-
Notifications
You must be signed in to change notification settings - Fork 4
/
Cox_Galois_Chapter15.tex
2257 lines (1927 loc) · 131 KB
/
Cox_Galois_Chapter15.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
%&LaTeX
\documentclass[11pt,a4paper]{article}
\usepackage[frenchb,english]{babel}
\usepackage[applemac]{inputenc}
\usepackage[OT1]{fontenc}
\usepackage[]{graphicx}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amsthm}
\usepackage{amssymb}
\usepackage{mathrsfs}
\usepackage{tikz}
\graphicspath{ {./figures/} }
%\input{8bitdefs}
% marges
\topmargin 10pt
\headsep 10pt
\headheight 10pt
\marginparwidth 30pt
\oddsidemargin 40pt
\evensidemargin 40pt
\footskip 30pt
\textheight 670pt
\textwidth 420pt
\def\imp{\Rightarrow}
\def\gcro{\mbox{[\hspace{-.15em}[}}% intervalles d'entiers
\def\dcro{\mbox{]\hspace{-.15em}]}}
\newcommand{\be} {\begin{enumerate}}
\newcommand{\ee} {\end{enumerate}}
\newcommand{\deb}{\begin{eqnarray*}}
\newcommand{\fin}{\end{eqnarray*}}
\newcommand{\ssi} {si et seulement si }
\newcommand{\D}{\mathrm{d}}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\C}{\mathbb{C}}
\newcommand{\F}{\mathbb{F}}
\newcommand{\U}{\mathbb{U}}
\newcommand{\re}{\,\mathrm{Re}\,}
\newcommand{\im}{\,\mathrm{Im}\,}
\newcommand{\ord}{\mathrm{ord}}
\newcommand{\Gal}{\mathrm{Gal}}
\newcommand{\legendre}[2]{\genfrac{(}{)}{}{}{#1}{#2}}
\title{Solutions to David A.Cox "Galois Theory''}
\refstepcounter{section} \refstepcounter{section}
\refstepcounter{section} \refstepcounter{section}
\refstepcounter{section}\refstepcounter{section}\refstepcounter{section}\refstepcounter{section}
\refstepcounter{section}\refstepcounter{section}\refstepcounter{section}\refstepcounter{section}
\refstepcounter{section}\refstepcounter{section}
\begin{document}
\section{Chapter 15 : THE LEMNISCATE}
\subsection{DIVISION POINTS AND ARC LENGTH}
\paragraph{Ex. 15.1.1}{\it Prove that the numbers described in Abel's theorem at the beginning of the chapter are precisely those in Theorem 10.2.1, provided we replace ``product of several numbers'' with ``product of distinct numbers'' in Abel's statement of the theorem.
}
\begin{proof}
The numbers described in Theorem 10.2.1 are the integers $n = 2^s p_1\cdots p_r$, where $p_1,\ldots,p_r$ are distinct Fermat primes, of the form $p_k = 2^{n_k} + 1$. Thus these numbers are the product of {\it distinct} numbers of the form $2^m$, or $2^{m}+1$, where $2^{m} + 1$ is prime, as described in the Theorem of Abel.
\end{proof}
\paragraph{Ex. 15.1.2}{\it Show that in polar coordinates, the equation of the lemniscate is $r^2 = \cos(2\theta)$.
}
\begin{proof}
By definition, a point $M = (x,y) \in \R^2$ is a point of the lemniscate $L$ if and only if
$$(x^2 + y^2)^2 = x^2 - y^2.$$
If $(r,\theta)$ are polar coordinates of $M = M(r,\theta)$, then $x = r \cos\theta, y = r \sin\theta$, thus, using $\cos^2 \theta + \sin^2 \theta = 1$, and $\cos(2\theta) = \cos^2 \theta) - \sin^2 \theta$, we obtain
\begin{align*}
M(r,\theta) \in L & \iff (r^2 \cos^2\theta + r^2 \sin^2\theta)^2 = r^2 \cos^2\theta - r^2 \sin^2\theta\\
&\iff r^4 = r^2 \cos(2\theta)\\
&\iff r^2 = \cos(2\theta).
\end{align*}
The equation of the lemniscate is $r^2 = \cos(2\theta)$.
\end{proof}
\paragraph{Ex. 15.1.3}{\it Prove that the two improper integrals $\int_0^1 (1-t^4)^{-1/2} \mathrm{d}t$ and $\int_{-1}^0 (1-t^4)^{-1/2} \mathrm{d}t$ converge.
}
\begin{proof}
The map $t \mapsto (1-t^4)^{-1/2}$ is continuous on $[0,1[$, thus $t \mapsto(1-t^4)^{-1/2} \mathrm{d}t$ is summable on $[1,x]$ for all $x \in [0,1]$.
Since $1-t^4 = (1-t)(1+t+t^2+t^3)$, $(1-t^4)^{-1/2} \sim [4(1-t)]^{-1/2}$ in the neighborhood of $1$. The Riemann Criterium shows that $\int_0^1 (1-t)^{-\alpha} \mathrm{d}t$ converges if $\alpha < 1$, and here $\alpha = 1/2$. Since $(1-t^4)^{-1/2} >0$, this is sufficient to prove that $\int_0^1 (1-t^4)^{-1/2} \mathrm{d}t$ converges.
Since $t \mapsto (1-t^4)^{-1/2}$ is even, the same is true in the neighborhood of $-1$, thus $\int_{-1}^0 (1-t^4)^{-1/2} \mathrm{d}t$ converges.
