Skip to content

Latest commit

 

History

History
108 lines (87 loc) · 3.36 KB

README.md

File metadata and controls

108 lines (87 loc) · 3.36 KB

Description

Find the contiguous subarray within an array (containing at least one number) which has the largest sum.

For example, given the array [-2,1,-3,4,-1,2,1,-5,4],

the contiguous subarray [4,-1,2,1] has the largest sum = 6.

More practice:

If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.

Tags: Array, Divide and Conquer, Dynamic Programming

思路 0

题意是求数组中子数组的最大和,这种最优问题一般第一时间想到的就是动态规划,我们可以这样想,当部分序列和大于零的话就一直加下一个元素即可,并和当前最大值进行比较,如果出现部分序列小于零的情况,那肯定就是从当前元素算起。其转移方程就是 dp[i] = nums[i] + (dp[i - 1] > 0 ? dp[i - 1] : 0);,由于我们不需要保留 dp 状态,故可以优化空间复杂度为 1,即 dp = nums[i] + (dp > 0 ? dp : 0);

Java:

class Solution {
    public int maxSubArray(int[] nums) {
        int len = nums.length, dp = nums[0], max = dp;
        for (int i = 1; i < len; ++i) {
            dp = nums[i] + (dp > 0 ? dp : 0);
            if (dp > max) max = dp;
        }
        return max;
    }
}

kotlin(232ms/93.55%):

class Solution {
    fun maxSubArray(nums: IntArray): Int {
        val len = nums.size
        var max = nums[0]
        var dp = nums[0]
        for (i in 1 until len) {
            dp = Math.max(dp + nums[i], nums[i])
            max = Math.max(max, dp)
        }
        return max
    }
}

JavaScript:

var maxSubArray = function(nums) {
	var max = nums[0]
    var sum = 0
	for (let i = 0; i < nums.length; i++) {
		for (let j = i;j < nums.length; j++){
			sum = sum + nums[j]
			if (sum >= max) {
				max = sum
			}
		}
		sum = 0
	}
	return max
};

思路 1

题目也给了我们另一种思路,就是分治,所谓分治就是把问题分割成更小的,最后再合并即可,我们把 nums 一分为二先,那么就有两种情况,一种最大序列包括中间的值,一种就是不包括,也就是在左边或者右边;当最大序列在中间的时候那我们就把它两侧的最大和算出即可;当在两侧的话就继续分治即可。

Java:

class Solution {
    public int maxSubArray(int[] nums) {
        return helper(nums, 0, nums.length - 1);
    }

    private int helper(int[] nums, int left, int right) {
        if (left >= right) return nums[left];
        int mid = (left + right) >> 1;
        int leftAns = helper(nums, left, mid);
        int rightAns = helper(nums, mid + 1, right);
        int leftMax = nums[mid], rightMax = nums[mid + 1];
        int temp = 0;
        for (int i = mid; i >= left; --i) {
            temp += nums[i];
            if (temp > leftMax) leftMax = temp;
        }
        temp = 0;
        for (int i = mid + 1; i <= right; ++i) {
            temp += nums[i];
            if (temp > rightMax) rightMax = temp;
        }
        return Math.max(Math.max(leftAns, rightAns), leftMax + rightMax);
    }
}

结语

如果你同我们一样热爱数据结构、算法、LeetCode,可以关注我们 GitHub 上的 LeetCode 题解:LeetCode-Solution