-
Notifications
You must be signed in to change notification settings - Fork 4
/
Cox_Galois_Chapter14.tex
4472 lines (3781 loc) · 234 KB
/
Cox_Galois_Chapter14.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
%&LaTeX
\documentclass[11pt,a4paper]{article}
\usepackage[frenchb,english]{babel}
\usepackage[applemac]{inputenc}
\usepackage[OT1]{fontenc}
\usepackage[]{graphicx}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amsthm}
\usepackage{amssymb}
\usepackage{tikz}
%\input{8bitdefs}
% marges
\topmargin 10pt
\headsep 10pt
\headheight 10pt
\marginparwidth 30pt
\oddsidemargin 40pt
\evensidemargin 40pt
\footskip 30pt
\textheight 670pt
\textwidth 420pt
\def\imp{\Rightarrow}
\def\gcro{\mbox{[\hspace{-.15em}[}}% intervalles d'entiers
\def\dcro{\mbox{]\hspace{-.15em}]}}
\newcommand{\be} {\begin{enumerate}}
\newcommand{\ee} {\end{enumerate}}
\newcommand{\deb}{\begin{eqnarray*}}
\newcommand{\fin}{\end{eqnarray*}}
\newcommand{\ssi} {si et seulement si }
\newcommand{\D}{\mathrm{d}}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\C}{\mathbb{C}}
\newcommand{\F}{\mathbb{F}}
\newcommand{\U}{\mathbb{U}}
\newcommand{\re}{\,\mathrm{Re}\,}
\newcommand{\im}{\,\mathrm{Im}\,}
\newcommand{\ord}{\mathrm{ord}}
\newcommand{\Gal}{\mathrm{Gal}}
\newcommand{\legendre}[2]{\genfrac{(}{)}{}{}{#1}{#2}}
\title{Solutions to David A.Cox "Galois Theory''}
\refstepcounter{section} \refstepcounter{section}
\refstepcounter{section} \refstepcounter{section}
\refstepcounter{section}\refstepcounter{section}\refstepcounter{section}\refstepcounter{section}
\refstepcounter{section}\refstepcounter{section}\refstepcounter{section}\refstepcounter{section}\refstepcounter{section}
\begin{document}
\section{Chapter 14 : SOLVABLE PERMUTATION GROUPS}
\subsection{POLYNOMIAL OF PRIME DEGREE}
\paragraph{Ex. 14.1.1}
{\it This exercise is concerned with the proof of part (a) of Lemma 14.1.2. Let $\theta =(1\, 2 \ldots p)\in S_p$.
\begin{enumerate}
\item[(a)] Prove that $\tau\in S_p$ lies in the normalizer of $\langle\theta\rangle$ if and only if $\tau\theta =\theta^l\tau$ for some $1\leq l\leq p-1$.
\item[(b)] Prove that (14.1) implies that $\tau(i+j)=\tau(i)+jl$ for all positive integers j.
\end{enumerate}
}
\begin{proof}
\begin{enumerate}
\item[(a)]
If $\tau$ lies in the normalizer of $\langle \theta\rangle = \{e,\theta,\theta^2,\ldots,\theta^{p-1}\}$, then
$$\tau \theta \tau^{-1} \in \tau \langle \theta \rangle \tau^{-1}= \langle \theta \rangle,$$
hence
$$\tau \theta \tau^{-1} =\theta^l \text{ for some } l = 0,1\ldots,p-1.$$
If $l = 0$, then $\tau \theta \tau^{-1} = e$, thus $\tau \theta = \tau$, and $\theta = e$, which is false. Therefore $l \ne 0$.
$$\tau \theta \tau^{-1} =\theta^l , \ 1\leq l \leq p-1.$$
\item[(b)] By induction suppose that $\tau(i+j)=\tau(i)+jl$, then $\tau(i+j+1)=\tau(i+j)+l=\tau(i)+(j+1)l$. Case $j=1$ is valid by the identity (14.1). Hence, $\tau(i+j)=\tau(i)+jl$ for all positive integers $j$.
\end{enumerate}
\end{proof}
\paragraph{Ex. 14.1.2}
{\it Let $H$ be a normal subgroup of a finite group $G$ and let $g\in G$. The goal of this exercise is to prove Lemma 14.1.3.
\begin{enumerate}
\item[(a)] Explain why $(gH)^{o(g)}=(gH)^{[G:H]}=H$ in the quotient group $G/H$.
\item[(b)] Now assume that $\gcd(o(g),[G:H])=1$. Prove that $g\in H$.
\end{enumerate}
}
\begin{proof}
\begin{enumerate}
\item[(a)] Since $(gH)^2=gHgH=g^2H$ and $g^{o(g)}=e$, $(gH)^{o(g)}=g^{o(g)}H=H$.
Since $gH\in G/H$, exists some minimal $l$ such that $(gH)^l=H$ and $l\mid [G:H]$, i.e. $[G:H]=ql$. Then $(gH)^{[G:H]}=(gH)^{ql}=H^q=H$.
\item[(b)] The assumption $\gcd(o(g),[G:H])=1$ means that $o(g)q+[G:H]l=1$ for some $q,l\in\mathbb{Z}$. Then $gH=(gH)^{o(g)q+[G:H]l}=((gH)^{o(g)})^q((gH)^{[G:H]})^l=H^qH^l=H$, i.e. $g\in H$.
\end{enumerate}
\end{proof}
\paragraph{Ex. 14.1.3}
{\it Let $G$ satisfy (14.2). Use (14.2) and the Third Sylow Theorem to prove that $G$ has a unique p-Sylow subgroup $H$ of order $p$. Then conclude that $H$ is normal in $G$.
}
\begin{proof}
By (14.2),
$$|G|= |\Gal(L/F)| =pm, \qquad 1\leq m \leq p-1.$$
According the Third Sylow Theorem the number $N$ of p-Sylow subgroups of G satisfies
$$N\equiv 1 \pmod p, \qquad N\mid |G|,$$
so that $N = 1 + kp,\ k\geq 0$, thus $N \wedge p = 1$, and $N \mid pm$, therefore $N \mid m$. If $k\ne 0$, then $N>p$, but $N \mid m>0$, which implies $N \leq m <p$. This contradiction shows that $k = 0$, and $N = 1$, i.e. there is exactly one $p$-Sylow subgroup $H$ of $G$.
For all $g \in G$, $gHg^{-1}$ is also a $p$-Sylow subgroup of $G$, hence $gHg^{-1}=H$ for all
$g \in G$: $H$ is normal in $G$.
\end{proof}
\paragraph{Ex. 14.1.4}
{\it The definition of Frobenius group given in the Mathematical Notes involves a group $G$ acting transitively on a set $X$. Prove that a group $G$ is a Frobenius group if and only if $G$ has a subgroup $H$ such that $1<|H|<|G|$ and $H\cap gHg^{-1}=\{e\}$ for all $g \notin H$.
}
\begin{proof}
$(\Rightarrow)$ Assume that $G$ is a Frobenius group. Then $G$ acts transitively on a set $X$ such that $1< |X| < |G|$, and for every $(x,y) \in X \times X$ such that $x \ne y$, the identity is the only element of $G$ fixing $x$ and $y$.
First we show that every isotropy group $G_x$ is non trivial, i.e. $G_x \ne \{e\}$ and $G_x \ne G$, for all $x \in G$.
Since $G$ acts transitively on $X$, $X = G\cdot x$ is the orbit of $x$, thus
$$ |X| = |G\cdot x | = (G:G_x) = |G| / |G_x|,$$
and since $1 < |X| < |G|$, this proves $1 < |G_x| < |G|$, so $ G_x \ne \{e\}, G_x \ne G$.
Fix $x_0 \in G, x_0 \ne e$, and take $H = G_{x_0}$ the isotropy group of this chosen element $x_0$. Then $1<|H|<G$.
Assume that $g \in G, g \not \in H$, and $h \in H \cap gHg^{-1}$. Then $h$ and $g^{-1}hg$ are both in $H = G_{x_0}$, so that $h \cdot x_0 = x_0$, and
$(g^{-1}h g) \cdot x_0 = x_0$,
that is
$$
\left\{
\begin{array}{lll}
h \cdot x_0 &= &x_0,\\
h \cdot (g\cdot x_0) &= & g\cdot x_0.
\end{array}
\right.
$$
Since $g \not \in H = G_{x_0}$, $x_0 \ne g\cdot x_0$, thus $h$ fixes two distinct elements of $X$, and this shows that $h =e$. We have proved $H \cap gHg^{-1} = \{e\}$ for all $g\not \in H$.
\bigskip
$(\Leftarrow)$ Conversely, assume that $G$ has a subgroup $H$ such that $1<|H|<|G|$ and $H\cap gHg^{-1}=\{e\}$ for all $g \notin H$.
Take $X$ as the set of left cosets $hH, \ h\in G$ relative to $H$, and consider the action of $G$ on $X$ defined for all $h \in G$ by
$$g \cdot hH = (gh)H.$$
\be
\item[$\bullet$] This action is transitive: if $kH$ and $lH$ are left cosets, then $(lk)^{-1}\cdot kH = lH$.