\end{proof}
\paragraph{Ex. 15.1.4}{\it Prove the arc length formula stated in (15.6)}
\begin{proof}
Here the equation of the ellipse $E$ is
$$x^2 + \frac{y^2}{b^2} = 1,$$
with eccentricity $k = \sqrt{1- b^2}$.
We compute the arc length $l$ of (E) between $x = u, y=v\ (-1<u<v<1)$ on the upper part of the curve. Then
$$l = \int_u^v \sqrt{1+\left( \frac{\D y}{\D x}\right)^2}\ \D x,$$
where $y = f(x) = b \sqrt{1-x^2}.$ Then $f'(x) = \frac{\D y}{\D x }= -\frac{2x}{\sqrt{1-x^2}}$, thus
\begin{align*}
l &= \int_u^v \sqrt{1+\left(\frac{bx}{\sqrt{1-x^2}}\right)^2}\ \D x\\
&=\int_u^v \sqrt{\frac{1 - x^2 + b^2 x^2}{1-x^2}}\ \D x\\
&=\int_u^v \sqrt{\frac{1 - k^2 x^2}{1-x^2}}\ \D x\\
\end{align*}
We have proved
$$l = \int_u^v \sqrt{1+\left( \frac{\D y}{\D x}\right)^2}\ \D x = \int_u^v \sqrt{\frac{1 - k^2 x^2}{1-x^2}}\ \D x = \int_u^v \frac{\sqrt{(1-x^2)(1 - k^2 x^2)}}{1-x^2}\ \D x.$$
The arc length of the ellipse is given by an elliptic integral.
\end{proof}
\paragraph{Ex. 15.1.5}{\it Shows that (15.7) reduces to $(x^2+y^2)^2 = x^2 -y^2$ when $a=b = 1/\sqrt{2}$.
}
\begin{proof}
If we take $a=b=1/\sqrt{2}$ in the formula of the ovals of Cassini
$$((x-a)^2 + y^2)((x+a)^2 + y^2) = b^4,$$
we obtain
\begin{align*}
\frac{1}{4} &= \left[ \left(x - \frac{1}{\sqrt{2}} \right)^2 + y^2\right ] \left[ \left(x + \frac{1}{\sqrt{2}} \right)^2 + y^2\right ] \\
&=\left( x^2+y^2 +\frac{1}{2} - \sqrt{2}\, x \right)\left( x^2+y^2 +\frac{1}{2} + \sqrt{2}\, x \right)\\
&=\left((x^2 + y^2 + \frac{1}{2}\right)^2 - 2 x^2\\
&=(x^2+y^2)^2 + (x^2+y^2) - 2 x^2\\
&= (x^2+y^2)^2 + y^2 -x^2 + \frac{1}{4}.
\end{align*}
Therefore, for $a=b =1/\sqrt{2}$, the equation $((x-a)^2 + y^2)((x+a)^2 + y^2) = b^4$ reduces to
$$(x^2 + y^2)^2 = x^2 - y^2,$$
which is the equation of the Lemniscate.
\end{proof}
\paragraph{Ex. 15.1.6}{\it Let $n>0$ be an odd integer, and assume that the $n$-division points of the lemniscate can be constructed with straightedge and compass. Prove that the same is true for the $2n$-division points. Your proof should include a picture.
}
\begin{proof} Suppose that $n = 2N+1$ is odd, and consider $M_0=0, \ldots,M_{n-1}$ the $n$-divisions points, where $M_k$ has positive arc length $s_k = k \frac{2\varpi}{n},\ k=0,\ldots,n-1$.
Then $s_k = (2k) \frac{2\varpi}{2n}$, so that $N_{2k} = M_k$ is also a $2n$-division point. The other $2n$-division points are the points $N_{2k+1}$ corresponding to the arc length $k \frac{2\varpi}{n} + \frac{\varpi}{n} = (2k+1) \frac{\varpi}{n}$. Then the symmetric point $N'_{2k+1}$ about the $x$-axis has arc length
$$\varpi - (2k+1) \frac{\varpi}{n} = \varpi - (2k+1) \frac{\varpi}{2N+1} = (N-k) \frac{2 \varpi}{n},$$
thus is the $n$-division point $M_{2n+1-k}$. This proves that the symmetric points $M'_0 = 0,\ldots,M'_{n-1}$ of $M_0,\ldots,M_{n-1}$ about the $x$-axis are $2n$-divisions points.
Therefore we can complete $M_0, M_1, \ldots,M_{n-1}$ by the symmetric points $M'_0 = O,\ldots,M'_{n-1}$ relative to the $x$-axis to obtain the $2n$-division points (the point $O$ is counted twice).
Since the $M_k$ can be constructed with straightedge and compass, the symmetric points $M'_k$ are also constructible, thus the $2n$-division points are constructible.
Figure for $n=5$: the $10$-division points are $0,M'_2,M_1,M'_1,M_2,0,M_3,M'_3,M_4,M'_3$.
\begin{figure}[htbp]
\begin{center}
\includegraphics [width=8cm,height=4cm] {lemniscate.png}
\end{center}
\end{figure}
\end{proof}
\paragraph{Ex. 15.1.7}{\it Recall that in Greek geometry, the ellipse is defined to be the locus of all points whose {\bf sum} of distances to two given points is constant. Suppose instead we consider the locus of all points whose {\bf product} of distances to two given points is constant. Show that this leads to (15.7) when the given points are $(a,0),(-a,0)$ and the constant is $b^4$(*).
