-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathPrefix.agda
42 lines (35 loc) · 1.63 KB
/
Prefix.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
module Mugen.Algebra.Displacement.Instances.Prefix where
open import Algebra.Magma
open import Algebra.Monoid
open import Algebra.Semigroup
open import Mugen.Prelude
open import Mugen.Data.List
open import Mugen.Order.StrictOrder
open import Mugen.Order.Lattice
open import Mugen.Order.Instances.Prefix renaming (Prefix to Prefix-poset)
open import Mugen.Algebra.Displacement
private variable
o r : Level
--------------------------------------------------------------------------------
-- Prefix Displacements
-- Section 3.3.6
--
-- Given a set 'A', we can define a displacement algebra on 'List A',
-- where 'xs ≤ ys' if 'xs' is a prefix of 'ys'.
private
--------------------------------------------------------------------------------
-- Left Invariance
++-left-invariant : ∀ {ℓ} {A : Type ℓ} (xs ys zs : List A) → Prefix[ ys ≤ zs ] → Prefix[ (xs ++ ys) ≤ (xs ++ zs) ]
++-left-invariant [] ys zs ys≤zs = ys≤zs
++-left-invariant (x ∷ xs) ys zs ys<zs = refl pre∷ (++-left-invariant xs ys zs ys<zs)
-- Most of the order theoretic properties come from 'Mugen.Order.Instances.Prefix'.
Prefix : ∀ (A : Set o) → Displacement-on (Prefix-poset A)
Prefix A = to-displacement-on displacement where
displacement : make-displacement (Prefix-poset A)
displacement .make-displacement.ε = []
displacement .make-displacement._⊗_ = _++_
displacement .make-displacement.idl = ++-idl _
displacement .make-displacement.idr = ++-idr _
displacement .make-displacement.associative {xs} {ys} {zs} = sym $ ++-assoc xs ys zs
displacement .make-displacement.left-strict-invariant p =
++-left-invariant _ _ _ p , ++-injr _ _ _