\item[$\bullet$] Since $1 < |H| < |G|$, then $1 < |G|/|H| < |G|$, thus $1<|X| < |G|$.
\item[$\bullet$] Assume that $g$ fixes two distinct left cosets $hH \ne kH$:
\begin{align*}
g\cdot hH &= hH,\\
g\cdot kH &= k H.
\end{align*}
Then $l = h^{-1} g h \in H, m = k^{-1} g k \in H$, therefore $m = k^{-1}g k = k^{-1} h l h^{-1} k \in H$, so that
$$l \in H,\qquad(h^{-1}k)^{-1} l (h^{-1}k) \in H.$$
This proves $l \in H \cap gHg^{-1}$, where $g = h^{-1}k\not \in H$ (since $hH \ne k H$), and the hypothesis $H\cap gHg^{-1}=\{e\}$ gives $l = e$, and $g = hlh^{-1} =e$. The identity is the only element of $G$ fixing $hH$ and $kH$.
\ee
Therefore $G$ is a Frobenius group.
\end{proof}
\paragraph{Ex. 14.1.5}
{\it Let $F$ be a subfield of the real numbers, and let $f\in F[x]$ be irreducible of prime degree $p>2$. Assume that $f$ is solvable by radicals. Prove that $f$ has either a single real root or $p$ real roots.
}
\begin{proof}
Since $\deg(f) = p$ is odd, $f$ has at least a real root. Suppose that $f$ has two distinct real roots $\alpha, \beta$. By Theorem 14.1.1, since $f$ is solvable by radicals, the splitting field of $f$ over $F$ is $F(\alpha, \beta) \subset \R$. In this case all roots of $f$ are real, and these roots are distinct, since the characteristic of $F$ is $0$, thus the irreducible polynomial $f$ is separable.
We have proved that $f$ has either a single real root or $p$ real roots.
\end{proof}
\paragraph{Ex. 14.1.6}
{\it By Example 8.5.5, $f=x^5-6x+3$ is not solvable by radicals over $\mathbb{Q}$. Give a new proof of this fact using the previous exercise together with the irreducibility of f and part (b) of Exercise 6 from Section 6.4.
}
\begin{proof}
The given polynomial $f$ has prime degree 5 and only three real roots, according to part (b) of Exercise 6.4.6. Since $f$ has more than one but less than 5 real roots, it is not solvable by radicals by Exercise 14.1.5.
\end{proof}
\paragraph{Ex. 14.1.7}
{\it Use Lemma 14.1.3 and part (a) of Lemma 14.1.2 to give a proof of part (b) of Lemma 14.1.2 that doesn't use the Sylow Theorems.
}
\begin{proof}
Assume that $\tau\in S_p$ satisfies $\tau\theta\tau^{-1}\in \mathrm{AGL}(1,\mathbb{F}_p)$. Then, since $\langle\theta\rangle$ is a group of order $p$, $\langle\tau\theta\tau^{-1}\rangle=\tau\langle\theta\rangle\tau^{-1}$ is a subgroup of $\mathrm{AGL}(1,\mathbb{F}_p)$ of order $p$ and each element of this subgroup has order $p$ (or $1$).
By part (a) of Lemma 14.1.2, $\mathrm{AGL}(1,\mathbb{F}_p)$ is the normalizer of $\langle\theta\rangle$ in $S_p$, therefore $\langle\theta\rangle$ is normal in $\mathrm{AGL}(1,\mathbb{F}_p)$, with $[\mathrm{AGL}(1,\mathbb{F}_p):\langle\theta\rangle]=p-1$. The order of each element of $\tau\langle\theta\rangle\tau^{-1}$ is relatively prime to $p-1$, then, by Lemma 14.1.3, $\tau\langle\theta\rangle\tau^{-1}\subset\langle\theta\rangle$, therefore $\tau\langle\theta\rangle\tau^{-1}=\langle\theta\rangle$, since both groups have the same order $p$.
Thus $\tau$ normalizes $\langle\theta\rangle$, hence $\tau\in \mathrm{AGL}(1,\mathbb{F}_p)$.
\end{proof}
\paragraph{Ex. 14.1.8}
{\it Let $f\in F[x]$ be irreducible of prime degree $p\geq 5$, where $F$ has characteristic 0, and let $\alpha\ne\beta$ be roots of f in some splitting field. If $F(\alpha,\beta)$ contains all other roots of $f$, then $f$ is solvable by radicals by Theorem 14.1.1. But suppose that there is some third root $\gamma$ such that $\gamma\in F(\alpha,\beta)$. Is this enough to force $f$ to be solvable by radicals?
\begin{enumerate}
\item[(a)] Use the classification of transitive subgroups of $S_5$ from Section 13.2 to show that the answer is ``yes'' when p=5.
\item[(b)] Use the polynomial $x^7-154\,x+99$ from Example 13.3.10 to show that the answer is ``no'' when p=7.
\end{enumerate}
}
\begin{proof}
\begin{enumerate}
\item[(a)]
By hypothesis, $\deg(f) = p = 5$, and $\alpha \ne \beta$ are roots of $f$ in some splitting field.
Since $\alpha$ is a root of $f$, which is irreducible over $F$,
$$[F(\alpha) : F] = \deg(f) = p = 5.$$
Then $\beta$ is a root of $\frac{f(x)}{x-\alpha} \in F(\alpha)[x]$, so that the minimal polynomial of $\beta$ over $F(\alpha)$ has degree $d\leq p-1$. Thus
$$[F(\alpha,\beta) : F(\alpha] \leq p-1 = 4.$$
By the Tower Theorem,
$$[F(\alpha,\beta):F] = [F(\alpha,\beta):F(\alpha)] \ [F(\alpha):F] \leq p(p-1) = 20.$$
Now, suppose that there is some third root $\gamma$ such that $\gamma\in F(\alpha,\beta)$. Then $F(\alpha,\beta,\gamma) = F(\alpha,\beta)$. Let $\delta, \varepsilon$ be the remaining roots of $f$. Since the characteristic is $0$, the irreducible polynomial $f$ is separable.Then $\delta$ is a root of $\frac{f(x)}{(x-\alpha)(x-\beta)(x-\gamma)} \in F(\alpha,\beta,\gamma)[x]$, so that
$$[F(\alpha,\beta,\gamma,\delta):F(\alpha,\beta,\gamma)] \leq 2.$$
Since $F(\alpha,\beta,\gamma) = F(\alpha,\beta)$, the tower theorem gives
$$[F(\alpha,\beta,\gamma, \delta):F] \leq 40.$$
Moreover $\alpha + \beta +\gamma + \delta + \varepsilon = \sigma_1(\alpha,\beta,\gamma, \delta,\varepsilon) \in F$, thus $F(\alpha,\beta,\gamma, \delta,\varepsilon) = F(\alpha,\beta,\gamma, \delta)$. Write $L = F(\alpha,\beta,\gamma, \delta,\varepsilon)$ the splitting field of $f$ over $F$. We have proved
$$[L:F]\leq 40.$$
The classification of transitive subgroups of $S_5$ from Section 13.2 shows that any transitive subgroup of $S_5$ with cardinality $\le 40$ is a subgroup of $\mathrm{AGL}(1,\F_5)$, thus is solvable. So $\Gal(L/F)$ is a solvable group, where $F$ has characteristic $0$, therefore $f$ is solvable (Theorem 8.5.3).
To conclude, the answer is ``yes'' when $p = \deg(f) = 5$.
\item[(b)] To prove that the answer is ``no'' when $p = \deg(f) = 7$, we use the counterexample $f = x^7-154\, x+99$ from Example 13.3.10.
The polynomial $f$ is not solvable, since its Galois group is $\mathrm{GL}(3,\F_2)$, which is simple (Section 14.3) and not commutative, thus non solvable.
We prove that there are roots $\alpha,\beta, \gamma$ of $f$ such that $\gamma \in F(\alpha,\beta)$.
As in Example 13.3.10, consider the resolvant
$$\Theta_f(y) = \prod_{1\leq i < j < k \leq 7} \left(y - (\alpha_i + \alpha_j + \alpha_k)\right) \in \Q[y].$$
Then the factorization of $\Theta_f(y)$ over $\Q$ is
$$\Theta_f(y) = g(y) h(y),$$
where the polynomials $g,h$, given in Example 13.3.10, are irreducible factors of degrees $7$ and $28$.
Take three roots $\alpha,\beta,\gamma$ of $f$ such that $y-(\alpha+\beta+ \gamma)$ is any linear factor of $g$, so that the minimal polynomial of $\alpha+\beta+ \gamma$ is $g$, with $\deg(g) = 7$, thus
$$[\Q(\alpha+\beta+\gamma) : \Q] = 7.$$
Now we prove that $\gamma \in F(\alpha,\beta)$. Consider the chain of extensions
$$\Q\subset \Q(\alpha) \subset \Q(\alpha,\beta) \subset \Q(\alpha,\beta,\gamma) \subset L,$$
where $L$ is the splitting field of $f$ over $\Q$.
