-
Notifications
You must be signed in to change notification settings - Fork 4
/
Cox_Galois_Chapter12.tex
1803 lines (1470 loc) · 102 KB
/
Cox_Galois_Chapter12.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
%&LaTeX
\documentclass[11pt,a4paper]{article}
\usepackage[frenchb,english]{babel}
\usepackage[applemac]{inputenc}
\usepackage[OT1]{fontenc}
\usepackage[]{graphicx}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amsthm}
\usepackage{amssymb}
\usepackage{tikz}
%\input{8bitdefs}
% marges
\topmargin 10pt
\headsep 10pt
\headheight 10pt
\marginparwidth 30pt
\oddsidemargin 40pt
\evensidemargin 40pt
\footskip 30pt
\textheight 670pt
\textwidth 420pt
\def\imp{\Rightarrow}
\def\gcro{\mbox{[\hspace{-.15em}[}}% intervalles d'entiers
\def\dcro{\mbox{]\hspace{-.15em}]}}
\newcommand{\be} {\begin{enumerate}}
\newcommand{\ee} {\end{enumerate}}
\newcommand{\deb}{\begin{eqnarray*}}
\newcommand{\fin}{\end{eqnarray*}}
\newcommand{\ssi} {si et seulement si }
\newcommand{\D}{\mathrm{d}}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\C}{\mathbb{C}}
\newcommand{\F}{\mathbb{F}}
\newcommand{\U}{\mathbb{U}}
\newcommand{\re}{\,\mathrm{Re}\,}
\newcommand{\im}{\,\mathrm{Im}\,}
\newcommand{\ord}{\mathrm{ord}}
\newcommand{\Gal}{\mathrm{Gal}}
\newcommand{\legendre}[2]{\genfrac{(}{)}{}{}{#1}{#2}}
\title{Solutions to David A.Cox "Galois Theory''}
\refstepcounter{section} \refstepcounter{section} \refstepcounter{section} \refstepcounter{section}
\refstepcounter{section}\refstepcounter{section}\refstepcounter{section}\refstepcounter{section}
\refstepcounter{section}\refstepcounter{section}\refstepcounter{section}
\begin{document}
\section{Chapter 12 : LAGRANGE, GALOIS, AND KRONECKER}
\subsection{LAGRANGE}
\paragraph{Ex. 12.1.1}
{\it Let $\theta(x)$ be the resolvent polynomial defined in (12.3). Use the second bullet following (12.1) to show that $\theta(x) \in K[x]$.
}
\begin{proof} Let $\sigma$ be any permutation of $S_n$, and
$$\theta(x) = \prod_{i=1}^r (x-\varphi_i),$$
where $\varphi_1 = \varphi, \varphi_2,\ldots \varphi_r$ are the {\it distinct} conjugates of $\varphi$:
$$A := \{\tau \cdot \varphi\, | \, \tau \in S_n\} = \{\varphi_1,\ldots,\varphi_r\}.$$
As in the proof of Theorem 7.1.1, we first show that $\sigma$ permute the $\varphi_i$.
If $\varphi_i \in A$, then $\varphi_i = \tau \cdot \varphi$ for some $\tau \in S_n$. Therefore
$$\sigma \cdot \varphi_i = \sigma \cdot (\tau \varphi) = (\sigma \tau) \cdot \varphi.$$
Since $\sigma' = \sigma \tau \in S_n$, $\sigma' \cdot \varphi = (\sigma \tau) \cdot \varphi \in A$, therefore
$$\{\sigma \cdot \varphi_1,\ldots, \sigma \cdot \varphi_r\} \subset \{\varphi_1,\ldots,\varphi_r\}.$$
Since the map $\psi \mapsto \sigma \cdot \psi$ is injective, the elements $\sigma \cdot \varphi_i$ are distinct, and $A$ is finite, thus we can conclude that
$$\{\sigma \cdot \varphi_1,\ldots, \sigma \cdot \varphi_r\} = \{\varphi_1,\ldots,\varphi_r\}.$$
Hence the exists some $\tau \in S_r$ such that,
$$\sigma \cdot \varphi_i =\varphi_{\tau(i)},\quad 1\leq i \leq r.$$
\begin{align*}
\sigma \cdot \theta(x) &= \sigma \cdot \prod_{i=1}^r (x-\varphi_i)\\
&= \prod_{i=1}^r \sigma \cdot (x-\varphi_i)\\
&= \prod_{i=1}^r (x- \sigma \cdot \varphi_i)\\
&= \prod_{i=1}^r (x-\varphi_{\tau(i)})\\
&= \prod_{j=1}^r (x-\varphi_j) \qquad (j = \tau(i))\\
&=\theta(x).
\end{align*}
Since $\sigma \cdot \theta(x) = \theta(x)$ for all $\sigma \in S_n$, the coefficients of $\theta$ are in $K$ by theorem 2.2.7, so $\theta(x) \in K[x]$.
\end{proof}
\paragraph{Ex. 12.1.2}
{\it Work out the details of Example 12.1.2.
}
\begin{proof}
Let $F = \Q(\omega)$, $z_1 = \frac{1}{3}(x_1+\omega^2 x_2+\omega x_3) \in K=\Q(\omega)(x_1,x_2,x_3)$, and $\theta(z) \in \Q(\omega)[z]$ be the resolvent polynomial of $z_1$.
The orbit of $z_1$ under the action of $S_n$ is composed of
\begin{align*}
z_1& =\frac{1}{3}(x_1+\omega^2 x_2+\omega x_3),\\
(2,3)\cdot z_1 &= \frac{1}{3}(x_1+\omega^2 x_3+\omega x_2) = \frac{1}{3}(x_1+\omega x_2+\omega^2 x_3)=z_2\\
(1,3) \cdot z_1 &=\frac{1}{3}(x_3+\omega^2 x_2+\omega x_1) = \frac{1}{3}(\omega x_1+\omega^2 x_2+ x_3) = \omega z_2\\
(1,2) \cdot z_1 &=\frac{1}{3}(x_2+\omega^2 x_1+\omega x_3) = \frac{1}{3}(\omega^2 x_1+ x_2+ \omega x_3) = \omega^2 z_2\\
(1,2,3)\cdot z_1 &= \frac{1}{3}(x_2+\omega^2 x_3+\omega x_1) = \frac{1}{3}(\omega x_1+ x_2+\omega^2 x_3) = \omega z_1\\
(1,3,2)\cdot z_1 &= \frac{1}{3}(x_3+\omega^2 x_1+\omega x_2) = \frac{1}{3}(\omega^2 x_1+ \omega x_2+ x_3) = \omega^2 z_1.\\
\end{align*}
So the orbit of $z_1$ is
$${\cal O}_{z_1} = \{z_1,z_2,\omega z_1,\omega z_2,\omega^2 z_1,\omega^2 z_2\},$$
and these six elements are distinct in $F(x_1,x_2,x_3)$.
Moreover,
\begin{align*}
\theta(z) &= (z-z_1)(z-z_2)(z-\omega z_1)(z-\omega z_2) (z- \omega^2 z_1)(z-\omega^2 z_2)\\
&=(z^3-z_1^3)(z^3 - z_2^3)\\
&=z^6 - (z_1^3+z_2^3)z^3 +(z_1z_2)^3
\end{align*}
and
\begin{align*}
z_1z_2 &= \frac{1}{9}(x_1+\omega^2 x_2+\omega x_3)(x_1+\omega x_2+\omega^2 x_3)\\
&= \frac{1}{9}(x_1^2+x_2^2+x_3^2-x_1x_2-x_2x_3-x_1x_3)\\
&= \frac{1}{9}[(x_1+x_2+x_3)^2 - 3(x_1x_2+x_2x_3+x_1x_3)]\\
&=\frac{1}{9}(\sigma_1^2 - 3 \sigma_2),
\end{align*}
so
$$z_1^3z_2^3 = \frac{1}{3^6}(\sigma_1^2-3\sigma_1)^3 = -\frac{1}{27}\left(-\frac{\sigma_1^2}{3} + \sigma_2 \right)^3 = -\frac{p^3}{27},\text{ where } p = -\frac{\sigma_1^2}{3} + \sigma_2.$$
\begin{align*}
z_1^3 + z_2^3 &= \frac{1}{27}\left[2 (x_{1}^{3} + x_{2}^{3} + x_{3}^{3}) - 3 (x_{1}^{2} x_{2} + x_{1} x_{2}^{2} +x_{1}^{2} x_{3} + x_{2}^{2} x_{3} + x_{1}x_{3}^{2} +x_{2} x_{3}^{2}) + 12 x_{1} x_{2} x_{3}\right]
\end{align*}
\begin{align*}
s &= x_{1}^{2} x_{2} + x_{1} x_{2}^{2} +x_{1}^{2} x_{3} + x_{2}^{2} x_{3} + x_{1}x_{3}^{2} +x_{2} x_{3}^{2}\\
&= (x_1x_2+x_2x_3+x_1x_3)(x_1+x_2+x_3)-3x_1x_2x_3\\
&= \sigma_2 \sigma_1 - 3 \sigma_3
\end{align*}
\begin{align*}
x_1^3+x_2^3+x_3^3 &= (x_1^2+x_2^2+x_3)^2(x_1+x_2+x_3) - (x_{1}^{2} x_{2} + x_{1} x_{2}^{2} +x_{1}^{2} x_{3} + x_{2}^{2} x_{3} + x_{1}x_{3}^{2} +x_{2} x_{3}^{2})\\
&=(\sigma_1^2-2\sigma_2)\sigma_1 - (\sigma_2 \sigma_1 - 3 \sigma_3)\\
&=\sigma_1^3 -3\sigma_1\sigma_2+3\sigma_3.
\end{align*}
Thus
\begin{align*}
z_1^3 + z_2^3 &= \frac{1}{27}\left[2(\sigma_1^3 -3\sigma_1\sigma_2+3\sigma_3) -3(\sigma_1 \sigma_2 - 3 \sigma_3) + 12 \sigma_3\right]\\
&= \frac{1}{27} (2 \sigma_1^3-9\sigma_1 \sigma_2 + 27 \sigma_3)\\
&= \frac{2\sigma_1^3}{27} - \frac{\sigma_1\sigma_2}{3} + \sigma_3
\end{align*}
Finally,
$$\theta(z) = z^6 +q z^3 -\frac{p^3}{27},$$
where
$$p = -\frac{\sigma_1^2}{3} + \sigma_2,\quad q = -\frac{2\sigma_1^3}{27} + \frac{\sigma_1\sigma_2}{3}- \sigma_3.$$
\end{proof}
\paragraph{Ex. 12.1.3}
{\it This exercise concerns Examples 12.1.3 and 12.1.5.
