-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
379c8e9
commit d237346
Showing
23 changed files
with
19,868 additions
and
5,529 deletions.
There are no files selected for viewing
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file not shown.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file not shown.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file not shown.
Binary file not shown.
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,193 @@ | ||
--- | ||
title: "Doggo/Nogo (Study 1) - Data Cleaning" | ||
editor: source | ||
editor_options: | ||
chunk_output_type: console | ||
format: | ||
html: | ||
code-fold: true | ||
self-contained: true | ||
--- | ||
|
||
## Data Preparation | ||
|
||
```{r} | ||
#| message: false | ||
#| warning: false | ||
library(tidyverse) | ||
library(easystats) | ||
library(patchwork) | ||
library(ggside) | ||
``` | ||
|
||
|
||
```{r} | ||
#| code-fold: false | ||
dfsub <- read.csv("../data/rawdata_participants.csv") | ||
df <- read.csv("../data/rawdata_game.csv") | ||
``` | ||
|
||
The initial sample consisted of `r report::report_participants(df, age="Age", gender="Gender", education="Education")`. | ||
|
||
|
||
```{r} | ||
# Feedback computation | ||
newdf <- data.frame() | ||
for(i in unique(df$Participant)) { | ||
for(s in unique(df$Session)) { | ||
dat <- df[df$Participant == i & df$Session == s, ] | ||
dat$Feedback <- c("Positive", ifelse(dat$RT <= dat$Threshold, "Positive", "Negative")[2:nrow(dat)]) | ||
n_positive <- c(0) | ||
n_negative <- c(0) | ||
counter_positive <- 0 | ||
counter_negative <- 0 | ||
for(j in 2:nrow(dat)) { | ||
prev_feedback <- dat$Feedback[j-1] | ||
current_feedback <- dat$Feedback[j] | ||
if(prev_feedback == "Positive") { | ||
counter_positive <- counter_positive + 1 | ||
} else { | ||
counter_positive <- 0 | ||
} | ||
n_positive <- c(n_positive, counter_positive) | ||
if(prev_feedback == "Negative") { | ||
counter_negative <- counter_negative + 1 | ||
} else { | ||
counter_negative <- 0 | ||
} | ||
n_negative <- c(n_negative, counter_negative) | ||
} | ||
dat$Feedback_N_Positive <- n_positive | ||
dat$Feedback_N_Negative <- n_negative | ||
newdf <- rbind(newdf, dat) | ||
} | ||
} | ||
df <- newdf | ||
``` | ||
|
||
### Recruitment History | ||
|
||
```{r} | ||
#| message: false | ||
# Consecutive count of participants per day (as area) | ||
dfsub |> | ||
mutate(Date = as.Date(Date, format = "%d/%m/%Y")) |> | ||
group_by(Date) |> | ||
summarize(N = n()) |> | ||
ungroup() |> | ||
mutate(N = cumsum(N)) |> | ||
ggplot(aes(x = Date, y = N)) + | ||
geom_area() + | ||
scale_y_continuous(expand = c(0, 0)) + | ||
labs( | ||
title = "Recruitment History", | ||
x = "Date", | ||
y = "Total Number of Participants" | ||
) + | ||
see::theme_modern() | ||
``` | ||
|
||
|
||
## Manipulation Check | ||
|
||
### ISI | ||
|
||
```{r} | ||
#| code-fold: false | ||
df |> | ||
ggplot(aes(x=ISI, y=RT)) + | ||
geom_point2(alpha=1/10, size=3) + | ||
geom_smooth(method = "gam", formula = y ~ s(x, bs = "cs"), se = FALSE, linewidth=2) + | ||
scale_y_log10() + | ||
theme_minimal() + | ||
coord_cartesian(ylim = c(0.1, 1)) | ||
``` | ||
|
||
### Threshold | ||
|
||
```{r} | ||
#| code-fold: false | ||
cumulative_median <- function(x) { | ||
sapply(seq_along(x), function(i) median(x[1:i])) | ||
