-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathMcBride.agda
140 lines (120 loc) · 6.07 KB
/
McBride.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
module Mugen.Cat.HierarchyTheory.McBride where
open import Cat.Diagram.Monad
open import Cat.Instances.Monads
open import Cat.Displayed.Total
open import Mugen.Prelude
open import Mugen.Algebra.Displacement
open import Mugen.Order.Instances.LeftInvariantRightCentered
open import Mugen.Order.StrictOrder
open import Mugen.Cat.Instances.StrictOrders
open import Mugen.Cat.Instances.Displacements
open import Mugen.Cat.HierarchyTheory
import Mugen.Order.Reasoning as Reasoning
private variable
o r : Level
--------------------------------------------------------------------------------
-- The McBride Hierarchy Theory
-- Section 3.1
--
-- A construction of the McBride Monad for any displacement algebra '𝒟'
module _ {A : Poset o r} (𝒟 : Displacement-on A) where
open Functor
open _=>_
open Strictly-monotone
open Reasoning A
open Displacement-on 𝒟
McBride : Hierarchy-theory o (o ⊔ r)
McBride = ht where
M : Functor (Strict-orders o (o ⊔ r)) (Strict-orders o (o ⊔ r))
M .F₀ L = L ⋉[ ε ] A
M .F₁ f .hom (l , d) = (f .hom l) , d
M .F₁ {L} {N} f .pres-≤[]-equal {l1 , d1} {l2 , d2} =
let module N⋉A = Reasoning (N ⋉[ ε ] A) in
∥-∥-rec (N⋉A.≤[]-is-hlevel 0 $ Poset.Ob-is-set (L ⋉[ ε ] A) _ _) λ where
(biased l1=l2 d1≤d2) → inc (biased (ap (f .hom) l1=l2) d1≤d2) , λ p → ap₂ _,_ l1=l2 (ap snd p)
(centred l1≤l2 d1≤ε ε≤d2) → inc (centred (pres-≤ f l1≤l2) d1≤ε ε≤d2) , λ p →
ap₂ _,_ (injective-on-related f l1≤l2 (ap fst p)) (ap snd p)
M .F-id = trivial!
M .F-∘ f g = trivial!
unit : Id => M
unit .η L .hom l = l , ε
unit .η L .pres-≤[]-equal l1≤l2 = inc (centred l1≤l2 ≤-refl ≤-refl) , ap fst
unit .is-natural L L' f = trivial!
mult : M F∘ M => M
mult .η L .hom ((l , x) , y) = l , (x ⊗ y)
mult .η L .pres-≤[]-equal {(a1 , d1) , e1} {(a2 , d2) , e2} =
let module L⋉A = Reasoning (L ⋉[ ε ] A) in
∥-∥-rec (L⋉A.≤[]-is-hlevel 0 $ Poset.Ob-is-set (M .F₀ (M .F₀ L)) _ _) lemma where
lemma : (M .F₀ L) ⋉[ ε ] A [ ((a1 , d1) , e1) raw≤ ((a2 , d2) , e2) ]
→ (L ⋉[ ε ] A [ (a1 , (d1 ⊗ e1)) ≤ (a2 , (d2 ⊗ e2)) ])
× ((a1 , (d1 ⊗ e1)) ≡ (a2 , (d2 ⊗ e2)) → ((a1 , d1) , e1) ≡ ((a2 , d2) , e2))
lemma (biased ad1=ad2 e1≤e2) =
inc (biased (ap fst ad1=ad2) (=+≤→≤ (ap (_⊗ e1) (ap snd ad1=ad2)) (left-invariant e1≤e2))) ,
λ p i → ad1=ad2 i , injectiver-on-related e1≤e2 (ap snd p ∙ ap (_⊗ e2) (sym $ ap snd ad1=ad2)) i
lemma (centred ad1≤ad2 e1≤ε ε≤e2) = ∥-∥-map lemma₂ ad1≤ad2 , lemma₃ where
d1⊗e1≤d1 : (d1 ⊗ e1) ≤ d1
d1⊗e1≤d1 = ≤+=→≤ (left-invariant e1≤ε) idr