\be
\item[(a)] Compute the resolvent $\theta(y)$ of Example 12.1.3. This can be done using the methods of Section 2.3.
\item[(b)] Let $y_1 = x_1x_2+x_3x_4$. Show that $H(y_1) = \langle (1\, 2),(1 \, 3\, 2\,4) \rangle \subset S_4$.
\item[(c)] Show that $H(y_1)$ is not normal in $S_4$.
\item[(d)] Show that $H(y_1)$ is isomorphic to $D_8$, the dihedral group of order 8.
\ee
}
\begin{proof}
\be
\item[(a)] $y_1 = x_1x_2+x_3x_4, y_2 = (2\,3)\cdot y_1= x_1 x_3 + x_2 x_4, y_3 = (2\,4) \cdot y_1 = x_1x_4+x_2x_3$ are distinct elements of the orbit of $y_1$.
Since $|H(y_1)| = |\mathrm{Stab}_{S_4}(y_1)| = 8$ (see Part (b)), $|{\cal O}_{y_1} |= 3$, so $y_1,y_2,y_3$ are all the elements of ${\cal O}_{y_1}$.
$${\cal O}_{y_1} = \{y_1,y_2,y_3\} = \{x_1 x_3 + x_2 x_4, x_1 x_3 + x_2 x_4, x_1x_4+x_2x_3\}.$$
Therefore
\begin{align*}
\theta(y) &=\left((y - (x_1x_2+x_3x_4)\right)\left(y - (x_1 x_3 + x_2 x_4)\right)\left(y - (x_1x_4+x_2x_3)\right)
\end{align*}
Using the methods of section 2.3, we obtain with the following Sage instructions
\begin{verbatim}
e = SymmetricFunctions(QQ).e()
e1, e2, e3 , e4 =
e([1]).expand(4),e([2]).expand(4),e([3]).expand(4), e([4]).expand(4)
R.<y,x0,x1,x2,x3,y1,y2,y3,y4> = PolynomialRing(QQ, order = 'degrevlex')
J = R.ideal(e1-y1, e2-y2, e3-y3,e4-y4)
G = J.groebner_basis()
z1 = x0*x1 + x2*x3
z2 = x0*x2 + x1*x3
z3 = x0*x3 + x1*x2
f = (y-(x0*x1 + x2*x3))*(y-(x0*x2 + x1*x3))*(y-(x0*x3 + x1*x2))
var('sigma_1,sigma_2,sigma_3,sigma_4')
g=f.reduce(G).subs(y1=sigma_1,y2=sigma_2,y3=sigma_3,y4=sigma_4)
g.collect(y)
\end{verbatim}
$$-\sigma_{1}^{2} \sigma_{4} - \sigma_{2} y^{2} + y^{3} - \sigma_{3}^{2} + 4 \, \sigma_{2} \sigma_{4} + {\left(\sigma_{1} \sigma_{3} - 4 \,\sigma_{4}\right)} y.
$$
So
$$ \theta(y) = y^{3} - \sigma_{2} y^{2} + {\left(\sigma_{1} \sigma_{3} - 4 \,\sigma_{4}\right)} y- \sigma_{3}^{2} -\sigma_{1}^{2} \sigma_{4}+ 4 \, \sigma_{2} \sigma_{4} .
$$
\item[(b)]
$$(1\, 2)\cdot y_1 = x_2x_1+x_3x_4 = y_1,\qquad (1\,3\,2\,4)(y_1) = x_3x_4+x_2x_1 = y_1,$$
therefore
$$\langle (1\, 2), (1\,3\,2\,4) \rangle \subset H(y_1).$$
Moreover
$$\langle (1\, 2), (1\,3\,2\,4) \rangle= \{(), (1\,2), (1\,3\,2\,4), (1\,3)(2\,4), (1\,2)(3\,4), (1\,4)(2\,3), (3\,4), (1\,4\,2\,3)\}.$$
We obtain this by hand, or with the Dimino's algorithm, or with the Sage instructions:
\begin{verbatim}
G = PermutationGroup([(1,2),(1,3,2,4)])
G.list()
\end{verbatim}
The orbit of $y_1$ contains three distinct elements $y_1,y_2,y_3$, so $|{\cal O}_{y_1} |\geq 3$. Since $|{\cal O}_{y_1} |\ = (S_n:H(y_1))$, $|H(y_1)|\leq 8$. But $H(y_1)$ contains the 8 elements of $\langle (1\, 2), (1\,3\,2\,4) \rangle$, thus
$$H(y_1) = \langle (1\, 2), (1\,3\,2\,4) \rangle.$$
\item[(c)] $(2\,3) (1\,3\,2\,4)(2\,3)^{-1} = (1\,2\,3\,4) \not \in H(y_1)$, so $H(y_1)$ is not normal in $S_4$.
\item[(d)] If we number the 4 consecutive summits of the square in the order $(1,3,2,4)$, then $H(y_1)$ is isomorphic to the group generated by the rotation of angle $\pi/2$ corresponding to $(1\,3\,2\,4)$ and the reflection relative to the diagonal $(3,4)$ corresponding to $(1\,2)$, and this is the dihedral group $D_8$.
$$H(y_1) \simeq D_8.$$
\ee
\end{proof}
\paragraph{Ex. 12.1.4}
{\it Verify (12.9) and (12.10).
}
\begin{proof}
Starting from
$$x^4 - \sigma_1x^3 = -\sigma_2x^2+\sigma_3x-\sigma_4,$$
we add the quantity
$$yx^2+\frac{1}{4}(-\sigma_1x+y)^2 = \left(y+\frac{\sigma_1^2}{4}\right) x^2 -\frac{\sigma_1}{2} yx + \frac{y^2}{4},$$
so
$$x^4 - \sigma_1x^3 + yx^2+\frac{1}{4}(-\sigma_1x+y)^2 = -\sigma_2x^2+\sigma_3x-\sigma_4 + \left(y+\frac{\sigma_1^2}{4}\right) x^2 -\frac{\sigma_1}{2} yx + \frac{y^2}{4},$$
Since
\begin{align*}
x^4 - \sigma_1x^3 + yx^2+\frac{1}{4}(-\sigma_1x+y)^2 &= x^4 + (-\sigma_1x+y) x^2 +\frac{1}{4}(-\sigma_1x+y)^2 \\
&= \left(x^2 + \frac{1}{2}(-\sigma_1x+y)\right)^2\\
&=\left(x^2 - \frac{\sigma_1}{2} x + \frac{y}{2}\right)^2,
\end{align*}
we obtain
$$\left(x^2 - \frac{\sigma_1}{2} x + \frac{y}{2}\right)^2 = \left(y+\frac{\sigma_1^2}{4}-\sigma_2\right) x^2+\left(-\frac{\sigma_1}{2} y + \sigma_3 \right) x +\frac{y^2}{4} - \sigma_4.$$
The discriminant of the right member $Ax^2+Bx+C$ is
$$\Delta = B^2-4AC= \left(-\frac{\sigma_1}{2} y + \sigma_3 \right)^2 - 4 \left(y+\frac{\sigma_1^2}{4}-\sigma_2\right)\left(\frac{y^2}{4} - \sigma_4\right).$$
\begin{align*}
4\Delta &= (-\sigma_1 y + 2\sigma_3)^2 - (4y +\sigma_1^2-4\sigma_2)(y^2 -4 \sigma_4)\\
&=(\sigma_1^2y^2-4\sigma_1\sigma_3 y + 4 \sigma_3^2) - (4y^3 - 16 \sigma_4 y + (\sigma_1^2 - 4 \sigma_2)y^2 - 4 \sigma_1^2 \sigma_4 + 16 \sigma_2 \sigma_4)\\
&= -4 y^3 + 4 \sigma_2y^2+(-4\sigma_1\sigma_3 + 16 \sigma_4)y+ (4\sigma_3^2+4\sigma_4\sigma_1^2-16\sigma_2 \sigma_4)\\
&=-4(y^3 - \sigma_2 y^2 + (\sigma_1\sigma_3 - 4 \sigma_4)y - \sigma_3^2-\sigma_1^2\sigma_4 + 4 \sigma_2\sigma_4).
\end{align*}
So the second member is a perfect square if and only if the Ferrari resolvent
$$R(y) = y^3 - \sigma_2 y^2 + (\sigma_1\sigma_3 - 4 \sigma_4)y - \sigma_3^2-\sigma_1^2\sigma_4 + 4 \sigma_2\sigma_4 $$
is zero for the chosen $y$.
\end{proof}
\paragraph{Ex. 12.1.5}
{\it This exercise will study the quadratic equations (12.11). Each quadratic has two roots, which together make up the four roots $x_1,x_2,x_2,x_4$ of our quadratic.
\be
\item[(a)] For the moment, forget all the theory developed so far, and let $y$ be some root of the Ferrari resolvent (12.10). Given only this, can we determine how $y$ relates to the $x_i$? This is surprisingly easy to do. Suppose $x_i,x_j$ are the roots of (12.11) for one choice of sign, and $x_k,x_l$ are the roots for the other. Thus $i,j,k,l$ are the number 1,2,3,4 in some order. Prove that $y$ is given by $y=x_ix_j + x_kx_l$.
\item[(b)] Now let $y_1 = x_1x_2 +x_3x_4$, and define the square root in (12.11) using (12.12). Show that the roots of (12.11) are $x_1,x_2$ for the plus sign and $x_3,x_4$ for the minus sign.