}
(*) Read $b^2$.
\begin{proof}
Let $\Gamma$ the locus of all points whose product of distances to two points $(a,0),(-a,0)$ is the constant $b^2$. Then
\begin{align*}
M(x,y) \in \Gamma & \iff \sqrt{(x-a)^2 + y^2} \sqrt{(x+a)^2 + y^2} = b^2\\
&\iff ((x-a)^2 + y^2)((x-a)^2 + y^2) = b^4.
\end{align*}
We obtain the formula of the ovals of Cassini.
\end{proof}
\subsection{THE LEMNISCATIC FUNCTION}
\paragraph{Ex. 15.2.1}{\it Give a careful proof of (15.9) using the hints given in the text.
}
\begin{proof}
By section 15.2, we know that $\varphi$ is $2\varpi$ periodic,
$$\varphi(s + 2\varpi) = \varphi(s),\qquad (s \in \R).$$
Moreover, for $-1 \leq r \leq 1$, and $\frac{-\varpi}{2} \leq s \leq \frac{\varpi}{2}$,
$$r = \varphi(s) \iff s = \int_0^r \frac{1}{\sqrt{1-t^4}} \D t.$$
Write $r' = \varphi(-s)\in [-1,1]$. Then for every $s \in [-\frac{\varpi}{2} ,\frac{\varpi}{2} ]$,
\begin{align*}
r' = \varphi(-s) & \iff -s = \int_0^{r'} \frac{1}{\sqrt{1-t^4}} \D t\\
&\iff -s = -\int _0^{-r'} \frac{1}{\sqrt{1-\tau^4}} \D \tau\qquad (\tau = -t)\\
&\iff s = \int _0^{-r'} \frac{1}{\sqrt{1-\tau^4}} \D \tau\\
&\iff -r' = \varphi(s)
\end{align*}
This proves that
\begin{align}
\varphi(-s) = - \varphi(s) \qquad \left (-\frac{\varpi}{2} \leq s \leq \frac{\varpi}{2} \right).
\end{align}
Write $M(s)$ the point on the lemniscate with signed arc length $s$. Consider $M' = M(s')$ the symmetric point of $M(s)$ about the origin. Since the lemniscate is symmetric about the origin,
Consider first the case where $0 \leq s \leq \varpi$, then the signed arc length is the positive arc length. Let $M(s)$ the point on the lemniscate with arc length $s$. Then the symmetric point $M(s')$ about the $x$-axis is such that $r' = OM(s') = OM(s) = r$, thus, by definition of $\varphi$, $\varphi(s) = \varphi(s')$. The total arc length from $O = M(0)$ to $O = M(\varpi)$ in the first loop is $\varpi$, and the symmetry of the lemniscate about the $x$-axis implies that the arc length $\varpi - s$ between $M(s)$ and $O = M(\varpi)$ is equal to the arc length $s'$ between $O = M(0)$ and $M(s')$, thus
$s' = \varpi - s$. This proves
\begin{align}
\varphi(\varpi -s) = \varphi(s)\qquad (0 \leq s \leq \varpi).
\end{align}
Now, if $\frac{\varpi}{2} \leq s \leq \varpi$, then $0\leq \varpi-s \leq \frac{\varpi}{2}$, thus, using (1), (2), (3)
$$
\left\{
\begin{array}{ll}
\varphi(s) &= \varphi(\varpi - s) = -\varphi(s- \varpi) = -\varphi(s + \varpi),\\
\varphi(-s) &= \varphi(\varpi- (-s)) =\varphi(s + \varpi).
\end{array}
\right.
$$
Therefore $\varphi(-s) = - \varphi(s)$ if $\frac{\varpi}{2} \leq s \leq \varpi$. Now, if we suppose $-\varpi \leq s \leq -\frac{\varpi}{2}$, then $\frac{\varpi}{2} \leq -s \leq \varpi$, so we can apply the last equality to $-s$: $\varphi(s) = \varphi(-(-s))= - \varphi(-s)$. This proves
\begin{align}
\varphi(-s) = \varphi(s) \qquad (-\varpi \leq s \leq \varpi).
\end{align}
Using the periodicity, if $s \in \R$, the is some $n \in \Z$ and $s' \in [-\varpi,\varpi[$ such that $s = 2n\varpi + s'$. Then
$$\varphi(-s) = \varphi(-s - 2n\varpi) = \varphi(-s') = - \varphi(s') = -\varphi(s-2n\varphi) = - \varphi(s).$$
We have proved
$$\varphi(-s) = \varphi(s) \qquad (s \in \R).$$
We can now complete (2) to $-\varpi \leq s \leq 0$. Then $0 \leq -s \leq \varpi$, and by (2) applied to $-s$, $\varphi(s + \varpi) = \varphi(-s) = -\varphi(s)$, thus
$$\varphi(\varpi -s) = - \varphi(s - \varpi) = - \varphi(s+ \varpi) = \varphi(s)$$.
We have proved, for all $s \in \R$,
\begin{align*}
&\varphi(-s) = -\varphi(s)\\
&\varphi(\varpi - s) = \varphi(s).
\end{align*}
\end{proof}
\paragraph{Ex. 15.2.2}{\it Supply the details needed to complete the proof of Proposition 15.2.1.
