-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathIndexedProduct.agda
56 lines (44 loc) · 2.4 KB
/
IndexedProduct.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
module Mugen.Algebra.Displacement.Instances.IndexedProduct where
open import Order.Instances.Pointwise
open import Mugen.Prelude
open import Mugen.Order.Instances.Pointwise
open import Mugen.Algebra.Displacement
open import Mugen.Algebra.OrderedMonoid
import Mugen.Order.Reasoning as Reasoning
private variable
o o' r r' : Level
--------------------------------------------------------------------------------
-- Product of Indexed Displacements
-- POPL 2023 Section 3.3.5 discussed the special case where I = Nat and 𝒟 is a constant family
--
-- The product of indexed displacement algebras consists
-- of functions '(i : I) → 𝒟 i'. Multiplication is performed pointwise,
-- and ordering is given by 'f ≤ g' if '∀ i. f i ≤ g i'.
--------------------------------------------------------------------------------
-- Displacement Algebra
module _ (I : Type o) {A : I → Poset o' r'} (𝒟 : (i : I) → Displacement-on (A i)) where
private
module 𝒟 (i : I) = Displacement-on (𝒟 i)
IndexedProduct : Displacement-on (Pointwise I A)
IndexedProduct = to-displacement-on mk where
mk : make-displacement (Pointwise I A)
mk .make-displacement.ε = 𝒟.ε
mk .make-displacement._⊗_ = pointwise-map₂ 𝒟._⊗_
mk .make-displacement.idl = funext λ i → 𝒟.idl i
mk .make-displacement.idr = funext λ i → 𝒟.idr i
mk .make-displacement.associative = funext λ i → 𝒟.associative i
mk .make-displacement.left-strict-invariant g≤h .fst i = 𝒟.left-invariant i (g≤h i)
mk .make-displacement.left-strict-invariant g≤h .snd fg=fh =
funext λ i → 𝒟.injectiver-on-related i (g≤h i) (happly fg=fh i)
--------------------------------------------------------------------------------
-- Additional properties
module _ (I : Type o) {A : I → Poset o' r'} (𝒟 : (i : I) → Displacement-on (A i)) where
private module A = Reasoning (Pointwise I A)
private module 𝒟 = Displacement-on (IndexedProduct I 𝒟)
--------------------------------------------------------------------------------
-- Ordered Monoid
IndexedProduct-has-ordered-monoid
: (∀ i → has-ordered-monoid (𝒟 i)) → has-ordered-monoid (IndexedProduct I 𝒟)
IndexedProduct-has-ordered-monoid 𝒟-om =
let open module M (i : I) = is-ordered-monoid (𝒟-om i) in
right-invariant→has-ordered-monoid (IndexedProduct I 𝒟) λ f≤g i → right-invariant i (f≤g i)