d2≤d2⊗e2 : d2 ≤ (d2 ⊗ e2)
d2≤d2⊗e2 = =+≤→≤ (sym idr) (left-invariant ε≤e2)
lemma₂ : L ⋉[ ε ] A [ (a1 , d1) raw≤ (a2 , d2) ]
→ L ⋉[ ε ] A [ (a1 , (d1 ⊗ e1)) raw≤ (a2 , (d2 ⊗ e2)) ]
lemma₂ (biased a1=a2 d1≤d2) = biased a1=a2 (≤-trans d1⊗e1≤d1 (≤-trans d1≤d2 d2≤d2⊗e2))
lemma₂ (centred a1≤a2 d1≤ε ε≤d2) = centred a1≤a2 (≤-trans d1⊗e1≤d1 d1≤ε) (≤-trans ε≤d2 d2≤d2⊗e2)
lemma₃ : (a1 , (d1 ⊗ e1)) ≡ (a2 , (d2 ⊗ e2)) → ((a1 , d1) , e1) ≡ ((a2 , d2) , e2)
lemma₃ p i = (a1=a2 i , d1=d2 i) , e1=e2 i where
a1=a2 : a1 ≡ a2
a1=a2 = ap fst p
d2≤d1 : d2 ≤ d1
d2≤d1 = begin-≤
d2 ≤⟨ d2≤d2⊗e2 ⟩
d2 ⊗ e2 ≐⟨ sym $ ap snd p ⟩
d1 ⊗ e1 ≤⟨ d1⊗e1≤d1 ⟩
d1 ≤∎
d1=d2 : d1 ≡ d2
d1=d2 = ≤-antisym (⋉-snd-invariant ad1≤ad2) d2≤d1
e1=e2 : e1 ≡ e2
e1=e2 = injectiver-on-related (≤-trans e1≤ε ε≤e2) $ ap snd p ∙ ap (_⊗ e2) (sym d1=d2)
mult .is-natural L L' f = trivial!
ht : Hierarchy-theory o (o ⊔ r)
ht .Monad.M = M
ht .Monad.unit = unit
ht .Monad.mult = mult
ht .Monad.left-ident = ext λ α d → (refl , idl {d})
ht .Monad.right-ident = ext λ α d → (refl , idr {d})
ht .Monad.mult-assoc = ext λ α d1 d2 d3 → (refl , sym (associative {d1} {d2} {d3}))
--------------------------------------------------------------------------------
-- The Additional Functoriality of McBride Hierarchy Theory
--
-- The McBride monad is functorial in the parameter displacement.
module _ where
open Functor
open _=>_
open Monad-hom
open Total-hom
open Strictly-monotone
open Displacement-on
open is-displacement-hom
McBride-functor : Functor (Displacements o r) (Hierarchy-theories o (o ⊔ r))
McBride-functor .F₀ (_ , 𝒟) = McBride 𝒟
McBride-functor .F₁ σ .nat .η L .hom (l , d) = l , σ # d
McBride-functor .F₁ {A , 𝒟} {B , ℰ} σ .nat .η L .pres-≤[]-equal {l1 , d1} {l2 , d2} =
let module A = Reasoning A
module B = Reasoning B
module σ = Strictly-monotone (σ .hom)
module L⋉A = Reasoning (L ⋉[ 𝒟 .ε ] A)
module L⋉B = Reasoning (L ⋉[ ℰ .ε ] B)
in
∥-∥-rec (L⋉B.≤[]-is-hlevel 0 $ L⋉A.Ob-is-set _ _) λ where
(biased l1=l2 d1≤d2) →
inc (biased l1=l2 (σ.pres-≤ d1≤d2)) ,
λ p → ap₂ _,_ (ap fst p) (σ.injective-on-related d1≤d2 $ ap snd p)
(centred l1≤l2 d1≤ε ε≤d2) →
inc (centred l1≤l2
(B.≤+=→≤ (σ.pres-≤ d1≤ε) (σ .preserves .pres-ε))
(B.=+≤→≤ (sym $ σ .preserves .pres-ε) (σ.pres-≤ ε≤d2))) ,
λ p → ap₂ _,_ (ap fst p) (σ.injective-on-related (A.≤-trans d1≤ε ε≤d2) $ ap snd p)
McBride-functor .F₁ σ .nat .is-natural L N f = trivial!
McBride-functor .F₁ σ .pres-unit = ext λ L l → refl , σ .preserves .pres-ε
McBride-functor .F₁ σ .pres-mult = ext λ L l d1 d2 → refl , σ .preserves .pres-⊗
McBride-functor .F-id = trivial!
McBride-functor .F-∘ f g = trivial!