\ee
}
\begin{proof}
\be
\item[(a)]
If $y$ is some root of the Ferrari resolvent, then
$x_i,x _j$ are the roots of
$$x^2 - \frac{\sigma_1}{2} x + \frac{y}{2} = + \sqrt{y + \frac{\sigma_1^2}{4} - \sigma_2} \, \left(x + \frac{\frac{-\sigma_1}{2} y + \sigma_3 }{2(y+\frac{\sigma_1^2}{4} - \sigma_2)} \right).$$
The product $x_i x_j$ is given by
$$x_ix_j = \frac{y}{2} - \sqrt{y + \frac{\sigma_1^2}{4} - \sigma_2} \left(\frac{\frac{-\sigma_1}{2} y + \sigma_3 }{2(y+\frac{\sigma_1^2}{4} - \sigma_2)} \right).$$
Similarly $x_k,x _l$ are the roots of
$$x^2 - \frac{\sigma_1}{2} x + \frac{y}{2} = - \sqrt{y + \frac{\sigma_1^2}{4} - \sigma_2} \, \left(x + \frac{\frac{-\sigma_1}{2} y + \sigma_3 }{2(y+\frac{\sigma_1^2}{4} - \sigma_2)} \right).$$
and the product $x_kx_l$ is given by
$$x_kx_l = \frac{y}{2} + \sqrt{y + \frac{\sigma_1^2}{4} - \sigma_2} \left(\frac{\frac{-\sigma_1}{2} y + \sigma_3 }{2(y+\frac{\sigma_1^2}{4} - \sigma_2)} \right).$$
Adding these two formulas, we obtain
$$x_ix_j + x_kx_l = y.$$
\item[(b)]
Using $y_1 = x_1x_2+x_3x_4$, and setting
$$t_1 = x_1+x_2-x_3-x_4,$$
then
\begin{align*}
&y_1 + \frac{\sigma_1^2}{4} - \sigma_2 \\
&= x_1x_2 + x_3 x_4 +\frac{1}{4}(x_1+x_2+x_3+x_4)^2 - (x_1x_2+x_1x_3+x_1x_4+x_2x_3+x_2x_4+x_3x_4)\\
&=\frac{1}{4}\left[x_1^2+x_2^2+x_3^2+x_4^2 -2(x_1x_2+x_1x_3+x_1x_4+x_2x_3+x_2x_4+x_3x_4) + 4(x_1x_2+x_3x_4)\right]\\
&=\frac{1}{4}\left[x_1^2+x_2^2+x_3^2+x_4^2 + 2x_1x_2+2x_3x_4 - 2(x_1x_3+x_1x_4+x_2x_3+x_2x_4)\right]\\
&=\frac{1}{4}\left[(x_1+x_2)^2+(x_3+x_4)^2 - 2(x_1+x_2)(x_3+x_4)\right]\\
&=\frac{1}{4} (x_1+x_2-x_3-x_4)^2\\
&= \frac{t_1^2}{4}
\end{align*}
We choose the square root such that
$$ \sqrt{y_1 + \frac{\sigma_1^2}{4} - \sigma_2 } = \frac{t_1}{2}.$$
Then the quadratic equation with $y=y_1$ and the plus sign is
$$x^2 - \frac{\sigma_1}{2} x + \frac{y_1}{2} = + \sqrt{y_1 + \frac{\sigma_1^2}{4} - \sigma_2} \, \left(x + \frac{\frac{-\sigma_1}{2} y_1 + \sigma_3 }{2(y_1+\frac{\sigma_1^2}{4} - \sigma_2)} \right),$$
which gives
$$x^2 - \left(\frac{\sigma_1}{2} + \frac{t_1}{2}\right) x + \frac{y_1}{2} +\frac{1}{2t_1} (\sigma_1 y_1 - 2 \sigma_3).$$
Let $u,v$ be the roots of this equation, and $S = u+v, P= uv$ be the sum and product of these roots. Then
\begin{align*}
S &= \frac{\sigma_1}{2} + \frac{t_1}{2}\\
&= \frac{1}{2}(x_1+x_2+x_3+x_4 +x_1+x_2-x_3-x_4) \\
&= x_1+x_2
\end{align*}
\begin{align*}
P &= \frac{y_1}{2} +\frac{1}{2t_1} (\sigma_1 y_1 - 2 \sigma_3)\\
&= \frac{y_1}{2} +\frac{1}{2t_1} \left[ (x_1+x_2+x_3+x_4)(x_1x_2+x_3x_4) - 2(x_1x_2x_3+x_1x_2x_4+x_1x_3x_4+x_2x_3x_4)\right]\\
&=\frac{y_1}{2} + \frac{1}{2t_1} \left[ x_1^2x_2 + x_1x_2^2+x_3^2x_4 +x_3x_4^2 - x_1x_3x_4-x_2x_3x_4-x_1x_2x_3-x_1x_2x_4\right]\\
&= \frac{y_1}{2} + \frac{1}{2t_1} (x_1+x_2-x_3-x_4)(x_1x_2-x_3x_4)\\
&=\frac{1}{2} (x_1x_2+x_3x_4 +x_1x_2-x_3x_4)\\
&= x_1x_2
\end{align*}
Thus $u,v$ are the roots of $x^2-Sx+P = (x-x_1)(x-x_2)$, so $\{u,v\} = \{ x_1,x_2\}$.
$x_1,x_2$ are the roots of (12.11) with the plus sign, so $x_3,x_4$ are the roots of (12.11) with the minus sign.
\ee
\end{proof}
\paragraph{Ex. 12.1.6}
{\it Explain why the polynomial $\theta(t)$ (12.13) has coefficients in $K = F(\sigma_1,\sigma_2,\sigma_3,\sigma_4)$.
}
\begin{proof}
$$\theta(t) = (t^2 - 4y_1-\sigma_1^2+4\sigma_2)(t^2 - 4y_2-\sigma_1^2+4\sigma_2)(t^2 - 4y_3-\sigma_1^2+4\sigma_2).$$
Recall that
\begin{align*}
y_1 &= x_1x_2+x_3x_4\\
y_2 &= x_1x_3+x_2x_4\\
y_3 &= x_1x_4 + x_2x_3
\end{align*}
Let $\tau = (1\, 2), \sigma = (1\,2\,3\,4)$. Then
$$\tau \cdot y_1 = x_2 x_1 + x_3x_4 = y_1,\quad \tau \cdot y_2 = x_2x_3 + x_1x_4= y_3,\quad \tau \cdot y_3 = x_2x_4+x_1x_3= y_2,$$
and of course $\tau \cdot \sigma_1 = \sigma_1,\tau \cdot \sigma_2 = \sigma_2$.
Therefore $\tau\cdot \theta(t) = \theta(t)$.
Similarly,
$$\sigma\cdot y_1 = x_2x_3+x_4x_1 = y_3,\quad \sigma\cdot y_2=x_2x_4+x_3x_1 = y_2,\quad \sigma \cdot y_3 = x_2x_1+x_3x_4 = y_1.$$
Therefore $\sigma \cdot \theta(t) = \theta(t)$.
Since $S_4 = \langle \sigma, \tau \rangle$, every permutation in $S_4$ lets the coefficients of $\theta(t)$ unchanged, therefore $\theta(t)$ has coefficients in $K = F(\sigma_1,\sigma_2,\sigma_3,\sigma_4)$ and $\theta(t) \in K[t]$.
\end{proof}
\paragraph{Ex. 12.1.7}
{\it Show that (12.15) implies the equations for $x_1,x_2,x_3,x_4$ given in the text.
}
\begin{proof}
We know that
\begin{align*}
\sigma_1 &= x_1+x_2+x_3+x_4,\\
t_1 &= x_1+x_2-x_3-x_4,\\
t_2 &= x_1-x_2+x_3-x_4,\\
t_3 &= x_1-x_2-x_3+x_4.
\end{align*}
The sum of these equations gives
$$\sigma_1 + t_1 + t_2 + t_3 = 4x_1,$$
so
$$x_1=\frac{1}{4} \left(\sigma_1 + t_1 + t_2 + t_3 \right).$$
We can compute similarly $\sigma_1+t_1-t_2-t_3$, ...
More conceptually, let $\sigma = (1\,2)(3\,4)$. Then
$$\sigma \cdot x_1 = x_2,\quad \sigma \cdot t_1 = t_1,\quad \sigma \cdot t_2 = -t_2,\quad \sigma \cdot t_3 = -t_3.$$
Therefore
$$x_2 = \frac{1}{4} \left(\sigma_1 + t_1 - t_2 - t_3 \right).$$
Similarly, if $\tau = (1\,3)(2\,4)$,
$$\sigma \cdot x_1 = x_3,\quad \tau \cdot t_1 = -t_1,\quad \tau \cdot t_2 = t_2,\quad \tau \cdot t_3 = -t_3.$$
Therefore
$$x_3 = \frac{1}{4} \left(\sigma_1 - t_1 + t_2 - t_3 \right).$$
Finally, if $\zeta = (1\,4)(2\,3)$,
$$\zeta \cdot x_1 = x_4,\quad \zeta \cdot t_1 = -t_1,\quad \zeta \cdot t_2 = -t_2,\quad \zeta \cdot t_3 = t_3.$$
Therefore
$$x_4 = \frac{1}{4} \left(\sigma_1 - t_1 - t_2 + t_3 \right).$$
To conclude
\begin{align*}
x_1 &=\frac{1}{4} \left(\sigma_1 + t_1 + t_2 + t_3 \right),\\
x_2 &= \frac{1}{4} \left(\sigma_1 + t_1 - t_2 - t_3 \right),\\
x_3 &= \frac{1}{4} \left(\sigma_1 - t_1 + t_2 - t_3 \right),\\
x_4 &= \frac{1}{4} \left(\sigma_1 - t_1 - t_2 + t_3 \right).
\end{align*}
\end{proof}
\paragraph{Ex. 12.1.8}
{\it Let $t_1,t_2,t_3$ defined as in (12.15).
\be
\item[(a)]
Lagrange noted that any transposition fixes exactly one of $t_1,t_2,t_3$ and interchanges the other two, possibly changing the sign of both. Prove this and use it to show that $t_1t_2t_3$ is fixed by all elements of $S_4$.
\item[(b)]
Use the methods of Chapter 2 to express $t_1t_2t_3$ in terms of the $\sigma_i$. The result should be the identity (12.16).
\ee
}
\begin{proof}
\be
\item[(a)] By (12.15),
\begin{align*}
t_1 &= x_1+x_2-x_3-x_4,\\
t_2 &= x_1-x_2+x_3-x_4,\\
t_3 &= x_1-x_2-x_3+x_4.