}
\begin{proof}
The proof of Proposition 15.2.1 shows that
$$\varphi'(s) = \sqrt{1 - \varphi^4(s)},\qquad 0 \leq s \leq \frac{\varpi}{2}.$$
By Exercise 3, parts (a) and (b), $\varphi'$ is even and has period $2 \varpi$, and by part (c),
$$\varphi'(\varpi - s) = - \varphi'(s), \qquad s \in \R.$$
Therefore, if $-\frac{\varpi}{2} \leq s \leq 0$, then
$$\varphi'(s) = - \varphi'(-s) = -\sqrt{1 - \varphi^4(-s)} = - \sqrt{1 - \varphi^4(s)}.$$
Now, if $\frac{\varpi}{2} \leq s \leq \varpi$, then $0 \leq \varpi -s \leq \frac{\varpi}{2}$, thus
$$\varphi'(s) = -\varphi'(\varpi - s) = -\sqrt{1 - \varphi^4(\varpi - s)} = - \sqrt{1 - \varphi^4(s)}.$$
If $-\varpi \leq s \leq -\frac{\varpi}{2}$, then $\frac{\varpi}{2} \leq -s \leq \varpi$. Using the above equality, we obtain
$$\varphi'(s) = - \varphi(-s) = - \sqrt{1 - \varphi^4(-s)} = - \sqrt{1 - \varphi^4(s)}.$$
We have proved
$$\varphi'^2(s) = 1 - \varphi^4(s), \qquad -\varpi \leq s \leq \varpi. $$
Now if $s$ is any real number, there is some $n\in \Z$ and $s' \in [-\varpi, \varpi[$ such that $s = 2n \varpi + s'$. Since $2\varpi$ is a period of $\varphi$ and $\varphi'$,
$$\varphi'^2(s) = \varphi'^2(s') = 1 -\varphi^4(s') = 1 - \varphi^4(s).$$
This complete the proof of Proposition 15.2.1.
\end{proof}
\paragraph{Ex. 15.2.3}{\it Here are some useful properties of $\varphi'$.
\be
\item[(a)] $\varphi$ has period $2\varpi$. Explain why this implies that the same is true for $\varphi'$.
\item[(b)] $\varphi$ is an odd function by (15.9). Explain why this implies that $\varphi'$ is even.
\item[(c)] Use (15.9) to prove that $\varphi'(\varpi -s) = - \varphi'(s)$.
\item[(d)] Use Proposition 15.2.1 to prove that $\varphi''(s) = -2 \varphi^3(s)$.
\ee
}
\begin{proof}
\item[(a)] For all $s \in \R$, $\varphi(s +2 \varpi) = \varphi(s)$. By differentiation, and the chain rule, we obtain
$$\varphi'(s + 2 \varphi)(s)= \varphi(s).$$
$\varphi'$ has period $2 \varpi$.
\item[(b)] Since $\varphi(-s) = - \varphi(s)$ for all $s \in \R$, the chain rule gives
$$- \varphi'(-s) = - \varphi'(s),$$
thus $\varphi'$ is even.
\item[(c)] By (15.9), $\varphi(\varpi - s) = \varphi(s)$ for all $s \in \R$. Then the chain rule gives $-\varphi'(\varpi -s) = \varphi'(s)$, thus
$$\varphi'(\varpi -s) = -\varphi'(s),\qquad s \in \R.$$
\item[(d)] By differentiation of $\varphi'^2(s) = 1 - \varphi^4(s)\ (s \in \R)$, we obtain
$$2 \varphi'(s) \varphi''(s) = -4 \varphi^3(s) \varphi'(s).$$
If $s \ne \frac{\varpi}{2} + n \varpi, n \in \Z$, then $\varphi'(s) \ne 0$, so that
$$\varphi''(s) = -2 \varphi^3(s),\qquad s \ne \frac{\varpi}{2} + n \varpi, n \in \Z.$$
If $s=\frac{\varpi}{2} + n \varpi $ for some integer $n \in \Z$, since $\varphi$ is infinitely differentiable, $\varphi''$ is continuous, therefore
$$\varphi''(s) = \lim_{t \to s, t\ne s} \varphi''(t) = \lim_{t \to s, t \ne s} (-2 \varphi^3(t)) = -2 \varphi^3(s).$$
Therefore
$$\varphi''(s) = -2 \varphi^3(s),\qquad s \in \R.$$
\end{proof}
\paragraph{Ex. 15.2.4}{\it Suppose that we define $\sin(x)$ by $y = \sin(x) \iff x = \int_0^y(1-t^2)^{-1/2} \D t$. Then define $\cos (x)$ to be $sin'(x)$. Use the method of Proposition 15.2.1 to prove the standard trigonometric identity $\cos^2(x) = 1 - \sin^2(x)$.
}
\begin{proof}
We obtain the analog of (15.9) as in Exercise 1: for all $x \in \R$,
\begin{align*}
\sin(-x) = - \sin(x),\\
\sin(\pi-x) = \sin(x).
\end{align*}
Now we use the definition of $\sin$: for all $y\in [-1,1]$, for all $x \in [-\frac{\pi}{2}, \frac{\pi}{2}]$,
$$y = \sin(x) \iff x = \int_0^y(1-t^2)^{-1/2} \D t,$$
where $\int_0^1(1-t^2)^{-1/2} \D t$ and $ \int_0^{-1}(1-t^2)^{-1/2} \D t$ converge.
If $x \in [0 , \frac{\pi}{2}[$, differentiating each side of
$$s = \int_0^{\sin(x)} \frac{1}{\sqrt{1-t^2}} \D t,$$
we obtain
$$1 = \frac{1}{\sqrt{1 - \sin^2(x)}} \sin'(x).$$
If $x = \frac{\pi}{2}$, then $\sin(x) = 1, \sin'(x) = 0$, thus $\sin'^2(x) = 1 - \sin^2(x)$.
