-
Notifications
You must be signed in to change notification settings - Fork 1
/
entity_relation_extractor.py
391 lines (325 loc) · 16.5 KB
/
entity_relation_extractor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
from collections import defaultdict
import os
import random
import logging
import torch
import torch.nn as nn
import numpy as np
from transformers import BertTokenizer, AdamW, get_linear_schedule_with_warmup
from utils.argparse import ConfigurationParer
from utils.prediction_outputs import print_predictions
from utils.eval import eval_file
from inputs.vocabulary import Vocabulary
from inputs.fields.token_field import TokenField
from inputs.fields.raw_token_field import RawTokenField
from inputs.fields.char_token_field import CharTokenField
from inputs.fields.map_token_field import MapTokenField
from inputs.instance import Instance
from inputs.datasets.dataset import Dataset
from inputs.dataset_readers.ace_reader_for_bert import TextReaderForBert
from models.ent_models.joint_ent_model import JointEntModel
from models.ent_models.pipeline_ent_model import PipelineEntModel
from models.rel_models.context_rel_model import ConRelModel
from models.rel_models.ent_context_rel_model import EntConRelModel
from models.joint_models.joint_relation_extraction_model import JointREModel
from utils.nn_utils import get_n_trainable_parameters, load_weight_from_pretrained_model
logger = logging.getLogger(__name__)
def step(cfg, model, batch_inputs, device):
batch_inputs["tokens"] = torch.LongTensor(batch_inputs["tokens"])
batch_inputs["char_tokens"] = torch.LongTensor(batch_inputs["char_tokens"])
if cfg.entity_model == 'joint':
batch_inputs["entity_labels"] = torch.LongTensor(batch_inputs["entity_labels"])
else:
batch_inputs["entity_span_labels"] = torch.LongTensor(batch_inputs["entity_span_labels"])
batch_inputs["tokens_mask"] = torch.LongTensor(batch_inputs["tokens_mask"])
if cfg.embedding_model == 'bert':
batch_inputs["wordpiece_tokens"] = torch.LongTensor(batch_inputs["wordpiece_tokens"])
batch_inputs["wordpiece_tokens_index"] = torch.LongTensor(batch_inputs["wordpiece_tokens_index"])
if device > -1:
batch_inputs["tokens"] = batch_inputs["tokens"].cuda(device=device, non_blocking=True)
batch_inputs["char_tokens"] = batch_inputs["char_tokens"].cuda(device=device, non_blocking=True)
if cfg.entity_model == 'joint':
batch_inputs["entity_labels"] = batch_inputs["entity_labels"].cuda(device=device, non_blocking=True)
else:
batch_inputs["entity_span_labels"] = batch_inputs["entity_span_labels"].cuda(device=device,
non_blocking=True)
batch_inputs["tokens_mask"] = batch_inputs["tokens_mask"].cuda(device=device, non_blocking=True)
if cfg.embedding_model == 'bert':
batch_inputs["wordpiece_tokens"] = batch_inputs["wordpiece_tokens"].cuda(device=device, non_blocking=True)
batch_inputs["wordpiece_tokens_index"] = batch_inputs["wordpiece_tokens_index"].cuda(device=device,
non_blocking=True)
outputs = model(batch_inputs)
batch_outputs = []
for sent_idx in range(len(batch_inputs['tokens_lens'])):
sent_output = dict()
sent_output['tokens'] = batch_inputs['tokens'][sent_idx].cpu().numpy()
if cfg.entity_model == 'joint':
sent_output["sequence_labels"] = batch_inputs["entity_labels"][sent_idx].cpu().numpy()
else:
sent_output["sequence_labels"] = batch_inputs["entity_span_labels"][sent_idx].cpu().numpy()
sent_output['span2ent'] = batch_inputs['span2ent'][sent_idx]
sent_output['span2rel'] = batch_inputs['span2rel'][sent_idx]
sent_output['seq_len'] = batch_inputs['tokens_lens'][sent_idx]
sent_output["sequence_label_preds"] = outputs['sequence_label_preds'][sent_idx].cpu().numpy()
sent_output['all_ent_preds'] = outputs['all_ent_preds'][sent_idx]
sent_output['all_rel_preds'] = outputs['all_rel_preds'][sent_idx]
batch_outputs.append(sent_output)
return batch_outputs, outputs['ent_loss'], outputs['rel_loss']
def train(cfg, dataset, model):
logger.info("Training starting...")
