-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathNat.agda
52 lines (44 loc) · 2 KB
/
Nat.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
module Mugen.Algebra.Displacement.Instances.Nat where
open import Data.Nat
open import Data.Int
open import Mugen.Prelude
open import Mugen.Algebra.Displacement
open import Mugen.Algebra.Displacement.Subalgebra
open import Mugen.Algebra.Displacement.Instances.Int
open import Mugen.Order.StrictOrder
open import Mugen.Order.Instances.Nat
open import Mugen.Order.Instances.Int
--------------------------------------------------------------------------------
-- Natural Numbers
-- Section 3.3.1
--
-- This is the evident displacement algebra on natural numbers.
-- All of the interesting algebraic/order theoretic properties are proven in
-- 'Mugen.Data.Nat'; this module is just bundling together those proofs.
Nat-displacement : Displacement-on Nat-poset
Nat-displacement = to-displacement-on mk where
mk : make-displacement Nat-poset
mk .make-displacement.ε = 0
mk .make-displacement._⊗_ = _+_
mk .make-displacement.idl = refl
mk .make-displacement.idr = +-zeror _
mk .make-displacement.associative {x} {y} {z} = +-associative x y z
mk .make-displacement.left-strict-invariant p =
+-preserves-≤l _ _ _ p , +-inj _ _ _
--------------------------------------------------------------------------------
-- Ordered Monoid
Nat-has-ordered-monoid : has-ordered-monoid Nat-displacement
Nat-has-ordered-monoid =
right-invariant→has-ordered-monoid Nat-displacement λ {x} {y} {z} →
+-preserves-≤r x y z
--------------------------------------------------------------------------------
-- Subdisplacement
Nat→Int-is-full-subdisplacement
: is-full-subdisplacement Nat-displacement Int-displacement Nat→Int
Nat→Int-is-full-subdisplacement = to-full-subdisplacement mk where
mk : make-full-subdisplacement Nat-displacement Int-displacement Nat→Int
mk .make-full-subdisplacement.injective = pos-injective
mk .make-full-subdisplacement.full (pos≤pos p) = p
mk .make-full-subdisplacement.pres-ε = refl
mk .make-full-subdisplacement.pres-⊗ = refl
mk .make-full-subdisplacement.pres-≤ p = pos≤pos p