\end{align*}
Since $H(t_1) = \langle (1\,2),(3\,4) \rangle$ has order 4, the orbit ${\cal O}_{t_1}$ of $t_1$ under $S_n$ has $4!/4 = 6$ elements, so $${\cal O}_{t_1} = \{t_1,t_2,t_3,-t_1,-t_2,-t_3\}.$$
$$(1 \,2) \cdot t_1 = t_1, \quad (1 \,2) \cdot t_2 = -t_3, \quad (1 \,2) \cdot t_3 = -t_2,$$
therefore
$$(1 \,2) \cdot (t_1t_2t_3) = t_1(-t_3)(-t_2) = t_1t_2t_3.$$
\begin{align*}
(1 \,2 \, 3 \, 4) \cdot t_1 &= x_2+x_3-x_4-x_1\\
&=-x_1+x_2+x_3-x_4\\
&=-(x_1-x_2-x_3+x_4)\\
&=-t_3
\end{align*}
With similar computations, we obtain
$$(1 \,2 \, 3 \, 4) \cdot t_1 = -t_3, \quad (1 \,2 \, 3 \, 4)\cdot t_2 = -t_2, \quad (1 \,2 \, 3 \, 4)\cdot t_3 = t_1,$$
thus
$$ (1 \,2 \, 3 \, 4) \cdot (t_1t_2t_3) = (-t_3)(-t_2)t_1 = t_1t_2t_3.$$
Since $(1 \,2) \cdot (t_1t_2t_3) = t_1t_2t_3, (1 \,2 \, 3 \, 4) \cdot (t_1t_2t_3) = t_1t_2t_3$, and $S_4 = \langle (1 \,2), (1 \,2 \, 3 \, 4) \rangle$, then $t_1t_2t_3$ is fixed by all elements of $S_4$, and so is in $F(\sigma_1,\sigma_2,\sigma_3,\sigma_4)$.
\item[(b)] With the methods of Chapter 2, the following Sage instructions
\begin{verbatim}
e = SymmetricFunctions(QQ).e()
e1,e2,e3,e4 = e([1]).expand(4),e([2]).expand(4),
e([3]).expand(4),e([4]).expand(4)
R.<x0,x1,x2,x3,y1,y2,y3,y4> = PolynomialRing(QQ, order = 'lex')
J = R.ideal(e1-y1,e2-y2,e3-y3,e4-y4)
G = J.groebner_basis()
t1= x0+x1-x2-x3; t2 = x0-x1+x2-x3; t3 = x0-x1-x2+x3
u = t1*t2*t3
var('sigma_1,sigma_2,sigma_3,sigma_4')
v = u.reduce(G).subs(y1=sigma_1, y2 = sigma_2,y3=sigma_3,y4=sigma_4);v
\end{verbatim}
give
$$\sigma_{1}^{3} - 4 \, \sigma_{1} \sigma_{2} + 8 \, \sigma_{3}.
$$
So
\begin{align*}
t_1t_2t_3 &= (x_1+x_2-x_3-x_4)(x_1-x_2+x_3-x_4)( x_1-x_2-x_3+x_4)\\
& = \sigma_{1}^{3} - 4 \, \sigma_{1} \sigma_{2} + 8 \, \sigma_{3}.
\end{align*}
\ee
\end{proof}
\paragraph{Ex. 12.1.9}
{\it Let $H$ be a subgroup of $S_n$. In this exercise you will give two proofs that there is $\varphi \in L$ such that $H = H(\varphi)$.
\be
\item[(a)](First Proof.) The fixed field $L_H$ gives an extension $K \subset L_H$. Explain why the Theorem of the Primitive Element applies to give $\varphi \in L_H$ such that $L_H = K(\varphi)$. Show that this $\varphi$ has the desired property.
\item[(b)] (Second Proof.) Let $m = x_1^{a_1}\cdots x_n^{a_n}$ be a monomial in $x_1,\ldots,x_n$ with distinct exponents $a_1,\ldots,a_n$. Then define
$$\varphi = \sum_{\sigma \in H} \sigma \cdot m = \sum_{\sigma \in H} x_{\sigma(1)}^{a_1} \cdots x_{\sigma(n)}^{a_n}.$$
Prove that $H(\varphi) = H$.
\ee
}
\begin{proof}
\be
\item[(a)] Here $K = F(\sigma_1,\ldots,\sigma_n), L = F(x_1,\ldots,x_n)$, where $F$ has characteristic $0$.
We know (Theorem 6.4.1) that $K \subset L$ is a Galois extension, and that
$$
\psi :
\left\{
\begin{array}{ccc}
S_n& \to &\Gal(L/K) \\
\tau & \mapsto & \tilde{\tau}
\left\{
\begin{array}{ccc}
L& \to & L \\
f&\mapsto & \tau \cdot f
\end{array}
\right.
\end{array}
\right.
$$
(where $\tau \cdot f(x_1,\ldots,x_n) = f(x_{\tau(1)},x_{\tau(2)},\ldots,x_{\tau(n)})$)
is an isomorphism from $S_n$ to $\Gal(L/K)$.
Write $\tilde{H} = \psi(H)$ the subgroup of $\Gal(L/K)$ corresponding to $H \subset S_n$, and $L_{\tilde{H}}$ its fixed field (we can write $L_H = L_{\tilde{H}}$).
$K \subset L$ is a finite extension, and $K \subset L_H \subset L$, so $K \subset L_H$ is a finite extension. Since the characteristic of $F$ is $0$, the Theorem of the Primitive Element (Corollary 5.4.2 (b)) applies to give $\varphi \in L_H$ such that $L_H = K(\varphi)$.
Since $K \subset L$ is a Galois extension, the Galois correspondence (Theorem 7.3.1) gives
$$\tilde{H} = \Gal(L/L_{\tilde{H}}) = \Gal(L/K(\varphi)).$$
We show that $H = H(\varphi)$:
\be
\item[$\bullet$] If $\tau \in H$, then $\tilde{\tau} = \psi(\tau) \in \tilde{H} = \Gal(L/K(\varphi))$. Since $\varphi \in K(\varphi)$, $\tau \cdot \varphi = \tilde{\tau}(\varphi) = \varphi$, so $ \tau \in H(\varphi)$.
\item[$\bullet$] If $\tau \in H(\varphi)$, then $\tau \cdot \varphi = \varphi$. If $u(x_1,\ldots,x_n) \in K(\varphi)$, then $u(x_1,\ldots,x_n) = f(\varphi(x_1,\ldots,x_n))$, where $f \in K(x)$. Therefore $$\tau \cdot u(x_1,\ldots,x_n) = f(\varphi(x_{\tau(1)},\ldots, x_{\tau(n)}) = f(\varphi(x_1,\ldots,x_n)) = u(x_1,\ldots,x_n),$$
so $\tilde{\tau}(u) = \tau \cdot u = u$ for all $u \in K(\varphi)$, thus $\tilde{\tau} \in \Gal(L/K(\varphi)) = \tilde{H}$, and so $\tau \in H$.
\ee
Conclusion: if $H$ is a subgroup of $S_n$, there is $\varphi \in L$ such that $H = H(\varphi)$.
\item[(b)]
Let $\varphi = \sum_{\sigma \in H} \sigma \cdot m $, where $m = x_1^{a_1}\cdots x_n^{a_n}$ with distinct exponents $a_1,\ldots,a_n$.
\be
\item[$\bullet$] If $\tau \in H$, by (6.7),
$$\tau \cdot \varphi = \sum_{\sigma \in H} (\tau \sigma)\cdot m = \sum_{\sigma' \in H} \sigma' \cdot m = \varphi \qquad (\sigma' = \tau \sigma).$$
Therefore $\tau \in H(\varphi)$.
\item[$\bullet$] If $\tau \in H(\varphi)$, $\tau \cdot \varphi = \varphi$, where $\varphi = \sum_{\sigma \in H} \sigma \cdot m $, so
$$\sum_{\sigma \in H} (\tau \sigma)\cdot m = \sum_{\chi \in H} \chi \cdot m,
$$
$$\sum_{\sigma \in H} x_{(\tau \sigma)(1)}^{a_1} \cdots x_{(\tau \sigma)(n)}^{a_n} = \sum_{\chi \in H} x_{\chi(1)}^{a_1}\cdots x_{\chi(n)}^{a_n}.$$
Moreover,
$$\prod_{i=1}^n x_{\chi(i)}^{a_i} = \prod_{j=1}^n x_j ^{a_{\chi^{-1}(j)}}, \qquad (j = \chi(i)),$$
so
$$ \sum_{\sigma \in H} x_1 ^{a_{(\tau \sigma)^{-1}(1)}} \cdots x_n ^{a_{(\tau \sigma)^{-1}(n)}} = \sum_{\chi \in H} x_1 ^{a_{\chi^{-1}(1)}} \cdots x_n ^{a_{\chi^{-1}(n)}}$$
Since the exponents $a_1,\ldots,a_n$ are distinct, the $k$ terms of $\sum_{\chi \in H} \chi \cdot m$, where $k = |H|$, are distinct, so there exists exactly one term in the right member which is the same as the term $ x_1 ^{a_{\tau^{-1}(1)}} \cdots x_n ^{a_{\tau^{-1}(n)}}$ of the left member corresponding to $\sigma = e$, so there exists $\chi \in H$ such that
$$x_1 ^{a_{\tau^{-1}(1)}} \cdots x_n ^{a_{\tau^{-1}(n)}} = x_1 ^{a_{\chi^{-1}(1)}} \cdots x_n ^{a_{\chi^{-1}(n)}}.$$
This implies $a_{\tau^{-1}(i)} = a_{\chi^{-1}(i)}, \ 1\leq i \leq n$. Since the exponents are distinct, $a_k = a_l$ implies $k=l$, so we obtain $\tau^{-1}(i) = \chi^{-1}(i)$ for all $i$, therefore $\tau^{-1} = \chi^{-1}$ and $\tau = \chi \in H$.
We have proved $H = H(\varphi)$.
\ee
\ee
\end{proof}
\paragraph{Ex. 12.1.10}
{\it Prove that the subset $N \subset S_n$ defined in the proof of Theorem 12.1.10 is a subgroup of $S_n$.
}
\begin{proof}
Let
$$N = \{\sigma \in S_n \ | \ \sigma\cdot \varphi_i = \varphi_i \text{ for all } i=1,\ldots, r\}.$$
Then
$$N = \bigcap_{1\leq i \leq r} {\mathrm{Stab}_{S_n}(\varphi_i}) = \bigcap_{1\leq i \leq r} H(\varphi_i)$$
is the intersection of $r$ subgroups of $S_n$, so is a subgroup of $S_n$.