for name, param in model.named_parameters():
logger.info("{!r}: size: {} requires_grad: {}.".format(name, param.size(), param.requires_grad))
logger.info("Trainable parameters size: {}.".format(get_n_trainable_parameters(model)))
parameters = [(name, param) for name, param in model.named_parameters() if param.requires_grad]
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
bert_layer_lr = {}
base_lr = cfg.learning_rate
for i in range(11, -1, -1):
bert_layer_lr['.' + str(i) + '.'] = base_lr
base_lr *= cfg.lr_decay_rate
optimizer_grouped_parameters = []
for name, param in parameters:
params = {'params': [param], 'lr': cfg.learning_rate}
if any(item in name for item in no_decay):
params['weight_decay_rate'] = 0.0
else:
params['weight_decay_rate'] = cfg.adam_weight_decay_rate
for bert_layer_name, lr in bert_layer_lr.items():
if bert_layer_name in name:
params['lr'] = lr
break
optimizer_grouped_parameters.append(params)
optimizer = AdamW(optimizer_grouped_parameters,
betas=(cfg.adam_beta1, cfg.adam_beta2),
lr=cfg.learning_rate,
eps=cfg.adam_epsilon,
weight_decay=cfg.adam_weight_decay_rate,
correct_bias=False)
total_train_steps = (dataset.get_dataset_size("train") + cfg.train_batch_size * cfg.gradient_accumulation_steps -
1) / (cfg.train_batch_size * cfg.gradient_accumulation_steps) * cfg.epochs
num_warmup_steps = int(cfg.warmup_rate * total_train_steps) + 1
scheduler = get_linear_schedule_with_warmup(optimizer,
num_warmup_steps=num_warmup_steps,
num_training_steps=total_train_steps)
last_epoch = 1
batch_id = 0
best_f1 = 0.0
early_stop_cnt = 0
accumulation_steps = 0
model.zero_grad()
if cfg.embedding_model == 'word_char':
sort_key = "tokens"
else:
sort_key = None
for epoch, batch in dataset.get_batch('train', cfg.train_batch_size, sort_key):
if last_epoch != epoch or (batch_id != 0 and batch_id % cfg.validate_every == 0):
if accumulation_steps != 0:
optimizer.step()
scheduler.step()
model.zero_grad()
if epoch > cfg.pretrain_epochs:
dev_f1 = dev(cfg, dataset, model)
if dev_f1 > best_f1:
early_stop_cnt = 0
best_f1 = dev_f1
logger.info("Save model...")
# torch.save(
# model.state_dict(),
# open(
# os.path.join(
# cfg.train_model_dir,
# "epoch_{}_batch_{}_{:04.2f}".format(last_epoch, batch_id,
# 100 * best_f1)),
# "wb",
# ),
# )
torch.save(model.state_dict(), open(cfg.best_model_path, "wb"))
elif last_epoch != epoch:
early_stop_cnt += 1
if early_stop_cnt > cfg.early_stop:
logger.info("Early Stop: best F1 score: {:6.2f}%".format(100 * best_f1))
break
if epoch > cfg.epochs:
torch.save(model.state_dict(), open(cfg.last_model_path, "wb"))
logger.info("Training Stop: best F1 score: {:6.2f}%".format(100 * best_f1))
break
if last_epoch != epoch:
batch_id = 0
last_epoch = epoch
model.train()
batch_id += len(batch['tokens_lens'])
batch['epoch'] = (epoch - 1)
_, ent_loss, rel_loss = step(cfg, model, batch, cfg.device)
loss = ent_loss + rel_loss
if batch_id % cfg.logging_steps == 0:
logger.info("Epoch: {} Batch: {} Loss: {} (Ent_loss: {} Rel_loss: {})".format(
epoch, batch_id, loss.item(), ent_loss.item(), rel_loss.item()))
if cfg.gradient_accumulation_steps > 1:
loss /= cfg.gradient_accumulation_steps
loss.backward()
accumulation_steps = (accumulation_steps + 1) % cfg.gradient_accumulation_steps
if accumulation_steps == 0:
nn.utils.clip_grad_norm_(parameters=model.parameters(), max_norm=cfg.gradient_clipping)
optimizer.step()
scheduler.step()
model.zero_grad()
state_dict = torch.load(open(cfg.best_model_path, "rb"), map_location=lambda storage, loc: storage)
model.load_state_dict(state_dict)
test(cfg, dataset, model)
def dev(cfg, dataset, model):
logger.info("Validate starting...")