} | ||
df |> | ||
arrange(Participant, Session, Trial) |> | ||
group_by(Participant, Session) |> | ||
mutate(CumMedian = cumulative_median(RT)) |> | ||
ungroup() |> | ||
ggplot(aes(x=Threshold, y=CumMedian)) + | ||
geom_abline(intercept = 0, slope = 1) + | ||
geom_point(aes(color=Participant)) + | ||
facet_grid(~Session) + | ||
scale_x_log10() + | ||
scale_y_log10() | ||
``` | ||
|
||
|
||
### Feedback | ||
|
||
|
||
|
||
|
||
|
||
```{r} | ||
#| code-fold: false | ||
df |> | ||
filter(RT < 1) |> | ||
mutate(Feedback_N_Positive = ifelse(Feedback_N_Positive > 5, 6, Feedback_N_Positive), | ||
Feedback_N_Negative = ifelse(Feedback_N_Negative > 3, 4, Feedback_N_Negative)) |> | ||
ggplot(aes(x=Feedback_N_Positive, y=RT)) + | ||
geom_smooth(method="lm", formula="y~poly(x, 2)") + | ||
ggdist::stat_halfeye(aes(group=interaction(as.factor(Feedback_N_Positive), as.factor(Feedback_N_Negative)), | ||
fill=as.factor(Feedback_N_Negative)), alpha=1/3) + | ||
scale_y_log10() + | ||
coord_cartesian(ylim = c(0.15, 0.85)) | ||
# t.test(RT ~ FeedbackN1, data = filter(!is.na(FeedbackN1))) | ||
``` | ||
|
||
|
||
## Exclusion | ||
|
||
### Trials | ||
|
||
```{r} | ||
#| code-fold: false | ||
d <- bayestestR::estimate_density(df$RT, method="KernSmooth") | ||
dsub <- bayestestR::estimate_density(df, select="RT", at=c("Participant", "Session"), method="KernSmooth") | ||
d |> | ||
ggplot(aes(x=x, y=y)) + | ||
geom_vline(xintercept = c(0.15, 0.85), linetype = "dashed") + | ||
geom_area(fill="grey") + | ||
geom_line(data=dsub, aes(color=Participant, linetype=Session), linewidth=1) + | ||
coord_cartesian(xlim = c(0, 1)) + | ||
theme_minimal() | ||
outliers <- (df$RT > 0.85) | (df$RT < 0.15) | ||
df <- df[!outliers, ] | ||
``` | ||
|
||
Outlier trials were removed from the dataset (`r sum(outliers)`). | ||
|
||
|
||
|
||
## Save | ||
|
||
```{r} | ||
#| code-fold: false | ||
write.csv(df, "../data/data_game.csv", row.names = FALSE) | ||
write.csv(dfsub, "../data/data_participants.csv", row.names = FALSE) | ||
``` |
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,72 @@ | ||
--- | ||
title: "Doggo/Nogo (Study 1) - Task Optimization" | ||
editor: source | ||
editor_options: | ||
chunk_output_type: console | ||
format: | ||
html: | ||
code-fold: true | ||
self-contained: true | ||
--- | ||
|
||
## Data Preparation | ||
|
||
```{r} | ||
#| message: false | ||
#| warning: false | ||
library(tidyverse) | ||
library(easystats) | ||
library(patchwork) | ||
library(ggside) | ||
``` | ||
|
||
|
||
```{r} | ||
#| code-fold: false | ||
dfsub <- read.csv("../data/data_participants.csv") | ||
df <- read.csv("../data/data_game.csv") | ||
``` | ||
|
||
## ISI | ||
|
||
```{r} | ||
#| code-fold: false | ||
m <- glmmTMB::glmmTMB(RT ~ poly(ISI, 2) + (poly(ISI, 2)|Participant), | ||
data = df) | ||
modelbased::estimate_relation(m, length=20) |> | ||
ggplot(aes(x = ISI, y = Predicted)) + | ||
geom_ribbon(aes(ymin = CI_low, ymax = CI_high), alpha = 0.2) + | ||
geom_line(data=modelbased::estimate_relation(m, length=20, include_random=TRUE), aes(color=Participant)) + | ||
geom_line(linewidth=1) + | ||
geom_hline(yintercept = 0.325, linetype = "dashed") + | ||
theme_minimal() + | ||
coord_cartesian(xlim = c(0, 4)) | ||
``` | ||
|
||
## Effect on Total Duration | ||
|
||