The minimal polynomial of $\alpha$ over $\Q$ is $f$, thus $[\Q(\alpha) : \Q] = 7$, and
$$[L:\Q] = |\Gal(L/\Q)| = |\mathrm{GL}(3,\F_2)| = 168 = 2^3 \times 3 \times 7.$$
By the Tower Theorem,
$$[L : \Q(\alpha)] = \frac{ [L : \Q]}{[ \Q(\alpha) : \Q]} = 2^3 \times 3$$
is not divisible by 7.
Since $\gamma$ is a root of $f$, the minimal polynomial of $\gamma$ over $f$ divides $f$. Thus
$$[\Q(\alpha,\beta,\gamma) : \Q(\alpha,\beta)] = 1\text{ or } 7.$$
If $[\Q(\alpha,\beta,\gamma) : \Q(\alpha,\beta)] = 7$, by the Tower Theorem, $7$ divides $[L : \Q(\alpha)] = 2^3\times 3$. This contradiction proves that
$$[\Q(\alpha,\beta,\gamma) : \Q(\alpha,\beta)] = 1,$$
therefore $\gamma \in \Q(\alpha,\beta).$
In this example, there exist roots $\alpha \ne \beta$ of $f$, and some third root $\gamma$ such that $\gamma \in F(\alpha,\beta)$, but $f$ is not solvable.
This shows that the answer is ``no'' when $p =\deg(f) = 7$.
\end{enumerate}
\end{proof}
\qquad
Note: In the proof of the Proposition 13.3.9, we saw that $G_f$ must be conjugate to $\mathrm{GL}(3,\F_2)$. This means that there is some numbering of the roots
$$
\left\{
\begin{array}{ccc}
\F_2^3\setminus\{(0,0,0\} & \to &\{\alpha \in L \, |\, f(\alpha) = 0\}\\
(\nu_1,\nu_2,\nu_3) &\to &\alpha_{\nu_1,\nu_2,\nu_3}
\end{array}
\right.
$$
which verify that, for all $\sigma \in\Gal(L/F)$, there is some $g \in \mathrm{GL}(3,\F_2)$ such that
$$\sigma(\alpha_{\nu_1,\nu_2,\nu_3}) = \alpha_{g \cdot (\nu_1,\nu_2,\nu_3)}.$$
In this correspondance, the roots of $f$ are seen as nonzero vectors in $\F_2^3$, and the seven roots of $g$ correspond to the seven (unordered) triples of linearly dependent nonzero vectors in $\F_2^3$. So the roots $\alpha,\beta, \gamma$ where chosen in the preceding proof such that the corresponding vectors $u,v,w$ verify $w= u+v$ (but not $\gamma = \alpha + \beta$) .
This is what we understand in the hint of D.A. Cox ``Regard the roots as the nonzero vectors of $\F_2^3$ and pick roots $\alpha,\beta, \gamma$ such that $\gamma = \alpha+\beta$''.
This last equality is not true in $L$, but true for the corresponding vectors in $\F_2^3$.
Moreover, let $\alpha\ne \beta$ be {\it any} pair of roots. The corresponding vectors $u,v$ are such that $u,v,u+v = -u-v$ is not a base, so that the root $\gamma$ corresponding to $u+v$ is such that $ y - (\alpha+\beta+\gamma)$ is a factor of $g$, and the preceding proof shows that $\gamma \in \Q(\alpha,\beta)$. For each pair $\alpha\ne \beta$ of roots of $f = x^7-154\, x+99$, there exists a third root $\gamma \not \in \{\alpha,\beta\}$ such that $\gamma \in F(\alpha,\beta)$.
\subsection{IMPRIMITIVE POLYNOMIALS OF PRIME-SQUARED DEGREE}
\paragraph{Ex. 14.2.1}
{\it Prove (14.7).
}
\begin{proof}
Given $\sigma'=(\tau';\mu_1',...,\mu_k'),\sigma=(\tau;\mu_1,...,\mu_k)\in A\wr B$. Since $\sigma'$ maps $R_i$ to $R_{\tau'(i)}$ via $\mu_i'$, if we set $j=\tau'(i)$, then $\sigma$ maps $R_j$ to $R_{\tau(j)}=R_{\tau(\tau'(i))}=R_{\tau\tau'(i)}$ via $\mu_j=\mu_{\tau'(i)}$.
Hence $\sigma\sigma'$ maps $R_i$ to $R_{\tau\tau'(i)}$ via $\mu_{\tau'(i)}\mu_i'$.
More explicitly, by the definition of $(\tau; \mu_1,\ldots,\mu_k)$, for all $(i,j) \in \{1,\ldots,k\} \times \{1,\ldots,l\}$,
$$(\tau;\mu_1,\ldots,\mu_k)(i,j) = (\tau(i), \mu_i(j)).$$
Applying three times this definition, we obtain
\begin{align*}
(\tau; \mu_1,\ldots,\mu_k)(\tau'; \mu'_1,\ldots,\mu'_k)&= (\tau; \mu_1,\ldots,\mu_k)(\tau'(i),\mu'_i(j))\\
&= (\tau( \tau'(i)), \mu_{\tau'(i)}(\mu'_i(j))\\
&= ((\tau \tau')(i), (\mu_{\tau'(i)} \mu'_i)(j)\\
&=(\tau\tau';\mu_{\tau'(1)}\mu_1',...,\mu_{\tau'(k)}\mu_k')(i,j)
\end{align*}
Since this equality is true for all $(i,j) \in \{1,\ldots,k\} \times \{1,\ldots,l\}$,
$$(\tau;\mu_1,...,\mu_k)(\tau';\mu_1',...,\mu_k')=(\tau\tau';\mu_{\tau'(1)}\mu_1',...,\mu_{\tau'(k)}\mu_k').$$
\end{proof}
\paragraph{Ex. 14.2.2}
{\it The wreath product $S_3 \wr S_2 \subset S_6$ can be thought of as the subgroup of all permutations that preserve the blocs $R_1 = \{1,2\}, R_2 = \{3,4\},R_3 = \{5,6\}$. As noted in Example 14.2.11, $S_3 \wr S_2$ has order $6\cdot3^3 = 48$.
\be
\item[(a)] Show that $(S_3 \wr S_2) \cap A_6$ has order $24$.
\item[(b)] Show that $S_3 \wr S_2$ is the centralizer of $(1\,2)(3\,4)(5\,6)$ in $S_6$ (meaning that $S_3 \wr S_2$ consists of all permutations in $S_6$ that commute with $(1\,2)(3\,4)(5\,6)$).
\item[(c)] Use part (b) to show that $S_3 \wr S_2$ is isomorphic to $((S_3 \wr S_2) \cap A_6) \times S_2$.
\ee
See the next exercise for more on $S_3 \wr S_2$ and $(S_3 \wr S_2) \cap A_6$.
}
\begin{proof}
\item[(a)] Let $\varphi$ the restriction of the sign $\mathrm{sgn}$ to $(S_3 \wr S_2) \cap A_6$:
$$
\varphi \left\{
\begin{array}{ccc}
S_3 \wr S_2 & \to & \{-1,1\}\\
\sigma & \mapsto & \mathrm{sgn}(\sigma)
\end{array}
\right.
$$
Since $\mathrm{sgn}$ is a morphism, its restriction $\varphi$ is also a morphism, and $\varphi$ is surjective (onto), because $\varphi(e) = 1$, and $\varphi((1\,2)) = -1$, where $(1\,2) \in S_3\wr S_2$. Moreover the kernel of $\varphi$ is $\ker(\varphi) = (S_3 \wr S_2) \cap A_6$.
Therefore $\mathrm{im}(\varphi) = \{-1,1\} \simeq (S_3 \wr S_2)/ ((S_3 \wr S_2) \cap A_6)$. This shows that $$|(S_3 \wr S_2) \cap A_6| = \frac{1}{2} |S_3 \wr S_2| = 24.$$
\item[(b)] Let $\tau \in S_n$. Then $\tau$ is in the centralizer of $\sigma = (1\,2)(3\,4)(5\,6)$ if and only if
$$\tau (1\,2)(3\,4)(5\,6) \tau^{-1} = (1\,2)(3\,4)(5\,6),$$
which is equivalent to
$$(\tau(1)\, \tau(2))(\tau(3)\, \tau(4))(\tau(5)\, \tau(6)) = (1\,2)(3\,4)(5\,6).$$
Write $R_1 = \{1,2\}, R_2 = \{3,4\},R_3 = \{4,5\}$. Then $R_1, R_2,R_3$ are the three orbits of $\sigma$ acting on $\{1,\ldots,6\}$, the supports of the decomposition of $\sigma$ in disjoint cycles.
Since $\tau$ is a bijection, the 6 values $\tau(1),\tau(2),\tau(3), \tau(4),\tau(5), \tau(6)$ are distinct, so $(\tau(1)\, \tau(2)),(\tau(3)\, \tau(4)),(\tau(5)\, \tau(6))$ are disjoint $2$-cycles.