\end{proof}
\paragraph{Ex. 12.1.11}
{\it Let $H$ be a proper subgroup of $A_n$ with $n \geq 5$. Prove that $[A_n:H] \geq n$.
}
\begin{proof}
As $H$ is a subgroup of $A_n$, by Exercise 9, there exists $\varphi \in A_n$ such that $H = H(\varphi)$. Let ${\cal O}_{\varphi}$ be the orbit of $\varphi$ under the action of $A_n$:
$${\cal O}_{\varphi} = \{\sigma \cdot \varphi\ | \ \sigma \in H\} = \{\varphi_1=\varphi, \varphi_2,\ldots,\varphi_s\},$$
and let $G$ the subgroup of $A_n$ defined by
$$G = \{\sigma \in A_n \ | \ \forall i \in \gcro 1, s \dcro,\, \sigma \varphi_i = \varphi_i\} = \bigcap_{1\leq i \leq s}\mathrm{Stab}_{A_n}(\varphi_i).$$
Then $G \subset H(\varphi_1) = H$. We show that $G$ is normal in $A_n$.
Let $\tau \in A_n$ and $\sigma \in G$. Fix $i$ between 1 and $s$. Then $\tau \cdot \varphi_i \in {\cal O}_{\varphi}$, so $\tau \cdot \varphi_i = \varphi_j$ for some $j \in \gcro 1, s \dcro$. Then
$$(\tau^{-1} \sigma \tau)\cdot \varphi_i = (\tau^{-1} \sigma)\cdot \varphi_j = \tau^{-1} \cdot (\sigma \cdot \varphi_j) = \tau^{-1} \cdot \varphi_j = \varphi_i,$$
so $\tau^{-1} \sigma \tau \in G$.
Since $A_n$ is a simple group for $n\geq 5$, $G =\{e\}$ or $G = A_n$. Since $G \subset H$ and $H \subset A_n,H\ne A_n$, then $G \ne A_n$, therefore $G = \{e\}$.
$H = H(\varphi) = \mathrm{Stab}_{A_n}(\varphi)$, therefore $s = |{\cal O}_{\varphi}| = (A_n : H)$.
If we suppose that $(A_n:H) < n$, then $s<n$. Then $s \leq n-1$, therefore $s! \leq (n-1)! < n!/2$. Since there are $n!/2$ permutations in $A_n$, and only $s$ permutations of $ \{\varphi_1, \varphi_2,\ldots,\varphi_s\}$ there exist two distinct permutations $\tau_1,\tau_2 \in A_n$ such that
$$\tau_1\cdot \varphi_i = \tau_2 \cdot \varphi _i \qquad \text{for all } i=1,\ldots,r.$$
So $e \ne \tau_2^{-1} \tau_1 \in G$, $G \ne \{e\}$: this is a contradiction. This proves $(A_n:H) \geq n$.
\end{proof}
\paragraph{Ex. 12.1.12}
{\it The discussion following Theorem 12.1.10 shows that if we are going to use Lagrange's strategy when $n\geq 5$, then we need to begin with $\varphi = \sqrt{\Delta}$, which has isotropy subgroup $A_n$. Suppose that $\psi \in L$ is our next choice, and let $\theta(x)$ be the resolvent of $\psi$. Since we regard $K(\sqrt{\Delta})$ as known, we may assume that $\psi \not \in K(\sqrt{\Delta})$. The idea is to factor $\theta(x)$ over $K(\sqrt{\Delta})$, say $\theta = R_1\cdots R_s$, where $R_i \in K(\sqrt{\Delta})[x]$ is irreducible. This is similar to how (12.13) factors the resolvent of $t_1$ over $K(y_1)$. Suppose that $\psi$ enables us to continue Lagrange's inductive strategy. This means that some factor of $\theta$, say $R_j$, has degree $<n$. Your goal is to prove that this implies the existence of a proper subgroup of $A_n$ of index $<n$.
\be
\item[(a)] Prove that $\deg(R_j) \geq 2$.
\item[(b)] Since $\theta$ splits completely over $L$, the same is true for $R_j$. Let $\psi_j \in L$ be a root of $R_j$ and consider the fields
$$K \subset K(\sqrt{\Delta}) \subset M = K(\sqrt{\Delta},\psi_j) \subset L.$$
Let $H_j \subset S_n$ be the subgroup corresponding to $\Gal(L/M) \subset \Gal(L/K)$ under (12.1). Prove that $H_j \subset A_n$ and that $[A_n:H_j]$ is the degree of $R_j$.
\item[(c)] Conclude that $\deg(R_j)<n$ implies that $H_j$ is a proper subgroup of $A_n$ of index $<n$. With more work, one can show that $\deg(R_i) = [A_n:A_n\cap H(\psi)]$ for all $i$ and that
$$s = \frac{2}{[H(\psi):A_n \cap H(\psi)]}.$$
It follows that $s = 1$ or $2$.
\ee
}
\begin{proof}
\be
\item[(a)]
Here $K = F(\sigma_1,\ldots,\sigma_n)$ and $L = F(x_1,\ldots,x_n)$.
The roots of the resolvent $\theta$ are all the distinct $\sigma \cdot \psi$, where $\sigma \in S_n$. If $\deg(R_j)=1$, then $R_j(x) = x - \sigma \cdot \psi$ for some $\sigma \in S_n$. Since $R_j \in K(\sqrt{\Delta})[x]$, then $\sigma \cdot \psi \in K(\sqrt{\Delta})$. If $\sigma \in A_n$ then $\sigma^{-1} \in A_n$ fixes $\sqrt{\Delta}$, and so $\psi = \sigma^{-1} \cdot (\sigma \cdot \psi) \in K(\sqrt{\Delta})$, which contradicts our assumption, therefore $\sigma \in S_n \setminus A_n$ and $\sigma \cdot \sqrt{\Delta} = - \sqrt{\Delta}$.
As $\sigma \cdot \psi \in K(\sqrt{\Delta})$, $\sigma \cdot \psi = A + B \sqrt{\Delta}, \ A,B \in K = F(\sigma_1,\ldots,\sigma_n)$. Therefore $\psi = \sigma^{-1}\cdot (A+B \sqrt{\Delta}) = A - B \sqrt{\Delta} \in K(\sqrt{\Delta})$: this is a contradiction.
Thus $\deg(R_j) \geq 2$.
\item[(b)] Since $K \subset K(\sqrt{\Delta}) \subset M$, the Galois correspondence being order reversing,
$$\Gal(L/M) \subset \Gal(L/K(\sqrt{\Delta})) \subset \Gal(L/K).$$
The same inclusions are true for the corresponding subgroups of $S_n$:
$$H_j \subset A_n \subset S_n.$$
By the fundamental Theorem (Theorem 7.3.1), since $K \subset L$, a fortiori $K(\sqrt{\Delta}) \subset L$ are Galois extensions, the index $(A_n:H_j) = (\Gal(L/K(\sqrt{\Delta}) : \Gal(L/M))$ is equal to $[M : K(\sqrt{\Delta})] = [K(\sqrt{\Delta},\psi_j ): K(\sqrt{\Delta})]$. The minimal polynomial of $\psi_j$ over $K(\sqrt{\Delta})$ being $R_j$, $[K(\sqrt{\Delta},\psi_j):K(\sqrt{\Delta})] = \deg(R_j)$, so
$$(A_n:H_j) = \deg(R_j).$$
\item[(c)] If $H_j = A_n$, then by the Galois correspondence $K(\sqrt{\Delta},\psi_j) = K(\sqrt{\Delta})$, and then $\psi_j \in K(\sqrt{\Delta})$. But this implies that $R_j = x - \psi_j$ has degree 1, which is impossible by part (a). So $H_j$ is a proper subgroup of $A_n$. If $\deg(R_j) < n$, then $H_j$ is a proper subgroup of $A_n$ such that $(A_n:H_j) <n$. By Theorem 12.1.10(b), this is impossible for all $n\geq 5$.
\ee
\end{proof}
\paragraph{Ex. 12.1.13}
{\it Let $\zeta$ be a primitive $n$th root of unity, and let ${\alpha = x_1+\zeta x_2+\cdots + \zeta^{n-1}x_n}$. Prove that $H(\alpha^n) = \langle (1\,2\ldots n)\rangle \subset S_n$.
}
\begin{proof}
$(1\,2\ldots n)\cdot \alpha = x_2+\zeta x_3+\cdots + \zeta^{n-1}x_1 = \zeta^{-1} \alpha$, therefore $(1\,2\ldots n)\cdot \alpha^n = (\zeta^{-1} \alpha)^n = \alpha^n$, so
$$ \langle (1\,2\ldots n)\rangle \subset H(\alpha^n).$$
Conversely, suppose that $\sigma \in H(\alpha^n)$. Then $\sigma \cdot \alpha^n = \alpha^n$, so
$$(x_{\sigma(1)}+ \zeta x_{\sigma(2)} + \cdots +\zeta^{n-1} x_{\sigma(n)})^n = (x_1+\zeta x_2+\cdots + \zeta^{n-1}x_n)^n.$$
Therefore, there exists a $n$th root of unity $\xi$ such that
$$x_{\sigma(1)}+ \zeta x_{\sigma(2)} + \cdots + \zeta^{n-1} x_{\sigma(n)} = \xi (x_1+\zeta x_2+\cdots + \zeta^{n-1}x_n).$$
Then
\begin{align*}
\xi \sum_{i=1}^n \zeta^{i-1} x_{i} &= \sum_{j=1}^n \zeta^{j-1} x_{\sigma(j)}\\
&=\sum_{i=1}^n \zeta^{\sigma^{-1}(i)-1} x_i, \qquad (i = \sigma(j))
\end{align*}
Therefore, for all $i=1,\ldots,n$,
$$\xi\, \zeta^{i-1} = \zeta^{\sigma^{-1}(i)-1}$$
For $i=1$, we obtain $\xi =\zeta^{\sigma^{-1}(1)-1}$, thus $\zeta^{\sigma^{-1}(1)-1+ i-1} = \zeta^{\sigma^{-1}(i)-1}$.