Therefore
$$\cos(x) = \sin'(x) = \sqrt{1 - \sin^2(x)},\qquad 0 \leq x \leq \frac{\pi}{2}.$$
We extend the equality $\sin^2(x) + \cos^2(x) = 1$ to all $x \in \R$ as in Exercise 2.
\end{proof}
\paragraph{Ex. 15.2.5}{\it Here is Abel's proof of the addition law for $\varphi$.
\be
\item[(a)]
Let $g(x,y)$ be differentiable on $\R^2$, and set $h(u,v) = g\left(\frac{1}{2}(u+v), \frac{1}{2}(u-v)\right)$. Use the chain Rule to prove that
$$\frac{\partial h}{\partial v}(u,v) = \frac{1}{2}\frac{\partial g}{\partial x}\left(\frac{1}{2}(u+v), \frac{1}{2}(u-v)\right)-\frac{1}{2}\frac{\partial g}{\partial y}\left(\frac{1}{2}(u+v), \frac{1}{2}(u-v).\right)$$
\item[(b)] Use part (a) to show that $g(x,y) = g(x+y, 0)$ on, $\R^2$ if and only if $\frac{\partial g}{\partial x} = \frac{\partial g}{\partial y}$ on $\R^2$.
\item[(c)] Prove the addition law for $\varphi$ by applying part (b) to
$$g(x,y) = \frac{\varphi(x) \varphi'(y) + \varphi(y) \varphi'(x)}{1 + \varphi^2(x) \varphi^2(y)}.$$
Part (d) of Exercise 3 will be useful.
\ee
}
\begin{proof}
\item[(a)] To apply the Chain Rule, we suppose that $g$ is continuously differentiable ($g \in C_1(\R^2)$). Write $x,y : \R^2 \to \R^2$ the two maps defined by
$$x(u,v) = \frac{1}{2}(u+v),\qquad y(u,v) = \frac{1}{2}(u-v),$$
Then
$$\frac{\partial x}{\partial v}(u,v) = \frac{1}{2},\qquad \frac{\partial y}{\partial v}(u,v) = -\frac{1}{2},$$
and
$$h(u,v) = g(x(u,v),y(u,v)),\qquad (u,v)\in \R^2.$$
The Chain Rule gives
\begin{align*}
\frac{\partial h}{\partial v}(u,v)&=\frac{\partial g}{\partial x}\left(x(u,v),y(u,v)\right)\frac{\partial x}{\partial v}(u,v)+\frac{\partial g}{\partial y}\left(x(u,v),y(u,v)\right)\frac{\partial y}{\partial v}(u,v)\\
&=\frac{1}{2}\frac{\partial g}{\partial x}\left(\frac{1}{2}(u+v), \frac{1}{2}(u-v)\right)-\frac{1}{2}\frac{\partial g}{\partial y}\left(\frac{1}{2}(u+v), \frac{1}{2}(u-v)\right)
\end{align*}
\item[(b)]
Suppose that $g(x+y,0) = g(x,y)$ for all $x,y \in \R$. Write $f(x) = g(x,0)$. Then $f$ is continuously differentiable, and $g(x,y) = f(x+y)$. By the Chain Rule, for all $(x,y) \in \R^2$,
$$
\frac{\partial g}{\partial x}(x,y) = f'(x+y) = \frac{\partial g}{\partial y}(x,y),
$$
therefore $\frac{\partial g}{\partial x} = \frac{\partial g}{\partial y}$ on $\R^2$.
\qquad
Conversely, suppose that $\frac{\partial g}{\partial x} = \frac{\partial g}{\partial y}$ on $\R^2$. Then, for all $(u,v) \in \R^2$,
$$\frac{\partial h}{\partial v}(u,v) = \frac{1}{2}\frac{\partial g}{\partial x}\left(\frac{1}{2}(u+v), \frac{1}{2}(u-v)\right)-\frac{1}{2}\frac{\partial g}{\partial y}\left(\frac{1}{2}(u+v), \frac{1}{2}(u-v) \right)= 0.$$
This means that for every fixed $u_0 \in \R$, the map $v \mapsto h(u_0,v)$ has a null derivative, thus is constant: $h(u_0,v) = h(u_0,0)$ for all $v \in \R$. Since this is true for every $u_0$, we obtain
$$h(u,v) = h(u,0),\qquad \text{for all } u,v \in \R.$$
Write $f(u) = h(u,0)$ for all $u\in \R$. Then $f$ is continuously differentiable, and for all $u,v \in \R$, $h(u,v) = f(u)$ depends only of $u$.