```{r} | ||
#| code-fold: false | ||
dat <- rbind( | ||
data.frame(ISI = seq(1, 4, length.out = 500), Type = "1-4"), | ||
data.frame(ISI = seq(1.5, 3.5, length.out = 500), Type = "1.5-3.5"), | ||
data.frame(ISI = seq(2, 3.25, length.out = 500), Type = "2-3.25") | ||
) | ||
dat$RT <- insight::get_predicted(m, dat) | ||
dat$Duration <- dat$RT + dat$ISI | ||
dat |> | ||
group_by(Type) |> | ||
summarise(Duration = sum(Duration)) |> | ||
ggplot(aes(x=Type, y=Duration)) + | ||
geom_line(aes(group=1)) + | ||
theme_minimal() | ||
``` |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,86 @@ | ||
using CSV | ||
using DataFrames | ||
using Turing | ||
using SequentialSamplingModels | ||
using StatsModels | ||
using StatsPlots | ||
using GLMakie | ||
using RCall | ||
|
||
|
||
# Predictions =============================================================================== | ||
|
||
cd(@__DIR__) # pwd() | ||
include("fun_datagrid.jl") | ||
include("fun_data_poly.jl") | ||
|
||
df = CSV.read("../data/data_game.csv", DataFrame) | ||
|
||
|
||
# https://cosmicmar.com/MuseInference.jl/latest/ | ||
# LBA model | ||
@model function model_lba(data; min_rt=minimum(data.rt), isi=nothing, participant=nothing) | ||
|
||
# Transform ISI into polynomials | ||
isi = data_poly(isi, 2; orthogonal=true) | ||
ppt = unique(participant) | ||
|
||
# Priors for coefficients | ||
drift_intercept ~ filldist(truncated(Normal(3, 5), 0.0, Inf), 1) | ||
drift_isi1 ~ filldist(Normal(0, 1), 1) | ||
drift_isi2 ~ filldist(Normal(0, 1), 1) | ||
|
||
# Prior for random intercepts (requires thoughtful specification) | ||
# Participant-level intercepts' SD | ||
drift_intercept_ppt_sd ~ truncated(Normal(0, 0.1), 0.0, Inf) | ||
# Participant-level intercepts | ||
drift_intercept_ppt ~ filldist( | ||
Normal(0, drift_intercept_ppt_sd), | ||
length(ppt) | ||
) | ||
|
||
σ ~ filldist(truncated(Normal(0, 1), 0.0, Inf), 1) | ||
A ~ truncated(Normal(0.4, 0.4), 0.0, Inf) | ||
k ~ truncated(Normal(0.2, 0.2), 0.0, Inf) | ||
τ ~ truncated(Normal(0.2, 0.05), 0.0, min_rt) | ||
|
||
for i in 1:length(data) | ||
drift = drift_intercept .+ drift_intercept_ppt[findfirst(s -> s == participant[i], ppt)] | ||
drift .+= drift_isi1 * isi[i, 1] | ||
drift .+= drift_isi2 * isi[i, 2] | ||
data[i] ~ LBA(drift, A, k, τ, σ) | ||
end | ||
end | ||
|
||
# Fit | ||
dat = [(choice=1, rt=df.RT[i]) for i in 1:nrow(df)] | ||
chain_lba = sample(model_lba(dat, min_rt=minimum(df.RT), isi=df.ISI, participant=df.Participant), NUTS(0.65, max_depth=8), 100) | ||
# StatsPlots.plot(chain_lba; size=(600, 2000)) | ||
# summarystats(chain_wald) | ||
|
||
|
||
|
||
# Predictions | ||
grid = datagrid(df.ISI) | ||
pred = predict(model_lba([(missing) for i in 1:length(grid)]; min_rt=minimum(df.RT), isi=grid), chain_lba) | ||
pred = Array(pred)[:, 2:2:end] | ||
# Remove extreme | ||
pred[pred.>1] .= NaN | ||
pred = DataFrame(hcat(grid, transpose(pred)), vcat(:ISI, [Symbol("iter_$i") for i in 1:500])) | ||
|
||
|
||
@rput pred | ||
|
||
R""" | ||
library(tidyverse) | ||
library(bayestestR) | ||
library(ggdist) | ||
pred <- reshape_iterations(pred) | ||
# head(pred) | ||
pred |> | ||
mutate(ISI = ISI) |> | ||
ggplot(aes(x = ISI, y = iter_value)) + | ||
stat_halfeye() + | ||
coord_cartesian(ylim = c(0.2, 0.6)) | ||
""" |
Oops, something went wrong.