model.zero_grad()
all_outputs = []
all_ent_loss = []
all_rel_loss = []
if cfg.embedding_model == 'word_char':
sort_key = "tokens"
else:
sort_key = None
for _, batch in dataset.get_batch('dev', cfg.test_batch_size, sort_key):
model.eval()
with torch.no_grad():
batch_outpus, ent_loss, rel_loss = step(cfg, model, batch, cfg.device)
all_outputs.extend(batch_outpus)
all_ent_loss.append(ent_loss.item())
all_rel_loss.append(rel_loss.item())
mean_ent_loss = np.mean(all_ent_loss)
mean_rel_loss = np.mean(all_rel_loss)
mean_loss = mean_ent_loss + mean_rel_loss
logger.info("Validate Avgloss: {} (Ent_loss: {} Rel_loss: {})".format(mean_loss, mean_ent_loss, mean_rel_loss))
dev_output_file = os.path.join(cfg.save_dir, "dev.output")
print_predictions(all_outputs, dev_output_file, dataset.vocab,
'entity_labels' if cfg.entity_model == 'joint' else 'entity_span_labels')
token_score, ent_score, rel_score, exact_rel_score = eval_file(dev_output_file)
return ent_score + exact_rel_score
def test(cfg, dataset, model):
logger.info("Testing starting...")
model.zero_grad()
all_outputs = []
if cfg.embedding_model == 'word_char':
sort_key = "tokens"
else:
sort_key = None
for _, batch in dataset.get_batch('test', cfg.test_batch_size, sort_key):
model.eval()
with torch.no_grad():
batch_outpus, ent_loss, rel_loss = step(cfg, model, batch, cfg.device)
all_outputs.extend(batch_outpus)
test_output_file = os.path.join(cfg.save_dir, "test.output")
print_predictions(all_outputs, test_output_file, dataset.vocab,
'entity_labels' if cfg.entity_model == 'joint' else 'entity_span_labels')
eval_file(test_output_file)
def main():
# config settings
parser = ConfigurationParer()
parser.add_save_cfgs()
parser.add_data_cfgs()
parser.add_model_cfgs()
parser.add_optimizer_cfgs()
parser.add_run_cfgs()
cfg = parser.parse_args()
logger.info(parser.format_values())
# set random seed
random.seed(cfg.seed)
torch.manual_seed(cfg.seed)
np.random.seed(cfg.seed)
if cfg.device > -1 and not torch.cuda.is_available():
logger.error('config conflicts: no gpu available, use cpu for training.')
cfg.device = -1
if cfg.device > -1:
torch.cuda.manual_seed(cfg.seed)
# define fields
tokens = TokenField("tokens", "tokens", "tokens", True)
raw_tokens = RawTokenField("raw_tokens", "tokens")
char_tokens = CharTokenField("char_tokens", "char_tokens", "tokens", True)
entity_span_labels = TokenField("entity_span_labels", "entity_span_labels", "entity_span_labels", True)
entity_labels = TokenField("entity_labels", "entity_labels", "entity_labels", True)
span2ent = MapTokenField("span2ent", "span2ent", "span2ent", True)
span2rel = MapTokenField("span2rel", "span2rel", "span2rel", True)
wordpiece_tokens = TokenField("wordpiece_tokens", "wordpiece", "wordpiece_tokens", False)
wordpiece_tokens_index = RawTokenField("wordpiece_tokens_index", "wordpiece_tokens_index")
fields = [tokens, raw_tokens, char_tokens, entity_span_labels, entity_labels, span2ent, span2rel]
if cfg.embedding_model == 'bert':
fields.extend([wordpiece_tokens, wordpiece_tokens_index])
# define counter and vocabulary
counter = defaultdict(lambda: defaultdict(int))
vocab = Vocabulary()
# define instance
train_instance = Instance(fields)
dev_instance = Instance(fields)
test_instance = Instance(fields)
# define dataset reader
max_len = {'tokens': cfg.max_sent_len, 'wordpiece_tokens': cfg.max_wordpiece_len}
tokenizers = {}
pretrained_vocab = {}
if cfg.embedding_model == 'bert':
bert_tokenizer = BertTokenizer.from_pretrained(cfg.bert_model_name, do_lower_case=cfg.low_case)
logger.info("Load bert tokenizer successfully.")