By definition of $h$, this means that, for all $u,v \in \R$,
$$g\left(\frac{1}{2}(u+v), \frac{1}{2}(u-v)\right) = f(u).$$
Taking $v = u$ in $g\left(\frac{1}{2}(u+v), \frac{1}{2}(u-v)\right) = h(u,v) = h(u,0)$, we obtain $g(u,0) = h(u,u) = h(u,0)$, therefore
$$g(u,0) = h(u,u) = h(u,0) = h(u,v) = g\left(\frac{1}{2}(u+v), \frac{1}{2}(u-v)\right),$$
thus
$$g(u,0) = g\left(\frac{1}{2}(u+v), \frac{1}{2}(u-v)\right),\qquad u,v \in \R.$$
If $(x,y)$ is any pair in $\R^2$, there exists a unique pair $(u,v) \in \R^2$ such that $x = \frac{1}{2}(u+v), y = \frac{1}{2}(u-v)$, given by $u = x + y, v = x-y$. Therefore, the preceding equality implies that
$$g(x+y,0) = g(x,y) ,\qquad x,y \in \R.$$
\item[(c)] Define $g : \R^2 \to \R$ by
$$g(x,y) = \frac{\varphi(x) \varphi'(y) + \varphi(y) \varphi'(x)}{1 + \varphi^2(x) \varphi^2(y)}.$$
The partial derivative of this quotient relative to the variable $x$ gives, using $\varphi''(x) = -2 \varphi^3(x)$ (see Exercise 3, part (d)), and $\varphi'(x)^2 = 1 -\varphi^4(x)$
\begin{align*}
&\left(1 + \varphi^2(x)\varphi^2(y)\right)^2 \frac{\partial g}{\partial x} (x,y) \\
&= \left(\varphi'(x) \varphi'(y) + \varphi(y) \varphi''(x)\right)\left(1+ \varphi^2(x)\varphi^2(y)\right) - 2 \varphi(x) \varphi'(x) \varphi^2(y) \left(\varphi(x) \varphi'(y)+ \varphi(y)\varphi'(x)\right)\\
&= \left(\varphi'(x) \varphi'(y) -2 \varphi(y)\varphi^3(x)\right)\left(1+ \varphi^2(x)\varphi^2(y)\right) - 2 \varphi(x) \varphi'(x) \varphi^2(y) \left(\varphi(x) \varphi'(y)+ \varphi(y)\varphi'(x)\right)\\
&=\varphi'(x) \varphi'(y) + \varphi'(x) \varphi'(y) \varphi^2(x) \varphi^2(y) - 2 \varphi(y) \varphi^3(x) - 2 \varphi^3(y)\varphi^5(x)\\
& \qquad - 2 \varphi^2(x) \varphi^2(y) \varphi'(x)\varphi'(y) - 2 \varphi(x) \varphi^3(y) \varphi'(x)^2\\
&=\varphi'(x) \varphi'(y) + \varphi'(x) \varphi'(y) \varphi^2(x) \varphi^2(y) - 2 \varphi(y) \varphi^3(x) - 2 \varphi^3(y)\varphi^5(x)\\
& \qquad - 2 \varphi^2(x) \varphi^2(y) \varphi'(x)\varphi'(y) - 2 \varphi(x) \varphi^3(y) (1 - \varphi^4(x))\\
&=\varphi'(x) \varphi'(y) + \varphi'(x) \varphi'(y) \varphi^2(x) \varphi^2(y) - 2 \varphi(y) \varphi^3(x) -2\varphi(x) \varphi^3(y)\\
& \qquad - 2 \varphi^2(x) \varphi^2(y) \varphi'(x)\varphi'(y).
\end{align*}
This last expression is symmetric relatively to $x,y$, and also the denominator $(1 + \varphi^2(x)\varphi^2(y))^2$. Since $g(x,y) = g(y,x) = \frac{\varphi(y) \varphi'(x) + \varphi(x) \varphi'(y)}{1 + \varphi^2(y) \varphi^2(x)}$, this proves that
\begin{align*}
&\left(1 + \varphi^2(y)\varphi^2(x)\right) \frac{\partial g}{\partial y} (x,y)\\
&=\varphi'(y) \varphi'(x) + \varphi'(y) \varphi'(x) \varphi^2(y) \varphi^2(x) - 2 \varphi(x) \varphi^3(y) -2\varphi(y) \varphi^3(x)- 2 \varphi^2(y) \varphi^2(x) \varphi'(y)\varphi'(x)\\
&= \left(1 + \varphi^2(x)\varphi^2(y)\right) \frac{\partial g}{\partial x} (x,y),
\end{align*}
where $1 + \varphi^2(y)\varphi^2(x)>0$.
Therefore $\frac{\partial g}{\partial x} = \frac{\partial g}{\partial y}$ on $\R^2$.
By part (b), $g(x,y) =g(x+y,0)$. Using $\varphi(0) = 0$, and $\varphi'(0) = \sqrt{1 - \varphi^4(0)} = 1$,
\begin{align*}
g(x,y) &=g(x+y,0)\\
&= \varphi'(0) \varphi(x+y)\\
&= \varphi(x+y).
\end{align*}
We have proved the addition law for $\varphi$:
$$\varphi(x+y) = \frac{\varphi(x) \varphi'(y) + \varphi(y) \varphi'(x)}{1 + \varphi^2(x) \varphi^2(y)}, \qquad x,y \in \R.$$
\end{proof}
\paragraph{Ex. 15.2.6}{\it Show that the subtraction law
$$\varphi(x-y) = \frac{\varphi(x) \varphi'(y) - \varphi(y) \varphi'(x)}{1 + \varphi^2(x) \varphi^2(y)}.
$$
follows from the addition law together with (15.9) and Exercise 3.
}
\begin{proof} Starting from the Addition Law for $\varphi$
$$\varphi(x+y) = \frac{\varphi(x) \varphi'(y) + \varphi(y) \varphi'(x)}{1 + \varphi^2(x) \varphi^2(y)}, \qquad x,y \in \R,$$
we obtain for all $x,y \in \R$, substituting $-y$ to $y$,
\begin{align*}
&\varphi(x-y) = \frac{\varphi(x) \varphi'(-y) + \varphi(-y) \varphi'(x)}{1 + \varphi^2(x) \varphi^2(-y)}.