If $\tau$ is the centralizer of $\sigma$, the equality $(\tau(1)\, \tau(2))(\tau(3)\, \tau(4))(\tau(5)\, \tau(6)) = (1\,2)(3\,4)(5\,6)$ shows that $\tau(R_1),\tau(R_2),\tau(R_3)$ are also the three orbits of $\sigma$, so that
$$\{\{1,2\},\{3,4\},\{5,6\}\} =\{\{ \tau(1), \tau(2)\},\{\tau(3), \tau(4)\},\{\tau(5), \tau(6)\}\},$$
that is
$$\{R_1,R_2,R_3\} = \{\tau(R_1),\tau(R_2),\tau(R_3)\},$$
which means that there is some permutation $\tau'$ of $\{1,2,3\}$ such that $\tau(R_i) = R_{\tau'(i)}, \ i=1,2,3$. In other words, $\sigma$ preserves the blocks $R_1,R_2,R_3$, so that $\sigma \in S_3 \wr S_2$.
To prove the converse, it is more convenient to use the other usual representation of $S_3\wr S_2$. Then $\sigma = (e; \mu,\mu,\mu)$, where $\mu = (1\, 2) \in S_2$. Let $\tau = (\lambda; \mu_1,\mu_2,\mu_3)$ be any element of $S_3 \wr S_2$ (then $\mu_i = ()$ or $\mu_i = \mu)$. Then (14.7) gives
\begin{align*}
\tau \sigma &= (\lambda; \mu_1,\mu_2,\mu_3)(e; \mu,\mu,\mu)\\
&=(\lambda;\mu_1\mu, \mu_2 \mu,\mu_3\mu)\\
\sigma \tau &= (e;\mu,\mu;\mu)(\lambda,\mu_2,\mu_2,\mu_3)\\
&= (\lambda; \mu \mu_1, \mu \mu_2,\mu \mu_3)
\end{align*}
Since $S_2 = \{e,\mu\}$ is commutative, $\mu \mu_i = \mu_i \mu,\ i=1,2,3$, thus $\tau \sigma = \sigma \tau$.
The centralizer of $(1\,2)(3\,4)(5\,6)$ in $S_n$ is $S_3 \wr S_2$.
\item[(c)] Since the order of $\sigma = (1\,2)(3\,4)(5\,6)$ is $2$, $\langle \sigma \rangle = \{e,\sigma\} \simeq S_2$ and we can write $\sigma^{\varepsilon }, \varepsilon \in \{0,1\}$ the two elements of $\langle \sigma \rangle$.
Let
$$
\varphi
\left \{
\begin{array}{ccc}
(S_3 \wr S_2) \cap A_6 \times \langle \sigma \rangle & \to & S_3\wr S_2\\
(\tau, \sigma^{\varepsilon}) & \mapsto &\tau \sigma^{\varepsilon}.
\end{array}
\right.
$$
$\bullet$ $\varphi$ is a morphism: For all $\tau, \tau' \in (S_3 \wr S_2) \cap A_6$ and $\sigma^{\varepsilon}, \sigma^{\varepsilon'} \in \langle \sigma \rangle $, $\sigma \tau' = \tau' \sigma$ by part (b), thus
\begin{align*}
\varphi(\tau \sigma^{\varepsilon}) \varphi(\tau' \sigma^{\varepsilon'})&= \tau \sigma^{\varepsilon} \tau' \sigma^{\varepsilon'}\\
&= \tau \tau' \sigma^\varepsilon \sigma^{\varepsilon'}\\
&= \varphi((\tau,\sigma^\varepsilon) (\tau', \sigma^{\varepsilon'}))
\end{align*}
$\bullet$ $\ker \varphi$ is trivial: if $\varphi(\tau, \sigma^{\varepsilon}) = e$, then $\tau \sigma^{\varepsilon} = e$, so that $\tau = \sigma^{-\varepsilon} \in \{e, \sigma\}$. $\tau = \sigma$ is impossible, since $\tau$ is an even permutation, and $\sigma$ is odd. Therefore $\tau = e$, and $\sigma^{\varepsilon} = e$. Thus $\varphi$ is injective (one to one).
$\bullet$ Since $|((S_3 \wr S_2) \cap A_6) \times \langle \sigma \rangle | = |S_3\wr S_2|$, $\varphi$ is a bijection, thus $\varphi$ is a group isomorphism.
$$S_3 \wr S_2 \simeq ((S_3 \wr S_2) \cap A_6) \times \langle \sigma \rangle \simeq ((S_3 \wr S_2) \cap A_6) \times S_2 .$$
\end{proof}
\paragraph{Ex. 14.2.3}
{\it One of the challenges of group theory is that the same group can have radically differnet descriptions. For instance, $S_4$ and the group $G = (S_3 \wr S_2) \cap A_6$ appearing in Example 14.2.11 both have order $24$. In this exercise, you will prove that they are isomorphic. We will use the notation of Exercise 2.
\be
\item[(a)] There is a natural homomorphism $G \to S_3$ given by how elements of $G$ permute the blocks $R_1,R_2,R_3$. Show that this map is onto, and express the elements of the kernel as products of disjoints cycles.
\item[(b)] Use the Sylow Theorems to show that $G$ has one or four $3$-Sylow subgroups.
\item[(c)] Show that $A_6$ has no element of order $6$.
\item[(d)] Use part (c) and the kernel of the map $G \to S_3$ from part (a) to show that $G$ has four $3$-Sylow subgroups.
\item[(e)] $G$ acts by conjugation on its four $3$-Sylow subgroups. Use this to prove that $G \simeq S_4$.
\item[(f)] Using Exercise 2, conclude that $S_3 \wr S_2 \simeq S_4 \times S_2$.
We note without proof that $S_3 \wr S_2 \simeq S_4 \times S_2$ is also isomorphic to the full symmetry group (rotations and reflexions) of the octahedron.
\ee
}
\begin{proof}
\item[(a)] Let $\varphi : G \to S_3$ defined by $\tau = \varphi(\sigma)$ iff $\sigma(R_i) = R_{\tau(i)}$. In other notations, this is the restriction to $G$ of the homomorphism of part (b) of Lemma 14.2.8, thus $\varphi$ is an homomorphism.
$\bullet$ $\varphi$ is surjective: Let $\tau$ be any permutation in $S_3$.
If $\tau$ is even, $\tau = (1\,2\,3)^k,\ k = 0,1,2$. Let
$$\sigma =
\left(
\begin{array}{cccccccc}
1 & 2 & & 3 & 4 & & 5 & 6\\
3 & 4 & & 5 & 6 & & 1& 2\\
\end{array}
\right)
= (1\,3\,5)(2\,4\,6).
$$
$\sigma$ preserves the block structure defined by $R_1,R_2,R_3$, and $\sigma \in A_6$, so that $\sigma \in G = (S_3 \wr S_2) \cap A_6$. Moreover $\sigma(R_1) = R_2, \sigma(R_2) = R_3, \sigma(R_3) = R_1$, thus $\varphi(\sigma) = (1\,2\,3)$, and $\varphi(\sigma^k )= (1\,2\,3)^k = \tau$.
If $\tau$ is odd, then $\tau \in \{(1\,2),(2\,3),(1\,3)\}$, and
\begin{align*}
(1\,2) = \varphi(\sigma_1), \qquad \sigma_1 =
\left(
\begin{array}{cccccccc}
1 & 2 & & 3 & 4 & & 5 & 6\\
3 & 4 & & 1 & 2 & & 5& 6\\
\end{array}
\right) = (1\,3)(2\,4) \in G,\\
(2\,3) = \varphi(\sigma_2), \qquad \sigma_2 =
\left(
\begin{array}{cccccccc}
1 & 2 & & 3 & 4 & & 5 & 6\\
1 & 2 & & 5 & 6 & & 3& 4\\
\end{array}
\right) = (3\,5)(4\,6) \in G,\\
(1\,3) = \varphi(\sigma_3), \qquad \sigma_3 =
\left(
\begin{array}{cccccccc}
1 & 2 & & 3 & 4 & & 5 & 6\\
5 & 6 & & 3 & 4 & & 1& 2\\
\end{array}
\right) = (1\,5)(2\,6) \in G.\\
\end{align*}
Therefore $\varphi$ is surjective.
$\bullet$ Let $\sigma \in S_6$. Then $\sigma \in \ker \varphi$ iff $\sigma \in A_6$ and $\sigma(R_1) = R_1, \sigma(R_2) = R_2, \sigma(R_3) = R_3$.
Morerover, for all $\sigma \in A_6$,
\begin{align*}
&\sigma(R_1) = R_1, \sigma(R_2) = R_2, \sigma(R_3) = R_3\\
\iff& \{\sigma(1), \sigma(2)\} = \{1,2\}, \{\sigma(3),\sigma(4)\} = \{3,4\}, \{\sigma(5),\sigma(6)\} = \{5,6\}\\
\iff &\sigma \in \{e,(1\,2)(3\,4), (1\,2)(5\,6), (3\,4)(5\,6)\}.
\end{align*}
$$\ker \varphi = \{e,(1\,2)(3\,4), (1\,2)(5\,6), (3\,4)(5\,6)\}.$$
Verification: $6 = |S_3| = |G/\ker(\varphi)| = 24/4$.
