment_with_vizier(
config, config_basename, output_dir, add_names, vizier_algorithm, vizier_iterations
):
search_space = vz.SearchSpace()
for k, v in config.items():
if isinstance(v, list):
param_type = type(v[0]).__name__.upper()
if param_type == "INT":
search_space.root.add_int_param(
name=k, min_value=min(map(int, v)), max_value=max(map(int, v))
)
elif param_type == "FLOAT":
search_space.root.add_float_param(
name=k, min_value=min(map(float, v)), max_value=max(map(float, v))
)
elif param_type == "STR":
search_space.root.add_categorical_param(name=k, feasible_values=v)
elif param_type == "BOOL":
search_space.root.add_categorical_param(
name=k, feasible_values=[str(val) for val in v]
)
elif isinstance(v, dict) and "range" in v:
range_def = v["range"]
start, end, step = range_def["start"], range_def["end"], range_def["step"]
param_type = type(start).__name__.upper()
if param_type == "INT":
search_space.root.add_int_param(
name=k,
min_value=start,
max_value=end,
scale_type=vz.ScaleType.LINEAR,
)
elif param_type == "FLOAT":
search_space.root.add_float_param(
name=k,
min_value=start,
max_value=end,
scale_type=vz.ScaleType.LINEAR,
)
else:
param_type = type(v).__name__.upper()
if param_type == "INT":
search_space.root.add_int_param(name=k, min_value=v, max_value=v)
elif param_type == "FLOAT":
search_space.root.add_float_param(name=k, min_value=v, max_value=v)
elif param_type == "STR":
search_space.root.add_categorical_param(name=k, feasible_values=[v])
elif param_type == "BOOL":
search_space.root.add_categorical_param(
name=k, feasible_values=[bool(v)]
)
print("search_space", search_space)
study_config = vz.StudyConfig(
search_space=search_space,
metric_information=[
vz.MetricInformation(name="loss", goal=vz.ObjectiveMetricGoal.MINIMIZE)
],
)
study_config.algorithm = vizier_algorithm
study_client = clients.Study.from_study_config(
study_config, owner="owner", study_id="example_study_id"
)
for i in range(vizier_iterations):
print("Vizier Iteration", i)
suggestions = study_client.suggest(count=1)
for suggestion in suggestions:
params = suggestion.parameters
config = run_command(params, config_basename, output_dir, add_names)
loss = get_best_val_loss(config["out_dir"])
suggestion.complete(vz.Measurement(metrics={"loss": loss}))
optimal_trials = study_client.optimal_trials()
for trial in optimal_trials:
best_trial = trial.materialize()
print(
f"Best trial: {best_trial.parameters}, Loss: {best_trial.final_measurement.metrics['loss']}"
)
def main():
args = parse_args()
config_basename = os.path.splitext(os.path.basename(args.config))[0]
with open(args.config, "r") as file:
original_configurations = json.load(file)
for config in original_configurations:
run_experiment_with_vizier(
config,
config_basename,
args.output_dir,
args.add_names,
args.vizier_algorithm,
args.vizier_iterations,
)
if __name__ == "__main__":
main()