\end{align*}
Since $\varphi$ is odd, and $\varphi'$ even (see 15.9 and Exercise 3), we obtain
$$\varphi(x-y) = \frac{\varphi(x) \varphi'(y) - \varphi(y) \varphi'(x)}{1 + \varphi^2(x) \varphi^2(y)}.
$$
\end{proof}
\paragraph{Ex. 15.2.7}{\it The proof of Theorem 15.2.5 uses induction on $n$.
\be
\item[(a)] Assume that $n$ is even. In (15.18), we gave a formula for $Q_{n+1}(u)$ in terms of $Q_n(u)$ and $Q_{n-1}(u)$. Derive the corresponding formula for $P_{n+1}(u)$.
\item[(b)] Suppose that polynomials $P_n(u),Q_n(u)$ satisfy all of the conditions of the theorem except for the requirement that they be relatively prime. Since $\Z[u]$ is a $UFD$, we can write $P_n(u) = C_n(u)\tilde{P}_n(u), Q_n(u) = C_n(u) \tilde{Q}_n(u)$, where $C_n(u), \tilde P_n(u),\tilde Q_n(u) \in \Z[u]$ and $\tilde P_n(u), \tilde Q_n(u)$ are relatively prime. Prove that we can assume that $\tilde Q_n(0) = 1$ and that $\tilde P_n(u), \tilde Q_n(u)$ satisfy all conditions of Theorem 15.2.5.
\item[(c)] Complete the inductive step of the proof when $n$ is odd.
\ee
}
\begin{proof}
\item[(a,c)] We will prove the theorem by induction on $n$. The theorem holds for $n=1,n=2$ with $P_1(u) = Q_1(u) = 1$, and $P_2(u) = 2,Q_2(u) = 1+u$ (misprint in Cox p. 477).
Now assume that it holds for $n-1$ and $n$.
$\bullet$
If $n$ is even,
\begin{align*}
& \varphi((n-1)x) = \varphi(x)\frac{P_{n-1}\left(\varphi^4(x)\right)}{Q_{n-1}\left(\varphi^4(x)\right)}, \\
&\varphi(nx) = \varphi(x)\frac{P_{n}\left(\varphi^4(x)\right)}{Q_{n}\left(\varphi^4(x)\right)} \varphi'(x).
\end{align*}
Using (15.13), we obtain
\begin{align*}
\varphi\left((n+1)x\right) &= - \varphi\left( (n-1)x) \right) + \frac{2 \varphi(nx) \varphi'(x)}{1+\varphi^2(nx) \varphi^2(x)}\\
&=- \varphi(x) \frac{P_{n-1}\left(\varphi^4(x)\right)}{Q_{n-1}\left(\varphi^4(x)\right)} + \frac{2 \left(\varphi(x)\frac{P_{n}\left(\varphi^4(x)\right)}{Q_{n}\left(\varphi^4(x)\right)} \varphi'(x) \right) \varphi'(x)}{1+\left(\varphi(x)\frac{P_{n}\left(\varphi^4(x)\right)}{Q_{n}\left(\varphi^4(x)\right)} \varphi'(x) \right)^2 \varphi^2(x)}.\\
\end{align*}
To simplify, we write $a = \varphi(x), p_n = P_n(\varphi^4(x)), q_n = Q_n(\varphi^4(x))$.
Then, using $\varphi'(x)^2 = 1 - \varphi^4(x)$,
\begin{align*}
\varphi\left((n+1)x\right) &= a \left[ -\frac{p_{n-1}}{q_{n-1}} + \frac{2 (1-a^4)\frac{p_n}{q_n} }{1 + a^4(1-a^4) \frac{p_n^2}{q_n^2}} \right] \\
&=a \left[ -\frac{p_{n-1}}{q_{n-1}} + \frac{2(1-a^4)p_nq_n}{q_n^2+a^4(1-a^4)p_n^2}\right] \\
&=a \frac {-p_{n-1}(q_n^2 + a^4(1-a^4) p_n^2) + 2(1-a^4) p_nq_nq_{n-1}}{q_{n-1}(q_n^2 + a^4(1-a^4)p_n^2)},
\end{align*}
that is
$$\varphi\left((n+1)x\right) = \varphi(x) \frac{P_{n+1}(\varphi^4(x))}{Q_{n+1}(\varphi^4(x))},$$
where
\begin{align*}
P_{n+1}(u) &= -P_{n-1}(u) (Q_n^2(u) + u(1-u) P_n^2(u)) + 2(1-u) P_n(u)Q_n(u) Q_{n-1}(u),\\
Q_{n+1}(u) &=Q_{n-1}(u)(Q_n^2(u) + u(1-u) P_n^2(u)).
\end{align*}
Verification : with $n = 2$, we obtain $P_3(u) = 3 - 6u - u^2, Q_3(u) = 1 + 6u - 3u^2$, which gives the tripling formula (15.17).
\qquad
$\bullet$ If $n$ is odd,
\begin{align*}
& \varphi((n-1)x) = \varphi(x)\frac{P_{n-1}\left(\varphi^4(x)\right)}{Q_{n-1}\left(\varphi^4(x)\right)} \varphi'(x), \\
&\varphi(nx) = \varphi(x)\frac{P_{n}\left(\varphi^4(x)\right)}{Q_{n}\left(\varphi^4(x)\right)} .