Since $\zeta$ is a primitive $n$th root of unity,
$$\sigma^{-1}(1)+ i-1 \equiv \sigma^{-1}(i) \pmod n \qquad (1\leq i \leq n).$$
If $k = \sigma^{-1}(1) -1$, then
$$\sigma^{-1}(i) \equiv i+k \pmod n,$$
therefore $\sigma^{-1} = (1\,2\ldots n)^k, \sigma = (1\,2\ldots n)^{n-k}$ are in the subgroup $\langle (1\,2\ldots n)\rangle$.
$$H(\alpha^n) = \langle (1\,2\ldots n)\rangle.$$
\end{proof}
\paragraph{Ex. 12.1.14}
{\it Let $\alpha_i$ be as in (12.18), with $\sigma = (1\, 2 \ldots n) \in S_n \simeq \Gal(L/K)$:
\begin{align*}
\alpha_i &= x_1+\zeta^{-i} \sigma \cdot x_1+\zeta^{-2i} \sigma_2 \cdot x_1 + \cdots + \zeta^{-i(n-1)} \sigma^{n-1} \cdot x_1\\
&=x_1+\zeta^{-i} x_2 +\zeta^{-2i} x_3 + \cdots + \zeta^{-i(n-1)}\cdot x_n\\
\end{align*}
The quotation given in the discussion following (12.18) can be paraphrased as saying that the roots of the resolvent of $\theta_i =\alpha_i^n$ come from the permutations of the $n-1$ roots $x_2,\ldots,x_n$ that ignore the root $x_1$. What does this mean?
\be
\item[(a)] Show that each left coset of $\langle (1\, 2 \ldots n) \rangle$ in $S_n$ can be written uniquely as $\sigma \langle (1\, 2 \ldots n) \rangle$, where $\sigma$ fixes 1.
\item[(b)] Explain how Lagrange's statement follows from part (a).
\ee
}
\begin{proof}
\be
\item[(a)]
Write $\rho = (1\, 2 \ldots n) \in S_n$ and $H = \langle \rho \rangle$. Let $\tau H$ be any coset relative to $H$, with $\tau \in S_n$. We must prove that there exists a unique $\sigma \in \tau H$ such that $\sigma(1) = 1$.
\be
\item[$\bullet$] Existence.
Let $k = \tau^{-1}(1)$ and $\sigma = \tau \rho^{k-1}$. Then $\sigma \in \tau H$, and
$$\sigma(1) = (\tau \rho^{k-1})(1) = \tau(k) = 1.$$
\item[$\bullet$] Unicity. If $\sigma H = \sigma' H$, with $\sigma(1) = \sigma'(1)=1$, then $\sigma' \in \sigma H$, so $$\sigma' = \sigma \rho^l, \quad l\in \Z.$$
Since $\sigma'(1) = 1$, we have $\sigma(\rho^l(1)) = 1 = \sigma(1)$ and $\sigma$ is one-to-one, so $\rho^l(1) = 1$, therefore $l\equiv 0 \pmod n$, so $\rho^l = e$ and $\sigma = \sigma'$.
\ee
\item[(b)] As $H = \langle \rho \rangle$ is the stabilizer of $\theta_i = \alpha_i^n$, the value of $\tau \cdot \theta_i$ are the all the same when $\tau$ is in $\sigma H$, where $\sigma$ is the unique representative of the coset $\tau H$ such that $\sigma(1)=1$. We obtain the elements of the orbit ${\cal O}_{\theta_i}$ under the action of $S_n$, by taking the value of $\sigma \cdot \theta_i$ with $\sigma(1) = 1$.
$${\cal O}_{\theta_i} = \{ \sigma \cdot \theta_i\ | \ \sigma \in S_n,\ \sigma(1)=1\}.$$
Moreover these values are distinct. Indeed, if $\sigma \cdot \theta_i = \sigma' \cdot \theta_i$, where $\sigma(1) = \sigma'(1) = 1$, then $\sigma'^{-1} \sigma \in H$, so $\sigma H = \sigma' H$. By part (a) (unicity), we obtain $\sigma = \sigma'$. (Thus $|{\cal O}_{\theta_i}| = (n-1)!$ is the degree of the Lagrange resolvent.)
So the resolvent is the product $$R(x) = \prod_{\sigma\in S_n,\ \sigma(1) = 1} (x - \sigma\cdot \alpha_i^n).$$
As Lagrange says, the roots of the resolvent of $\theta_i =\alpha_i^n$ come from the permutations of the $n-1$ roots $x_2,\ldots,x_n$ that ignore the root $x_1$.
\ee
\end{proof}
\paragraph{Ex. 12.1.15}
{\it Given the Lagrange resolvent $\alpha_1,\ldots,\alpha_{p-1}$ defined in (12.19),
$$ \alpha_i = x_1+\zeta_p^ix_2+\zeta_p^{2i} x_3 + \cdots+\zeta_p^{(p-1) i} x_p,$$
the goal of this exercise is to prove that
$$x_i = \frac{1}{p}\left( \sigma_1 + \sum_{j=1}^{p-1} \zeta_p^{-j(i-1)} \alpha_j \right).$$
\be
\item[(a)] Write $\alpha_j = \sum_{l=1}^p \zeta_p^{j(l-1)}x_l$ for $1\leq j \leq p$, so that $
\alpha_p = \sigma_1$. Then show that
$$\sum_{j=1}^p \zeta_p^{-j(i-1)}\alpha_j = \sum_{j,l = 1}^p (\zeta_p^{l-i})^j x_l.$$
\item[(b)] Given an integer $m$, use Exercise 9 of section A.2 to prove that
$$
\sum_{j=1}^p (\zeta_p^m)^j =
\left\{
\begin{array}{ll}
p, & \text{if }m\equiv 0 \mod p, \\
0, & \text{otherwise}.
\end{array}
\right.
$$
\ee
}
\begin{proof}
\be
\item[(a)] By definition,
$$\alpha_j = \sum_{l=1}^p \zeta_p^{j(l-1)}x_l, \qquad 1\leq j \leq p.$$
Therefore
\begin{align*}
\sum_{j=1}^p \zeta_p^{-j(i-1)}\alpha_j &= \sum_{j=1}^p \zeta_p^{-j(i-1)} \sum_{l=1}^p \zeta_p^{j(l-1)}x_l\\
&= \sum_{l=1}^p \left [\sum_{j=1}^p( \zeta_p^{l-i})^j \right ] x_l
\end{align*}
\item[(b)]
\be
\item[$\bullet$] If $m\equiv 0 \mod p$, then $\zeta_p^m = 1$, so $\sum\limits_{j=1}^p (\zeta_p^m)^j = p$.
\item[$\bullet$] If $m\not \equiv 0 \mod p$, then $\zeta_p^m \ne 1$, so
$$\sum_{j=1}^p (\zeta_p^m)^j =\zeta_p^m(1+\zeta_p^m+ \zeta_p^{2m}+ \cdots+ \zeta_p^{(p-1)m}) = \zeta_p^m \, \frac{1- (\zeta_p^{m})^p}{1 - \zeta_p^m} = 0.
$$
Thus,
$$
\sum_{j=1}^p (\zeta_p^m)^j =
\left\{
\begin{array}{ll}
p, & \text{if }m\equiv 0 \mod p, \\
0, & \text{otherwise}.
\end{array}
\right.
$$
\ee
\item[(c)] With $m=l-i$, part (b) gives
$$ \sum_{j=1}^p( \zeta_p^{l-i})^j =
\left\{
\begin{array}{ll}
p, & \text{if } l\equiv i \mod p, \\
0, & \text{otherwise}.
\end{array}
\right.
$$
Therefore, by part (a),
\begin{align*}
\sum_{j=1}^p \zeta_p^{-j(i-1)}\alpha_j &= \sum_{l=1}^p \left [\sum_{j=1}^p( \zeta_p^{l-i})^j \right ] x_l\\
&= p x_i.
\end{align*}
For all $i=1,2,\ldots,p$,
\begin{align*}
x_i &= \frac{1}{p} \sum_{j=1}^p \zeta_p^{-j(i-1)}\alpha_j \\
&=\frac{1}{p} \left (\alpha_p + \sum_{j=1}^{p-1} \zeta_p^{-j(i-1)}\alpha_j \right)\\
\end{align*}
Since $ \alpha_p = \sum_{l=1}^p \zeta_p^{p(l-1)}x_l = x_1+\cdots+x_p = \sigma_1$, we obtain
$$x_i = \frac{1}{p}\left( \sigma_1 + \sum_{j=1}^{p-1} \zeta_p^{-j(i-1)} \alpha_j \right).$$
\ee
\end{proof}
\paragraph{Ex. 12.1.16}
{\it Prove that Theorem 7.4.4 follows from Theorem 12.1.6 and Proposition 2.4.1.
}
\begin{proof}
\be
\item[$\bullet$] Suppose that $\psi \in F(x_1,\ldots,x_n)$ is invariant under $S_n$.
Let $\varphi = 1$. Then $\varphi$ is invariant under $S_n$, so $\psi$ is fixed by every permutation fixing $\varphi$. By Theorem 12.1.6. $\psi$ is a rational function of $\varphi$ with coefficients in $K = F(\sigma_1,\ldots,\sigma_n)$, i.e., $\psi \in K(\varphi) = K(1) = K$. So $\psi \in F(\sigma_1,\ldots,\sigma_n)$.
\item[$\bullet$] Suppose that $\psi \in F(x_1,\ldots,x_n)$ is invariant under $A_n$.
Let $\varphi = \sqrt{\Delta}$. As the characteristic is not 2, by Proposition 2.4.1, $\sigma \cdot \sqrt{\Delta} = \sqrt{\Delta}$ if and only if $\sigma \in A_n$, so $H(\varphi) = H(\sqrt{\Delta})= A_n$.
Thus $\psi$ is fixed by every permutation fixing $\varphi$.
By Theorem 12.1.6. $\psi$ is a rational function of $\varphi =\sqrt{\Delta}$ with coefficients in $K = F(\sigma_1,\ldots,\sigma_n)$, so $\psi \in K(\sqrt{\Delta})$.
$\sqrt{\Delta} \not \in K$, because $\tau \cdot \sqrt{\Delta} = - \sqrt{\Delta}\ne \sqrt{\Delta}$ for every transposition $\tau$. Therefore $K \subset K(\sqrt{\Delta})$ is a quadratic extension, and $(1,\sqrt{\Delta} )$ is a basis of $K(\sqrt{\Delta})$ over $K$. Therefore
$$\psi = A+B \sqrt{\Delta},\qquad A,B \in K = F(\sigma_1,\ldots,\sigma_n).$$
So Theorem 7.4.4 follows from Theorem 12.1.6.