\item[(b)] Let $N$ be the number of $3$-Sylow subgroups of $G$. By the third Sylow Theorem,
$$N \mid 24 = |G|, \qquad N \equiv 1 \pmod 3.$$
Therefore $N = 1$ or $N = 4$.
\item[(c)] Let $\tau \in S_6$ be a permutation of order 6. If $\tau = \tau_1\cdots \tau_k$ is the decomposition of $\tau$ in disjoint cycles, then the order of $\tau$ is the lcm of the order of $ \tau_1,\ldots,\tau_k$. Therefore $\tau$ is a $6$-cycle or a product of a $2$-cycle by a $3$-cycle. In both cases $\tau$ is odd. Therefore $A_6$ has no element of order $6$.
\item[(d)] Reasoning by contradiction, suppose that $G$ has only one $3$-Sylow subgroup $H$. Then, for all $g \in G$, $gH g^{-1}$ is a $3$-Sylow, thus $gH g^{-1} = H$, and $H$ is a normal subgroup of $G$.
Moreover $K = \ker \varphi = \{e,(1\,2)(3\,4), (1\,2)(5\,6), (3\,4)(5\,6)\}$ is normal in $G$, and has order 4. Therefore $H \cap K = \{e\}$.
The usual characterization of direct products (see Ex. 14.3.7) shows that, for all $h \in H$, all $k \in K$, $hk = kh$, and $HK$ is a normal subgroup of $G$ isomorphic to $H \times K$.
Take $h$ an element of order $3$ in $H,$ and $k$ and element of order 2 in $K$. Since $kh = hk$, the order of $hk \in A_6$ is 6, which is impossible by part (c).
Therefore $G$ has exactly four $3$-Sylow subgroups.
\item[(e)] Write $X = \{H_1,H_2,H_3,H_4\}$ the set of $3$-Sylow subgroups of $G$, and $S(X)$ the set of permutations of $X$. Then $S(X) \simeq S_4$, and $g\cdot H = g H g^{-1}$ defines a left action of $G$ on $X$, so that
$$
\psi
\left\{
\begin{array}{ccc}
G & \to & S(X)\\
g & \mapsto &
\sigma = \left(
\begin{array}{cccc}
H_1&H_2&H_3&H_4\\
gH_1g^{-1} & gH_2 g^{-1} & gH_3g^{-1} & gH_4g^{-1}
\end{array}
\right)
\end{array}
\right.
$$
is a group homomorphism.
It is not obvious that $\psi$ is bijective. We prove first that $\psi$ is surjective (onto). We give explicitly the $3$-Sylow subgroups. Let
\begin{align*}
&\lambda_1 =
\left(
\begin{array}{cccccccc}
1 & 2 & & 3 & 4 & & 5 & 6\\
3&4&&5&6&&1&2 \\
\end{array}
\right) = (1\,3\,5)(2\,4\,6),\\
&\lambda_2 =
\left(
\begin{array}{cccccccc}
1 & 2 & & 3 & 4 & & 5 & 6\\
3&4&&6&5&&2&1 \\
\end{array}
\right) = (1\,3\,6)(4\,5\,2),\\
&\lambda_3 =
\left(
\begin{array}{cccccccc}
1 & 2 & & 3 & 4 & & 5 & 6\\
6&5&&2&1&&3&4 \\
\end{array}
\right) = (1\,6\,4)(5\,3\,2),\\
&\lambda_4 =
\left(
\begin{array}{cccccccc}
1 & 2 & & 3 & 4 & & 5 & 6\\
4&3&&6&5&&1&2 \\
\end{array}
\right) = (1\,4\,5)(3\,6\,2).
\end{align*}4
Then $\lambda_1,\ldots,\lambda_4 \in G$ have order $3$, and $H_1 = \langle \lambda_1 \rangle = \{e,\lambda_1,\lambda_1^2\},\ldots,H_4 = \langle \lambda_4 \rangle = \{e,\lambda_4,\lambda_4^2\}$ are distinct, thus they are the four $3$-Sylow of $G$.
Now take
\begin{align*}
&g =
\left(
\begin{array}{cccccccc}
1 & 2 & & 3 & 4 & & 5 & 6\\
4&3&&2&1&&5&6 \\
\end{array}
\right) = (1\,4)(2\,3)\\
&h=
\left(
\begin{array}{cccccccc}
1 & 2 & & 3 & 4 & & 5 & 6\\
2&1&&5&6&&4&3 \\
\end{array}
\right) = (1\,2)(3\,5\,4\,6)
\end{align*}
(We give a geometrical explanation of this choice in the final note.)
Then
\begin{align*}
g \lambda_1 g^{-1} &= (1\,4)(2\,3)(1\,3\,5)(2\,4\,6)(1\,4)(2\,3)\\
&=
\left(
\begin{array}{cccccccc}
1 & 2 & & 3 & 4 & & 5 & 6\\
6&5&&1&2&&4&3 \\
\end{array}
\right) = (1\,6\,3)(2\,5\,4) = \lambda_2^2,
\end{align*}
thus $gH_1g^{-1} = H_2$, and since $g = g^{-1}$, $g H_2 g^{-1} = H_1$.
Moreover
\begin{align*}
g \lambda_3g^{-1} &=(1\,4)(2\,3)(1\,6\,4)(5\,3\,2)(1\,4)(2\,3)\\
&=
\left(
\begin{array}{cccccccc}
1 & 2 & & 3 & 4 & & 5 & 6\\
4&3&&5&6&&2&1 \\
\end{array}
\right)
=(1\,4\,6)(2\,3\,5)
=\lambda_3^2,
\end{align*}
thus $gH_3g^{-1} = H_3$, and since $\psi(g)$ is a permutation, $gH_4 g^{-1} = H_4$.
Therefore $\psi(g) \in S(X)$ is the permutation
$
\left(
\begin{array}{cccc}
H_1&H_2&H_3&H_4\\
H_2&H_1&H_3&H_4
\end{array}
\right)
$, which corresponds to the transposition $(1\,2) \in S_4$.
Similarly,
\begin{align*}
h\lambda_1h^{-1}&= (1\,2)(3\,5\,4\,6)(1\,3\,5)(2\,4\,6)(3\,6\,4\,5)(1\,2)\\
&=
\left(
\begin{array}{cccccccc}
1 & 2 & & 3 & 4 & & 5 & 6\\
6&5&&1&2&&4&3 \\
\end{array}
\right) =(1\,6\,3)(2\,5\,4) = \lambda_2^2,\\
h\lambda_2h^{-1} &= (1\,2)(3\,5\,4\,6)(1\,3\,6)(4\,5\,2)(3\,6\,4\,5)(1\,2)\\
&=
\left(
\begin{array}{cccccccc}
1 & 2 & & 3 & 4 & & 5 & 6\\
6&5&&2&1&&3&4 \\
\end{array}
\right) = (1\,6\,4)(2\,5\,3) = \lambda_3,\\
h\lambda_3h^{-1} &= (1\,2)(3\,5\,4\,6)(1\,6\,4)(5\,3\,2)(3\,6\,4\,5)(1\,2)\\
&=
\left(
\begin{array}{cccccccc}
1 & 2 & & 3 & 4 & & 5 & 6\\
4&3&&6&5&&1&2 \\
\end{array}
\right) = (1\,4\,5)(2\,3\,6) = \lambda_4,
\end{align*}
thus $hH_1h^{-1} = H_2, hH_2h^{-1} = H_3, hH_1h^{-1} = H_4$, and since $\psi(g)$ is a permutation, $h H_4h^{-1} = H_1$. Therefore
$\psi(g) = \left(
\begin{array}{cccc}
H_1&H_2&H_3&H_4\\
H_2&H_3&H_4&H_1
\end{array}
\right)
$
corresponds to the $4$-cycle $(1\,2 \,3 \,4)$.
Since $\{(1\,2), (1\,2\,3\,4)\}$ is a set of generators of $S_4$, $S(X)$ is generated by $\psi(g), \psi(h)$, so that $S(X) = \psi(G)$, and $\psi$ is surjective. Moreover, $|G| = |S(X)| = 24$, thus $\psi$ is a bijection, and a group isomorphism:
$$G \simeq S(X) \simeq S_4.$$
\item[(f)] To conclude, using Exercise 2, we obtain
$$S_3\wr S_2 \simeq ((S_3 \wr S_2) \cap A_6) \times S_2 = G \times S_2 \simeq S_4 \times S_2.$$
\bigskip
Note: We have proved in Exercise 7.5.10 that the symmetry group $G_0$ of the cube (or octahedron), is isomorphic to $S_4$. By composition with the indirect isometry $\sigma : v\mapsto -v$, which commutes with all elements in the group, we obtain the full symmetry group, isomorphic to $S_4 \times S_2$.
We have a geometrical description of $G = (S_3\wr S_2) \cap A_6$ by regrouping the opposite faces of a cube in blocs: stick $1$ on a face of a dice, $2$ on the opposite face, and so on (I stuck labels on my Rubik's cube). Then the $24$ rotations of the cube send opposite faces on opposite faces, so that the bloc structure $\{\{1,2\},\{3,4\},\{5,6\}\}$ is preserved by rotations.