tokenizers['wordpiece'] = bert_tokenizer.tokenize
pretrained_vocab['wordpiece'] = bert_tokenizer.vocab
ace_train_reader = TextReaderForBert(cfg.train_file, False, cfg.low_case, max_len, tokenizers, cfg.entity_schema)
ace_dev_reader = TextReaderForBert(cfg.dev_file, False, cfg.low_case, max_len, tokenizers, cfg.entity_schema)
ace_test_reader = TextReaderForBert(cfg.test_file, False, cfg.low_case, max_len, tokenizers, cfg.entity_schema)
# define dataset
ace_dataset = Dataset("ACE2005")
ace_dataset.add_instance("train", train_instance, ace_train_reader, is_count=True, is_train=True)
ace_dataset.add_instance("dev", dev_instance, ace_dev_reader, is_count=True, is_train=False)
ace_dataset.add_instance("test", test_instance, ace_test_reader, is_count=True, is_train=False)
min_count = {
"tokens": 1,
"char_tokens": 1,
"entity_span_labels": 1,
"entity_labels": 1,
"span2ent": 1,
"span2rel": 1,
}
no_pad_namespace = ["raw_tokens", "span2ent", "span2rel"]
no_unk_namespace = [
"raw_tokens", "entity_span_labels", "entity_labels", "span2ent", "span2rel", "wordpiece_tokens_index"
]
tokens_to_add = {"span2ent": ["None"], "span2rel": ["None"]}
contain_pad_namespace = {"wordpiece": "[PAD]"}
contain_unk_namespace = {"wordpiece": "[UNK]"}
ace_dataset.build_dataset(vocab=vocab,
counter=counter,
min_count=min_count,
pretrained_vocab=pretrained_vocab,
no_pad_namespace=no_pad_namespace,
no_unk_namespace=no_unk_namespace,
contain_pad_namespace=contain_pad_namespace,
contain_unk_namespace=contain_unk_namespace,
tokens_to_add=tokens_to_add)
if cfg.test:
vocab = Vocabulary.load(cfg.vocabulary_file)
else:
vocab.save(cfg.vocabulary_file)
# entity model
if cfg.entity_model == 'joint':
ent_model = JointEntModel(cfg, vocab)
rel_model = EntConRelModel(cfg, vocab, ent_model.get_hidden_size())
else:
ent_model = PipelineEntModel(cfg, vocab)
rel_model = ConRelModel(cfg, vocab, ent_model.get_hidden_size(), ent_model.get_ent_span_feature_size())
# joint model
model = JointREModel(cfg=cfg, ent_model=ent_model, rel_model=rel_model, vocab=vocab)
# continue training
if cfg.continue_training and os.path.exists(cfg.last_model_path):
state_dict = torch.load(open(cfg.last_model_path, 'rb'), map_location=lambda storage, loc: storage)
model.load_state_dict(state_dict)
logger.info("Loading last training model {} successfully.".format(cfg.last_model_path))
if cfg.test and os.path.exists(cfg.best_model_path):
state_dict = torch.load(open(cfg.best_model_path, 'rb'), map_location=lambda storage, loc: storage)
model.load_state_dict(state_dict)
logger.info("Loading best training model {} successfully for testing.".format(cfg.best_model_path))
if cfg.fine_tune and os.path.exists(cfg.pretrained_model_path):
state_dict = torch.load(open(cfg.pretrained_model_path, 'rb'), map_location=lambda storage, loc: storage)
load_weight_from_pretrained_model(model, state_dict)
logger.info("Loading pretrained model {} successfully for fine-tuning.".format(cfg.pretrained_model_path))
if cfg.device > -1:
model.cuda(device=cfg.device)
if cfg.test:
test(cfg, ace_dataset, model)
else:
train(cfg, ace_dataset, model)
if __name__ == '__main__':
main()