\ee
\end{proof}
\paragraph{Ex. 12.1.17}
{\it In Theorem 12.1.9, we used Galois correspondence to show that rational functions $\varphi$ and $\psi$ are similar if and only if $K(\varphi) = K(\psi)$. Give another proof of this result that uses only Theorem 12.1.6.
}
\begin{proof}
If $\varphi,\psi \in F(x_1,\ldots,x_n)$ are similar, then $H(\varphi) = H(\psi)$. So $\sigma \cdot \psi = \psi$ for every $\sigma \in H(\varphi)$. By Theorem 12.1.6, $\psi \in K(\varphi)$. Exchanging $\varphi$ and $\psi$, we obtain similarly $\varphi \in K(\psi)$. Therefore
$$K(\varphi) = K(\varphi,\psi) = K(\psi,\varphi) = K(\psi).$$
Conversely, if $K(\varphi) = K(\psi)$, then $\psi \in K(\varphi)$, so $\psi(x_1,\ldots,x_n) = f(\varphi(x_1,\ldots,x_n))$, where $f \in K(x)$. Therefore, for all $\sigma \in H(\varphi)$,
$$\sigma \cdot \psi = f(\varphi(x_{\sigma(1)},\ldots,x_{\sigma(n)})) = f(\varphi(x_1,\ldots,x_n)) = \psi.$$
So $H(\varphi) \subset H(\psi)$, and similarly $H(\psi) \subset H(\varphi)$, thus $H(\varphi) = H(\psi)$.
\end{proof}
\paragraph{Ex. 12.1.18}
{\it Consider the quartic polynomial $f = x^4+2x^2-4x+2\in \Q[x]$.
\be
\item[(a)] Show that the Ferrari resolvent of (12.10) is $y^3-2y^2-8y$.
\item[(b)] Using the root $y_1 = 0$ of the cubic of part (a), show that (12.11) becomes
$$x^2 = \pm \sqrt{-2}(x-1)$$
and conclude that the four roots of $f$ are
$$\frac{\sqrt{2}}{2} i \pm \frac{1}{2} \sqrt{-2-4i\sqrt{2}} \text{ and }\frac{\sqrt{2}}{2} i \pm \frac{1}{2} \sqrt{-2+4i\sqrt{2}} .$$
\item[(c)] Use Euler's solution (12.17) to find the roots of $f$. The formulas are surprisingly different. We will see in Chapter 13 that this quartic is especially simple. For most quartics, the formulas for the roots are much more complicated.
\ee
}
\begin{proof}
\be
\item[(a)] The Ferrari resolvent $\theta(y)$ is given by Exercise 4:
$$\theta(y) = y^{3} - \sigma_{2} y^{2}+ {\left(\sigma_{1} \sigma_{3} - 4 \, \sigma_{4}\right)} y-\sigma_{1}^{2} \sigma_{4} - \sigma_{3}^{2} + 4 \, \sigma_{2} \sigma_{4} .$$
As $f = x^4+2x^2-4x+2\in \Q[x]$, $\sigma_1 = 0, \sigma_2=2,\sigma_3 = 4, \sigma_4 = 2$, so
$$\theta(y) = y^3 - 2y^2-8y.$$
\item[(b)] We use the root $y_1=0$ of the Ferrari resolvent in (12.11)
$$x^2 - \frac{\sigma_1}{2} x + \frac{y_1}{2} = \pm \sqrt{y_1 + \frac{\sigma_1^2}{4} - \sigma_2} \, \left(x + \frac{\frac{-\sigma_1}{2} y_1 + \sigma_3 }{2(y_1+\frac{\sigma_1^2}{4} - \sigma_2)} \right),$$
Here $\sigma_1 = 0, \sigma_2=2,\sigma_3 = 4, \sigma_4 = 2$, therefore $y_1 + \frac{\sigma_1^2}{4} - \sigma_2 = -2$, so the roots of $f$ are the solutions of
$$x^2 = \pm \sqrt{-2} ( x -1), $$
(More directly, the equation is $$x^4 = -2x^2+4x-2 = -2(x^2-2x+1) = -2(x-1)^2 = [\sqrt{-2}(x-1)]^2,$$
so
$$x^2 = \pm \sqrt{-2} ( x -1).) $$
The roots of $f$ are the roots of
$$x^2 -i\sqrt{2} \, x+ i\sqrt{2} \qquad\text{or} \qquad x^2 + i\sqrt{2} \,x - i\sqrt{2}.$$
\begin{align*}
x^2 -i\sqrt{2} \, x+ i\sqrt{2}&= \left(x - i\frac{\sqrt{2}}{2} \right)^2 + \frac{1}{2} + i \sqrt{2}\\
&=\left(x - i\frac{\sqrt{2}}{2} \right)^2 -\frac{1}{4}\left(-2 -4i\sqrt{2}\right)\\
&=\left(x - i\frac{\sqrt{2}}{2} \right)^2 -\left( \frac{1}{2} \sqrt{-2 - 4i\sqrt{2}} \right)^2\\
&= \left(x - i\frac{\sqrt{2}}{2} - \frac{1}{2} \sqrt{-2 - 4i\sqrt{2}} \right) \left(x - i\frac{\sqrt{2}}{2} + \frac{1}{2} \sqrt{-2 - 4i\sqrt{2}} \right),
\end{align*}
and similarly
\begin{align*}
x^2 + i\sqrt{2} \,x - i\sqrt{2} &= \left(x + i\frac{\sqrt{2}}{2} - \frac{1}{2} \sqrt{-2 +4i\sqrt{2}} \right) \left(x + i\frac{\sqrt{2}}{2} + \frac{1}{2} \sqrt{-2 + 4i\sqrt{2}} \right).
\end{align*}
so the roots of $f$ are
$$
i\frac{\sqrt{2}}{2} + \frac{1}{2} \sqrt{-2 - 4i\sqrt{2}},
i\frac{\sqrt{2}}{2} - \frac{1}{2} \sqrt{-2 - 4i\sqrt{2}},
-i\frac{\sqrt{2}}{2} + \frac{1}{2} \sqrt{-2 + 4i\sqrt{2}},
-i\frac{\sqrt{2}}{2} - \frac{1}{2} \sqrt{-2 + 4i\sqrt{2}}
$$
Moreover
\begin{align*}
(a+ib)^2 = -2 - 4i \sqrt{2} &\iff a^2+b^2 = |-2-4 i \sqrt{2} | = 6, \ a^2 - b^2 = -2, \ ab<0\\
&\iff a+ib = \pm(\sqrt{2} - 2i)
\end{align*}
so $$ \sqrt{-2 - 4i\sqrt{2}} = \pm (\sqrt{2} - 2i), \qquad \sqrt{-2 + 4i\sqrt{2}} = \pm(\sqrt{2} + 2i).$$
The roots of $f$ are $x_1, x_2,x_3 = \overline{x_1}, x_4 = \overline{x_2}$, where
\begin{align*}
x_1 &= \frac{\sqrt{2}}{2} + i \left(\frac{\sqrt{2}}{2} - 1 \right),\\
x_2 &= -\frac{\sqrt{2}}{2} +i \left(-\frac{\sqrt{2}}{2} - 1 \right).
\end{align*}
Note: $x_1,x_2,x_3,x_4 \in \mathbb{Q}(i,\sqrt{2})$, so $\Q(x_1,x_2,x_3,x_4) \subset \mathbb{Q}(i,\sqrt{2})$.
$\sqrt{2} = x_1 + \overline{x_1} = x_1 + x_3 \in \Q(x_1,x_2,x_3,x_4)$ and $i = -\frac{1}{2}(x_1+x_2) \in \mathbb{Q}(x_1,x_2,x_3,x_4)$. Therefore the splitting field of $f$ over $\Q$ is $L = \Q(i,\sqrt{2})$.
The Galois group is $\Gal(L/\mathbb{Q}) = \langle \sigma, \tau \rangle$, where $\sigma(\sqrt{2}) = -\sqrt{2}), \sigma(i) = i$, and $\tau$ is the complex conjugation. As permutation group,
$\Gal_{\Q}(f) = \langle (1 \, 2)(3 \,4), (1\, 3)(2\,4) \rangle \simeq \Z/2\Z \times \Z/2\Z$ has order 4.
\item[(c)] The Euler's solution gives the roots
$$\alpha = \frac{1}{4} \left(\sigma_1 + \varepsilon_1\sqrt{4y_1+\sigma_1^2-4\sigma_2}+ \varepsilon_2\sqrt{4y_2+\sigma_1^2-4\sigma_2}+ \varepsilon_3\sqrt{4y_3+\sigma_1^2-4\sigma_2}\right),$$
where $\sigma_1 = 0, \sigma_2=2$ and $y_1=0,y_2,y_3$ are the roots of
$$y^3 - 2y^2-8y = y(y^2-2y-8) = y(y-4)(y+2), $$
so $y_1 = 0,y_2=4,y_3 = -2$.
Therefore
\begin{align*}
\alpha &= \frac{1}{4} (\varepsilon_1 \sqrt{-8} + \varepsilon_2 \sqrt{8} + \varepsilon_3\sqrt{-16})\\
&=\varepsilon_1 i \frac{\sqrt{2}}{2} +\varepsilon_2 \frac{\sqrt{2}}{2} + \varepsilon_3 i
\end{align*}
Moreover $\varepsilon_i = \pm 1$ satisfy
$$t_1t_2t_3 = \varepsilon_1\varepsilon_2\varepsilon_3 (i \sqrt{8}) (\sqrt{8})4 i= \sigma_1^3-4\sigma_1\sigma_2+8\sigma_3 = 8\sigma_3= 32,$$
so $\varepsilon_3 = -\varepsilon_1\varepsilon_2$.
We obtain the four roots
$$
\begin{array}{ll}
x_1 = \frac{\sqrt{2}}{2} + i \left(\frac{\sqrt{2}}{2} - 1 \right), & x_3 = \overline{x_1} = \frac{\sqrt{2}}{2} - i \left(\frac{\sqrt{2}}{2} - 1 \right), \\
x_2 = -\frac{\sqrt{2}}{2} +i \left(-\frac{\sqrt{2}}{2} - 1 \right),& x_4 =\overline{x_2}= -\frac{\sqrt{2}}{2} -i \left(-\frac{\sqrt{2}}{2} - 1 \right) \\
\end{array}
$$
The formulas are NOT surprisingly different.