We have proved in Exercise 7.5.10 that $G_0$ acts on the 4 long diagonals $D_1,D_2,D_3,D_4$ of the cube, so that $G_0 \simeq S_4$. Each of the four $3$-Sylow of $G_0$ is generated by the rotation with angle $\frac{2\pi}{3}$ around such a long diagonal. They correspond to the $3$-Sylow $H_1,\ldots,H_4$ of $G$: this was useful for the above description of the $H_i$. Each $3$-Sylow corresponds to a long diagonal, so that $gH_ig^{-1} = H_j$ is equivalent to $\sigma(D_i) = D_j$, where $\sigma$ corresponds to $g$. It remains to find a rotation which acts on these diagonals as some given permutation in $S_4$, such that $(1\,2)$ or $(1\,2\,3\,4)$. The corresponding permutations $g,h \in G $ are given in the text.
\end{proof}
\paragraph{Ex. 14.2.4}
{ \it
Let $A$ and $B$ be solvable permutation groups. Prove that their wreath product $A\wr B$ is also solvable.
}
\medskip
We first proof a lemma, which is not given in Chapter 8.
\medskip
{\bf Lemma.} {\it If $G,H$ are solvable groups, then $G \times H$ is solvable.}
\medskip
{\it Proof of Lemma.} We have subgroups
\begin{align*}
&\{e\} \subset G_n \subset \cdots \subset G_1 \subset G_0 = G\\
&\{e'\} \subset H_m \subset \cdots \subset H_1 \subset H_0 = H
\end{align*}
such that $G_i$ is normal in $G_{i-1}$ and $G_{i-1}/G_i$ is Abelian for $i=1,\ldots,n$, and $H_i$ is normal in $H_{i-1}$ and $H_{i-1}/H_i$ is Abelian for $i=1,\ldots,m$.
If $n >m$, we can define $H_{m+1} = H_{m+2} =\cdots=H_n=\{e'\}$, and proceed similarly if $n<m$, so we can assume that $n=m$:
\begin{align*}
&\{e\} \subset G_n \subset \cdots \subset G_1 \subset G_0 = G\\
&\{e'\} \subset H_n \subset \cdots \subset H_1 \subset H_0 = H
\end{align*}
Then
$$
\{(e,e')\} =G_n\times H_n \subset \cdots \subset G_1\times H_1 \subset G_0\times H_0 = G \times H.
$$
We prove
$$(G_{i-1}\times H_{i-1}) / (G_i \times H_i) \simeq G_{i-1}/G_i \times H_{i-1}/H_i.$$
Indeed,
$$
\psi
\left\{
\begin{array}{ccc}
G_{i-1} \times H_{i-1} & \to & G_{i-1}/G_i \times H_{i-1}/H_i\\
(g,h) & \mapsto & (gG_i, hH_i)
\end{array}
\right.
$$
is surjective, and its kernel is $G_i \times H_i$. This proves our assertion.
Therefore $(G_{i-1}\times H_{i-1}) / (G_i \times H_i)$ is Abelian. Then Exercise 8.1.8 shows that $G\times H $ is solvable.
\qed
\begin{proof} {\it (of Ex.14.2.4.)}
Let
$$
\varphi
\left\{
\begin{array}{ccc}
A \wr B & \to & A\\
(\tau; \mu_1,\ldots,\mu_k) & \mapsto &\tau.
\end{array}
\right.
$$
By Lemma 14.2.8, $\varphi$ is onto, and its kernel $H = \ker(\varphi)$ is isomorphic to $B^k$. Then $B^k$ is solvable by induction with the above Lemma, so that $H$ is solvable, and $(A \wr B) / H = (A \wr B)/\ker(\varphi) \simeq A$ is solvable. By Theorem 8.1.4, $A\wr B$ is solvable.
\end{proof}
\paragraph{Ex. 14.2.5}
{\it This exercise will complete the proof of Theorem 14.2.15.
\be
\item[(a)] Let $G_i \to S_p$ be the map defined in (14.9). Prove that it is a group homomorphism and that its image $G'_i \subset S_p$ is transitive and solvable.
\item[(b)] Let $\sigma = (\tau; \mu_1,\ldots,\mu_p)$ and $(\rho;\nu_1,\ldots,\nu_p)$ be as in the proof of Theorem 14.2.15. Thus we have a fixed $j$ such that $i=\tau(j), \nu_i = \theta$, and $\rho(i) = i$. Now let $\gamma = (\tau^{-1} \rho \tau; \lambda_1,\ldots,\lambda_p)$ be as in (14.11). Prove carefully that $\lambda_j = \mu_j^{-1} \theta \mu_j$.
\ee
}
\begin{proof}
\item[(a)] The map $\varphi_i$ defined in (14.9) is
$$
\varphi_i
\left\{
\begin{array}{ccc}
G_i & \to &S_p\\
(\tau; \mu_1,\ldots,\mu_p) & \mapsto &\mu_i.
\end{array}
\right.
$$
Let $\lambda = (\tau; \mu_1,\ldots,\mu_p),\lambda' = (\tau'; \mu_1,\ldots,\mu_p)$ be elements of $G_i$. The definition of $G_i$ shows that $\lambda(R_i) = \lambda'(R_i) = R_i$, so that $\tau(i) =\tau'(i)=i$.
By (14.7) (see Exercise 1),
$$\lambda \lambda' =(\tau;\mu_1,...,\mu_k)(\tau';\mu_1',...,\mu_k')=(\tau\tau';\mu_{\tau'(1)}\mu_1',...,\mu_{\tau'(k)}\mu_k'),$$
therefore, using $\tau'(i) = i$,
\begin{align*}
\varphi_i( \lambda \lambda') &= \mu_{\tau'(i)} \mu'_i\\
&=\mu_i \mu'_i\\
&= \varphi_i(\lambda) \varphi_i(\lambda'),
\end{align*}
thus $\varphi_i$ is a group homomorphism.
\bigskip
Write $G'_i = \varphi_i(G_i) \subset S_p$. We prove first that $G'_i$ is transitive.
Take any $k$ and $l$ in $\{1,\ldots,p\}$. Since $G$ is transitive, there exists some $\lambda = (\tau;\mu_1,...,\mu_k) \in G$ which sends $(i,j)$ on $(i,k)$:
$$(\tau;\mu_1,\ldots,\mu_k)(i,j) = (\tau(i), \mu_i(j)) = (i,k).$$
Then $\tau(i) = i$, so that $\lambda \in G_i$ and $\mu_i = \varphi_i(\lambda) \in G'_i$. Moreover $\mu_i(j) = k$. This proves that $G'_i$ is a transitive subgroup of $S_p$.
Moreover, $G_i$ is a subgroup of the solvable group $G$, thus $G_i$ is solvable. Then $G'_i = \varphi_i(G_i)$ is isomorphic to $G_i/\ker(\varphi_i)$, which is a quotient of a solvable group, thus $G'_i$ is solvable.
\item[(b)] As in the proof of Theorem 14.2.15, let $\sigma = (\tau; \mu_1,\ldots,\mu_p) \in G$ be arbitrary, and fix $j$ between $1$ and $p$. By (14.10) with $i = \tau(j)$, $\theta \in G'_i = \varphi_i(G_i)$, thus there exists $\lambda = (\rho; \nu_1,\ldots,\nu_p) \in G_i$ such that $\theta = \varphi_i(\lambda)$, thus $\theta = \nu_i$ and $\rho(i) = i$.
Now consider the element $\gamma = \sigma^{-1} \lambda \sigma \in G$. Using (14.6) and (14.7), we obtain
\begin{align*}
\gamma &= (\tau; \mu_1,\ldots,\mu_p)^{-1} (\rho; \nu_1,\ldots,\nu_p)(\tau; \mu_1,\ldots,\mu_p)\\
&=(\tau^{-1};\mu^{-1}_{\tau^{-1}(1)},\ldots,\mu^{-1}_{\tau^{-1}(p) })(\rho \tau; \nu_{\tau(1)}\mu_1,\ldots,\nu_{\tau(p)} \mu_p)\\
&=(\tau^{-1};\xi_1,\ldots,\xi_p)(\rho \tau; \nu_{\tau(1)}\mu_1,\ldots,\nu_{\tau(p)} \mu_p)\qquad (\text{where }\xi_1 =\mu^{-1}_{\tau^{-1}(1)},\ldots, \xi_p =\mu^{-1}_{\tau^{-1}(p)}) \\
&= (\tau^{-1} \rho \tau; \xi_{(\rho \tau)(1)}\nu_{\tau(1)}\mu_1,\ldots,\xi_{(\rho \tau)(p)}\nu_{\tau(p)}\mu_p)\\
&= (\tau^{-1} \rho \tau; \mu^{-1}_{\tau^{-1}((\rho \tau)(1))}\nu_{\tau(1)}\mu_1,\ldots,\mu^{-1}_{\tau^{-1}((\rho \tau)(p))}\nu_{\tau(p)}\mu_p)\\
&=(\tau^{-1} \rho \tau; \mu^{-1}_{(\tau^{-1}\rho \tau)(1)}\nu_{\tau(1)}\mu_1,\ldots,\mu^{-1}_{(\tau^{-1}\rho \tau)(p)}\nu_{\tau(p)}\mu_p)\\
\end{align*}
If we write $\gamma = (\tau^{-1} \rho \tau; \lambda_1,\ldots,\lambda_p)$, we obtain
$$\lambda_k = \mu^{-1}_{(\tau^{-1}\rho \tau)(k)}\nu_{\tau(k)}\mu_k,\qquad k = 1,\ldots,p,$$
and at the index $j$, using $\theta = \nu_i = \nu_{\tau(j)}$,
\begin{align*}
\lambda_j &= \mu^{-1}_{(\tau^{-1}\rho \tau)(j)}\nu_{\tau(j)}\mu_j\\
&=\mu^{-1}_{(\tau^{-1}\rho \tau)(j)}\theta\mu_j.\\
\end{align*}
Since $i = \tau(j)$ and $\rho(i) = i$,
$$(\tau^{-1} \rho\tau)(j) = (\tau^{-1} \rho)(i) = \tau^{-1} (i) = j,$$
thus
$$\lambda_j = \mu_j^{-1} \theta \mu_j.$$
\end{proof}
\paragraph{Ex. 14.2.6}
{\it Let $A$ be a subgroup of $S_n$, and let $G$ be any group. Then define $A \wr G$ as in the Mathematical Notes.
\be
\item[(a)] Prove that $A \wr G$ is a group under the multiplication defined in the Mathematical Notes.
\item[(b)] State and prove a version of part (b) of Lemma 14.2.8 for $A \wr G$.
\item[(c)] Prove that $|A \wr G | = |A| |G|^n$ when $G$ is finite.
\ee
}
\begin{proof}
\be
\item[(a)]
Let $G$ be any group and let $A \subset S_n$ be a permutation group. Then set
$$A \wr G = \{ (\tau; g_1,\ldots,g_n)\, | \, \tau \in A,\ g_1,\ldots,g_n \in G\},$$
with an operation on this set defined by
$$(\tau; g_1,\ldots,g_n)(\tau'; g'_1,\ldots,g'_n) = (\tau \tau'; g_{\tau'(1)}g'_1,\ldots,g_{\tau'(n)} g'_n) \in A \wr G.$$
We write $e$ the identity of $G$, and $()$ the identity of $S_n$.
\be
\item[$\bullet$] Let $\lambda = (\tau; g_1,\ldots,g_n), \lambda' = (\tau';g'_1,\ldots,g'_n), \lambda''=(\tau'';g''_1,\ldots,g''_n)$ be elements of $A \wr G$. Then
\begin{align*}
\lambda(\lambda'\lambda'' )&= (\tau; g_1,\ldots,g_n)(\tau' \tau''; g_{\tau''(1)}g''_1,\ldots,g_{\tau''(n)} g''_n) \\
&= (\tau\tau'\tau''; g_{(\tau'\tau'')(1)} g'_{\tau''(1)} g''_1,\ldots,g_{(\tau'\tau'')(n)} g'_{\tau''(n)} g''_n)\\
(\lambda \lambda')\lambda'' &= (\tau \tau'; g_{\tau'(1)}g'_1,\ldots,g_{\tau'(n)} g'_n)(\tau'';g''_1,\ldots,g''_n)\\
&=(\tau\tau';h_1,\ldots,h_n)(\tau'';g''_1,\ldots,g''_n)\qquad (\text{where } h_k = g_{\tau'(k)}g'_k)\\
&=(\tau\tau'\tau''; h_{\tau''(1)} g''_1,\ldots,h_{\tau''(n)} g''_n)\\
&=(\tau\tau'\tau''; g_{\tau'(\tau''(1))}g'_{\tau''(1)}g''_1,\cdots,g_{\tau'(\tau''(n))}g'_{\tau''(n)}g''_n)\\
&=(\tau\tau'\tau''; g_{(\tau'\tau'')(1)} g'_{\tau''(1)} g''_1,\ldots,g_{(\tau'\tau'')(n)} g'_{\tau''(n)} g''_n)
\end{align*}
thus $\lambda(\lambda'\lambda'' ) = (\lambda \lambda')\lambda'' $, and the law is associative.
\item[$\bullet$] Write $\varepsilon = (();e,\ldots,e) = (\iota; e_1,\ldots, e_n)$, where $\iota = ()$, and $e_k = e, k=1,\ldots,n$. Then
\begin{align*}
\varepsilon \lambda &= (\iota;e_1,\ldots,e_n)(\tau; g_1,\ldots,g_n)\\
&=(\tau; e_{\tau'(1)}g_1,\ldots,e_{\tau'(n)} g_n)\\
&= (\tau; g_1,\ldots,g_n) = \lambda\qquad (\text{since } e_{\tau'(k)} = e)\\
\lambda \varepsilon &= (\tau; g_{\iota(1)} e_1,\ldots,g_{\iota(n)} e_n)\\
&= (\tau; g_1,\ldots,g_n) = \lambda \qquad(\text{since } \iota(k) = k, e_k = e).
\end{align*}
Therefore $\varepsilon =(();e,\ldots,e) $ is the identity of $A \wr G$.
\item[$\bullet$] Set $\mu = (\tau^{-1}; h_1,\ldots,h_n) = (\tau^{-1}; g_{\tau^{-1}(1)}^{-1}, \ldots,g_{\tau^{-1}(n)}^{-1})$, with $h_k = g_{\tau^{-1}(k)}^{-1},\ k=1,\ldots,n$. Then
\begin{align*}
\lambda \mu &= (\tau; g_1,\ldots,g_n)(\tau^{-1}; h_1,\ldots,h_n)\\
&=((); g_{\tau^{-1}(1)} h_1,\ldots,g_{\tau^{-1}(n)} h_n)\\
&=((); g_{\tau^{-1}(1)} g_{\tau^{-1}(1)}^{-1}, \ldots,g_{\tau^{-1}(n)} g_{\tau^{-1}(n)}^{-1})\\
&=((); e,\ldots,e) =\varepsilon\\
\mu \lambda &= (\tau^{-1}; h_1,\ldots,h_n)(\tau; g_1,\ldots,g_n)\\
&=((); h_{\tau(1)} g_1,\ldots,h_{\tau(n)} g_n\\
&=((); g_{\tau^{-1}(\tau(1))}^{-1} g_1,\ldots,g_{\tau^{-1}(\tau(n))}^{-1} g_n)\\
&=((); g_1^{-1}g_1,\ldots, g_n^{-1}g_n) = (();e,\ldots,e) = \varepsilon.
\end{align*}
Therefore every element in $A \wr G$ is invertible.
$A \wr G$ is a group under the multiplication defined in the Mathematical Notes.
\ee
\item[(b)] For the group $A \wr G$ of part (a), where $A \subset S_n$ and $G$ is a group, we show the following lemma:
{\bf Lemma.}
{\it The map
$$
\varphi
\left\{
\begin{array}{ccc}
A \wr G & \to A\\
(\tau; g_1,\ldots,g_n) & \mapsto \tau
\end{array}
\right.
$$
is a group homomorphism that is surjective and whose kernel is isomorphic to $G^n$.
}
\bigskip
Let $\lambda = (\tau; g_1,\ldots,g_n) , \lambda' = (\tau'; g'_1,\ldots,g'_n)$ be any elements of $A \wr G$. By definition,
$\lambda \lambda' = (\tau \tau'; g_{\tau'(1)}g'_1,\ldots,g_{\tau'(n)} g'_n),$
so that
$$\varphi(\lambda \lambda') = \tau \tau' = \varphi(\lambda) \varphi(\lambda').$$
$\varphi$ is a group homormphism.
If $\tau$ is any element of $A$, then $\varphi(\tau; e,\ldots,e) = \tau$, where $(\tau; e,\ldots,e) \in A \wr G$. Therefore $\varphi$ is surjective.
Moreover $(\tau; g_1,\ldots,g_n) \in \ker \varphi$ if and only if $\tau = ()$, therefore
$$\ker \varphi = \{\iota; g_1,\ldots, g_n)\, |\, (g_1,\ldots,g_n) \in G^n\}, \qquad \text{where } \iota = ().$$
Consider
$$
\psi
\left\{
\begin{array}{ccc}
\ker \varphi & \to & G^n\\
(\iota; g_1,\ldots,g_n) & \mapsto &(g_1,\ldots, g_n)
\end{array}
\right.
$$
Then $\psi$ is bijective (with inverse map $(g_1,\ldots,g_n) \mapsto (\iota,g_1,\ldots,g_n)$). We verify that $\psi$ is a group homomorphism: if $\lambda = (\iota; g_1,\ldots,g_n) , \lambda' = (\iota; g'_1,\ldots,g'_n)$ are elements of $\ker \varphi$, then
\begin{align*}
\psi (\lambda \lambda') &= \psi((\iota; g_1,\ldots,g_n)(\iota; g'_1,\ldots,g'_n))\\
&=\psi(\iota; g_{\iota(1)} g'_1,\ldots, g_{\iota(n)} g'_n)\\
&=\psi(\iota; g_1 g'_1,\ldots, g_n g'_n)\qquad (\text{since } \iota(k) = k)\\
&=(g_1 g'_1,\ldots, g_n g'_n)\\
&=(g_1\ldots,g_n)(g'_1,\ldots,g'_n)\\
&= \psi(\lambda) \psi(\lambda').