\ee
\end{proof}
\paragraph{Ex. 12.1.19}
{\it This exercise will prove a version of Theorem 12.1.10 for a subgroup $H$ of an arbitrary finite group $G$. When $G=S_n$, Theorem 12.1.10 used the action of $S_n$ on $L$ and wrote $H = H(\varphi)$ for some $\varphi \in L$. In general , we us the action of $G$ on the left cosets of $H$ defined by $g\cdot hH = ghH$ for $g,h \in G$.
\be
\item[(a)] Prove that $g\cdot hH = gh H$ is well defined, i.e., $hH = h'H$ implies that $ghH = gh'H$.
\item[(b)] Prove that $H$ is the isotropy subgroup of the identity coset $eH$.
\item[(c)] Let $m=[G:H]$, so that left cosets of $H$ can be labeled $g_1H,\ldots,g_mH$. Then, for $g\in G$, let $\sigma \in S_m$ be the permutation such that $g\cdot g_iH = g_{\sigma(i)}H$. Prove that the map $g\mapsto \sigma$ defines a group homomorphism $G \to S_m$.
\item[(d)] Let $N$ the kernel of the map of part (c). Thus $N$ is a normal subgroup of $G$. Prove that $N \subset H$.
\item[(e)] Prove that $[G:N]$ divides $m!$.
\item[(f)] Explain why you have proved the following result: If $H$ is a subgroup of a finite group $G$, then $H$ contains a normal subgroup of $G$ whose index divides $[G:H]!$.
\item[(g)] Use part (f) and Proposition 8.4.6 to give a quick proof of Theorem 12.1.10.
\ee
}
\begin{proof}
\be
\item[(a)]
If $hH = h'H$, then $ghH = gh'H$. Indeed, if $u \in ghH$, then $u=ghx$, where $x \in H$. Since $hH = h'H$, then $hx \in hH$ implies $hx \in h'H$, so $hx = h'x'$ for some $x' \in H$. So $u = ghx = gh'x', x' \in H$, therefore $u \in gh'H$, so $ghH \subset gh'H$, and similarly $gh'H \subset ghH$, so $ghH = gh'H$, and $g\cdot hH = gh H$ is well defined.
Moreover $e\cdot hH = ehH = hH$ and $g\cdot (g' \cdot H) = g \cdot g'H = gg'H = (gg')\cdot H$, so $g\cdot hH = gh H$ defines a left action of $G$ on the set of left cosets.
\item[(b)] Let $u$ any element of $G$.
$$u \in \mathrm{Stab}_G(eH) \iff u \cdot eH = eH \iff ueH =e H \iff uH = H \iff u \in H.$$
The last equivalence is true, because $uH = H$ implies $u = ue\in H$, and conversely, if $u \in H$, $uH \subset H$ and every element $x \in H$ satisfies
$x = u(u^{-1}x)$, where $u^{-1} x \in H$, so $x \in uH$.
$$\mathrm{Stab}_G(eH) = H.$$
\item[(c)]
Let
$$
\psi
\left\{
\begin{array}{ccl}
G& \to & S_m \\
g& \mapsto & \sigma : \quad \forall i \in \gcro 1,m\dcro, \ g \cdot g_i H = g_{\sigma(i)} H
\end{array}
\right.
$$
Let $g, g' \in G$, $\sigma = \psi(g), \sigma' = \psi(g')$. For all $i, 1\leq i \leq m$,
$$(gg')\cdot g_iH = g\cdot (g'\cdot g_iH) = g\cdot g_{\sigma'(i)}H = g_{\sigma(\sigma'(i))}H =g_ {(\sigma \circ \sigma')(i)} H.$$
Therefore $\psi(gg') = \sigma \circ \sigma'$, so $\psi:G \to S_m$ is a group homomorphism.
\item[(d)] Let $N$ be the kernel of $\psi$. For every $g \in G$,
\begin{align*}
g \in N &\iff \forall i \in \gcro 1, m \dcro,\ g \cdot g_i H = g_iH \\
&\iff \forall h \in G, \ gh H = h H \\
&\iff \forall h \in G, \ h^{-1}gh H = H\\
&\iff \forall h \in G, \ h^{-1}gh \in H\\
&\iff \forall h \in G,\ g \in hHh^{-1}\\
& \iff g \in \bigcap_{h\in G} hHh^{-1}
\end{align*}
so
$$N = \bigcap_{h\in G} hHh^{-1}.$$
\ee
($N$ is the {\it core} of $H$ in $G$. We write $N = \mathrm{Core}_G(H)$.)
Since $H = eHe^{-1} \supset \bigcap_{h\in G} hHh^{-1}$, $H\supset N$.
\item[(e)] The first isomorphism theorem for groups gives the isomorphism $$G/N = G/\ker(\psi) \simeq \mathrm{Im}(\psi),$$ so $[G:N] = |\mathrm{Im}(\psi)|$ divides $|S_m| = m!$ by Lagrange's theorem.
$$[G:N] \mid m!.$$
\item[(f)] We can conclude that for any subgroup $H$ of a finite group $G$, then $H$ contains the core $N$ of $H$ in $G$, which is a normal subgroup of $G$ whose index divides $[G:H]!$.
\item[(g)]
\be \item[$\bullet$] Let $H \subset S_n$ be a subgroup of index $[S_n:H]>1$, where $n\geq 5$.
Let $N = \mathrm{Core}_{S_n}(H)$. Then $N\subset H \subset S_n$, and $N$ is normal in $S_n$, and $N\ne S_n$ (since $[S_n:H]>1$). By Proposition 8.4.6, $N = A_n$ or $N=\{e\}$.
If $N = A_n$, then $N=A_n \subset H \subset S_n$, thus $1< [S_n:H] \leq [S_n:A_n] = 2$, therefore $[S_n:H] = 2 = [S_n:A_n]$, where $A_n \subset H$, so $H = A_n$.
In the other case, $N = \{e\}$. By part (e), $[S_n : N] \mid [S_n:H]!$, thus $n! \mid m!$, where $m = [S_n:H]$. Therefore $n\leq m =[S_n:H]$. This proves part (a) of Theorem 12.1.10.
\item[$\bullet$] Let $H \subset A_n$ be a subgroup of index $[A_n:H]>1$.
Let $N = \mathrm{Core}_{A_n}(H)$. Then $N \subset H \subset A_n$ and $N$ is normal in $A_n$. Since $A_n$ is simple for $n\geq 5$, and $N \subset H \ne A_n$, $N =\{e\}$.
By part (e), $[A_n:N] \mid [A_n:H] !$, thus $n!/2 \mid m!$, where $m = [A_n:H]$.
If $m<n$ then $m \leq n-1, m! \leq (n-1)! < n!/2$ (since $n>2$), in contradiction with $n!/2 \mid m!$. Therefore
$$n \leq m = [A_n:H].$$
This proves part (b) of Theorem 12.1.10.
\ee
\end{proof}
\paragraph{Ex. 12.1.20}
{\it Let $G$ be a finite group and let $p$ be the smallest prime dividing $|G|$. Prove that every subgroup of index $p$ in $G$ is normal.
}
\begin{proof}
Let $N = \mathrm{Core}_G(H)$. Then $N \subset H \subset G$, and $N$ is normal in $G$.
By Exercise 19 part (f),
$$[G:N] \mid [G:H]! = p!.$$
Moreover,
$$[G:N] = [G:H] [H:N] = p [H:N],$$
thus $$[H:N] \mid (p-1)!.$$
If $[H:N] \ne 1$, there exists a prime $q$ such that $q\mid [H:N]$. Since $[H:N] \mid (p-1)!$, we see that $q<p$. But $q$ divides $[H:N]$ , so $q$ divides $|H|$, which divides $|G|$. But $p$ is the smallest prime divisor of $|G|$: this is a contradiction.
Thus $[H:N] = 1$, $N = H$. Therefore $H = N$ is normal in $G$.
\end{proof}
\paragraph{Ex. 12.1.21}
{\it Part (a) of Theorem 12.1.10 implies that when $n\geq 5$, the index of a proper subgroup of $S_n$ is either $2$ or $\geq n$.
\be
\item[(a)] Prove that $S_n$ always has a subgroup $H$ of index $n$. This means that equality can occur in the bound $[S_n:H] \geq n$.
\item[(b)] Give an example to prove that Theorem 12.1.10 is false when $n=4$.
\ee
}
\begin{proof}
\be
\item[(a)] The subgroup $H$ of $S_n$ of the permutations $\sigma$ that fix $n$ is a subgroup isomorphic to $S_{n-1}$, and $[S_n : H ] = n!/(n-1)! = n$.
\item[(b)] In the Exercise 3, we saw that $H = H(y_1)$, where $y_1 = x_1x_2+x_3x_4$ is a group isomorphic to $D_8$:
$$\langle (1\, 2), (1\,3\,2\,4) \rangle= \{(), (1\,2), (1\,3\,2\,4), (1\,3)(2\,4), (1\,2)(3\,4), (1\,4)(2\,3), (3\,4), (1\,4\,2\,3)\},$$
so $[S_4 : H] = 3 <n=4$. This proves that the Theorem 12.1.10 is false if we forget the hypothesis $n\geq 5$.
\ee
\end{proof}
\subsection{GALOIS}
\paragraph{Ex. 12.2.1}
{\it Let $F$ an infinite field and let $V$ be a finite-dimensional vector space over $F$. The goal of this exercise is to prove that $V$ cannot be the union of a finite number of proper subspaces. This will be used in Exercise 2 to prove the existence of Galois resolvents.
Let $W_1,\ldots,W_m$ be proper subspaces of $V$ such that $V = W_1\cup\cdots \cup W_m$, where $m>1$ is the smallest positive integer for which this is true. We derive a contradiction as follows.
\be
\item[(a)] Explain why there is $v \in W_1 \setminus (W_2\cup \cdots \cup W_m)$.
\item[(b)] There is $w \in V\setminus W_1$, since $W_1$ is a proper subspace. Using $v$ from part (a), we have $\lambda v + w \in V = W_1\cup \cdots \cup W_m$ for all $\lambda \in F$. Explain why this implies that there are $\lambda_1 \ne \lambda_2$ in $F$ such that $\lambda_1 v + w, \lambda_2 v + w \in W_i$ for some $i$.
\item[(c)] Now derive the desired contradiction.
\ee
}