\end{align*}
So $\psi$ is an group isomorphism, and $\ker \varphi \simeq G^n$.
\item[(c)] By part (b), since $\varphi$ is a surjective homomorphism,
$$
(A\wr G )/ \ker \varphi \simeq A,
$$
and $\ker \varphi \simeq G^n$. Therefore
$$
|A| = |A \wr G| / |\ker \varphi| = |A\wr G|/ |G|^n,
$$
which proves
$$|A \wr G| = |A| |G|^n.$$
\ee
\end{proof}
\paragraph{Ex. 14.2.7}
{\it Let $A \wr G$ be as in Exercise 6, and let $H$ be the set of all functions
$$\phi:\{1,\ldots,n\} \to G.$$
\be
\item[(a)] Given $\phi,\chi \in H$, define $\phi \chi \in H$ by $(\phi \chi)(i) = \phi(i)\chi(i)$. Prove that this makes $H$ into a group isomorphic to the product group $G^n$.
\item[(b)] Elements of $A \wr G$ can be written $(\tau,\phi)$, where $\phi \in H$. Prove that in this notation, (14.7) becomes
$$(\tau,\phi)(\tau',\phi') = (\tau \tau',((\tau')^{-1} \cdot \varphi) \phi').$$
\item[(c)] $A \subset S_n$ acts on $\{1,\ldots,n\}$. Show that this induces an action of $A$ on $H$ via $(\tau\cdot \phi)(i) = \phi(\tau^{-1}(i))$. Be sure you understand why the inverse is necessary.
\item[(d)] The action of part (c) enable us to define the semidirect product $H \rtimes A$. Using the description of $A \wr G$ given in part (b), prove that the map
$$(\tau, \phi) \mapsto (\tau \cdot \phi, \tau)$$
defines a group isomorphism $A \wr G \simeq H \rtimes A$. This shows that wreath products can be represented as semidirect products.
\ee
}
\begin{proof}
\be
\item[(a)] Consider the two maps
$$
\varphi
\left\{
\begin{array}{ccc}
H & \to &G^n\\
\phi & \mapsto &(\phi(1),\ldots,\phi(n)),
\end{array}
\right.
\qquad
\psi
\left\{
\begin{array}{ccc}
G^n & \to &H\\
(x_1,\ldots,x_n)& \mapsto &
\xi
\left\{
\begin{array}{ccc}
\{1,\ldots,n\} & \to & G\\
i& \mapsto & x_i.
\end{array}
\right.
\end{array}
\right.
$$
Then $\psi \circ \varphi = 1_H$ and $\varphi \circ \psi = 1_{G^n}$, therefore $\varphi$ is bijective.
Moreover, for all $(\phi,\chi) \in H$,
\begin{align*}
\varphi(\phi \chi) &= ((\phi\chi)(1),\ldots, (\phi \chi)(n))\\
&=(\phi(1) \chi(1), \ldots, \phi(n) \chi(n))\\
&= (\phi(1),\ldots,\phi(n)) (\chi(1),\ldots,\chi(n))\\
&= \varphi(\phi) \varphi(\chi)).
\end{align*}
Therefore $H \simeq G^n$ via $\varphi$.
\item[(b,c)] If we define $\phi^\tau$, for $\tau \in S_n$ and $\phi \in H$, by $(\phi^\tau)(i) = \phi(\tau(i)),\ i=1,\ldots,n$, we obtain a right action: if $\tau, \tau' \in S_n$, for all $i\in\{1,\ldots,n\}$,
$$((\phi^{\tau})^{\tau'})(i) = (\phi^\tau)(\tau'(i)) = \phi(\tau(\tau'(i))) = \phi((\tau \tau')(i)) = \phi^{\tau \tau'}(i)),$$
thus $(\phi^{\tau})^{\tau'} = \phi^{\tau \tau'}$. To obtain a left action, we must define, as in part (c),
$$(\tau\cdot \phi)(i) = \phi(\tau^{-1}(i)),\ i=1,\ldots,n.$$
Then
$$(\tau' \cdot (\tau\cdot \phi))(i) = (\tau\cdot \phi)(\tau'^{-1}(i)) = \phi(\tau^{-1}(\tau'^{-1}(i))) = \phi(\tau'\tau)^{-1}(i) = ((\tau' \tau)\cdot \phi)(i),$$
so that $\tau' \cdot (\tau\cdot \phi) = (\tau' \tau)\cdot \phi)$ (and $e \cdot \tau = \tau$).
This is a proof of part (c), and this explains the recurrent and stressful injonction from D.A.Cox ``{\bf Be sure you understand} why the inverse is necessary''.
Using this action for part (b), we define $(\tau, \phi)$ for $\tau \in S_n, \phi \in H = G^{\{1,\cdots,n\}}$,by
$$(\tau, \phi) = (\tau; \phi(1),\ldots,\phi(n)),$$
so that
$$(\tau, \phi) = (\tau; g_1,\ldots,g_n) \iff \phi(1) = g_1,\ldots,\phi(n) = g_n.$$
If $(\tau, \phi) = (\tau; g_1,\ldots,g_n), (\tau', \phi') = (\tau'; g'_1,\ldots,g'_n)$, then
\begin{align*}
(\tau, \phi) (\tau', \phi') &= (\tau; g_1,\ldots,g_n)(\tau'; g'_1,\ldots,g'_n)\\
&=(\tau \tau'; g_{\tau'(1)}g'_1,\ldots,g_{\tau'(n)} g'_n) \\
&=(\tau \tau'; \phi(\tau'(1))\phi'(1),\ldots,\phi(\tau'(n)) \phi'(n))\\
&=(\tau \tau'; ((\tau')^{-1}\cdot\phi)(1)\phi'(1),\ldots,((\tau')^{-1}\cdot\phi)(n)\phi'(n))\\
&= (\tau \tau', ((\tau')^{-1}\cdot\phi)\phi').
\end{align*}
\item[(d)] Consider the map
$$
\varphi
\left\{
\begin{array}{ccc}
A \wr G & \to & H \rtimes A\\
(\tau,\phi) & \mapsto & (\tau\cdot \phi, \tau).
\end{array}
\right.
$$
If $\psi : H \rtimes A \to A \wr G$ is defined by $\psi(\chi, \tau) = (\tau, \tau^{-1} \cdot \chi)$, then, for all $\tau \in S_n, \phi,\chi \in H$,
\begin{align*}
(\psi \circ \varphi)(\tau, \phi) &= \psi(\tau\cdot \phi, \tau) = (\tau, \tau^{-1}\cdot (\tau \cdot \phi) = (\tau, \phi),\\
(\varphi \circ \psi)(\chi, \tau) &= \varphi(\tau, \tau^{-1} \cdot \chi) = (\tau \cdot (\tau^{-1} \cdot \chi), \tau) = (\chi, \tau).
\end{align*}
Thus $\psi \circ \varphi = 1_{A \wr G},\ \varphi \circ \psi = 1_{H \rtimes A}$. This proves that $\varphi$ is bijective.
Recall that the binary operation in $ H \rtimes A$ is defined by (6.9):
$$(\phi,\tau) (\phi',\tau') = (\phi(\tau\cdot \phi'), \tau \tau').
$$
We verify that $\varphi$ is a group homomorphism. Note first that, for $\tau \in S_n, \phi \chi \in H$,
$$\tau \cdot (\phi \chi) = (\tau \cdot \phi)(\tau \cdot \chi).$$
Indeed, for all $i \in \{1,\ldots,n\}$,
\begin{align*}(\tau \cdot (\phi \chi))(i) &= (\phi\chi)(\tau^{-1}(i))\\
&=\phi(\tau^{-1}(i)) \chi(\tau^{-1}(i))\\
&=(\tau \cdot \phi)(i) (\tau \cdot \chi)(i)\\
&=((\tau \cdot \phi)(\tau \cdot \chi))(i).
\end{align*}
Using this rule, we obtain
\begin{align*}
\varphi((\tau,\phi) (\tau',\phi')) &= \varphi(\tau \tau'; ((\tau')^{-1}\cdot\phi)\phi')\\
&= ((\tau\tau')\cdot((\tau')^{-1}\cdot\phi)\phi'),\tau \tau')\\
&= ((\tau\tau')\cdot((\tau')^{-1}\cdot\phi) ((\tau\tau')\cdot\phi'), \tau \tau')\\
&=((\tau \cdot\phi) ((\tau\tau' )\cdot \phi'), \tau \tau'),\\
\end{align*}
and using the binary operation in $H\rtimes A$,
\begin{align*}
\varphi(\tau, \phi) \varphi(\tau',\phi') &=(\tau\cdot \phi, \tau)((\tau'\cdot \phi', \tau')\\
&= ((\tau \cdot \phi) (\tau \cdot (\tau' \cdot \phi')), \tau \tau')\\
&=((\tau \cdot\phi) ((\tau\tau' )\cdot \phi'), \tau \tau'),
\end{align*}