\end{align*}
Then(15.13) gives
\begin{align*}
\varphi\left((n+1)x\right) &= - \varphi\left( (n-1)x) \right) + \frac{2 \varphi(nx) \varphi'(x)}{1+\varphi^2(nx) \varphi^2(x)}\\
&=- \varphi(x) \frac{P_{n-1}\left(\varphi^4(x)\right)}{Q_{n-1}\left(\varphi^4(x)\right)} \varphi'(x)+ \frac{2 \left(\varphi(x)\frac{P_{n}\left(\varphi^4(x)\right)}{Q_{n}\left(\varphi^4(x)\right)} \right) \varphi'(x)}{1+\left(\varphi(x)\frac{P_{n}\left(\varphi^4(x)\right)}{Q_{n}\left(\varphi^4(x)\right)} \right)^2 \varphi^2(x)}\\
&=\varphi(x) \left[ - \frac{P_{n-1}\left(\varphi^4(x)\right)}{Q_{n-1}\left(\varphi^4(x)\right)} + \frac{2 \left(\frac{P_{n}\left(\varphi^4(x)\right)}{Q_{n}\left(\varphi^4(x)\right)} \right) }{1+\left(\varphi(x)\frac{P_{n}\left(\varphi^4(x)\right)}{Q_{n}\left(\varphi^4(x)\right)} \right)^2 \varphi^2(x)}\right] \varphi'(x)
\end{align*}
With the same notations as in the even case, and with $a' = \varphi'(x)$,
\begin{align*}
\varphi\left((n+1)x\right)&= a \left[ -\frac{p_{n-1}}{q_{n-1}} + \frac{2 \frac{p_n}{q_n}}{1 + a^4 \frac{p_n^2}{q_n^2}}\right] a'\\
&= a \left[ -\frac{p_{n-1}}{q_{n-1}} +\frac{ 2 p_n q_n}{q_n^2 + a^4 p_n^2}\right] a' \\
&=a\left[ \frac{-p_{n-1} (q_n^2 + a^4 p_n^2) + 2 p_nq_nq_{n-1}} {q_{n-1}(q_n^2 + a^4 p_n^2)}\right] a'
\end{align*}
that is
$$\varphi\left((n+1)x\right) = \varphi(x) \frac{P_{n+1}(\varphi^4(x))}{Q_{n+1}(\varphi^4(x))}\varphi'(x),$$
where
\begin{align*}
P_{n+1}(u) &= -P_{n-1}(u) (Q_n^2(u) + u P_n^2(u)) + 2 P_n(u)Q_n(u) Q_{n-1}(u),\\
Q_{n+1}(u) &=Q_{n-1}(u)(Q_n^2(u) + u P_n^2(u)).
\end{align*}
The induction is done, and the induction formulas concerning $P_{n}, Q_{n}$ are
$$\begin{array}{ll}
&\text {for } n \text { even},\\
P_{n+1}(u) &= -P_{n-1}(u) (Q_n^2(u) + u(1-u) P_n^2(u)) + 2(1-u) P_n(u)Q_n(u) Q_{n-1}(u),\\
Q_{n+1}(u) &=Q_{n-1}(u)(Q_n^2(u) + u(1-u) P_n^2(u)),\\
&\text {for } n \text { odd},\\
P_{n+1}(u) &= -P_{n-1}(u) (Q_n^2(u) + u P_n^2(u)) + 2 P_n(u)Q_n(u) Q_{n-1}(u),\\
Q_{n+1}(u) &=Q_{n-1}(u)(Q_n^2(u) + u P_n^2(u)).
\end{array}
$$
Note that we can take $P_0 = 0, Q_1 = 1$ ( and $P_1 = 1, Q_1 = 1$).
\bigskip
We give a Sage function to compute $P_n,Q_n$:
\begin{verbatim}
R.<u> = ZZ[]
def divisionPolynomial(n):
P0, Q0 = 0, 1
P1, Q1 = 1, 1
for i in range(n):
if i % 2 != 0:
S = Q1^2 + u * (1-u) *P1^2
P2 = -P0 * S + 2 * (1-u) * P1 * Q1 * Q0
Q2 = Q0 * S
else:
S = Q1^2 + u * P1^2
P2 = -P0 * S + 2 * P1 * Q1 * Q0
Q2 = Q0 * S
D = gcd(P2,Q2)
(P2, Q2) = (P2/D, Q2/D)
(P0, Q0) = (P1, Q1)
(P1, Q1) = (P2, Q2)
return (P0,Q0)
P5, Q5 = divisionPolynomial(5); P5,Q5
\end{verbatim}
$$u^{6} + 50u^{5} - 125u^{4} + 300u^{3} - 105u^{2} - 62u + 5, 5u^{6} - 62u^{5} - 105u^{4} + 300u^{3} - 125u^{2} + 50u + 1$$
\begin{verbatim}
P5.factor(), Q5.factor()
\end{verbatim}
$$(u^{2} - 2u + 5) \cdot (u^{4} + 52u^{3} - 26u^{2} - 12u + 1), (5u^{2} - 2u + 1) \cdot (u^{4} - 12u^{3} - 26u^{2} + 52u + 1)$$
\item[(b)]
Since $\Z$ is a UFD, the same is true for $\Z[u]$ by Theorem A.5.6.
Thus we can write $P_n(u) = C_n(u) \tilde{P}_n(u), Q_n(u) = C_n(u) \tilde{Q}_n(u)$, where $C_n(u), \tilde P_n(u),\tilde Q_n(u) \in \Z[u]$ and $\tilde P_n(u), \tilde Q_n(u)$ are relatively prime.
Since $Q_n(0) = 1$, then $C_n(0) \tilde{Q}_n(0) = 1$, where $C_n(0), \tilde{Q}_n(0)$ are integers, thus $\tilde{Q}_n(0) = \pm 1$.
If $\tilde{Q}_n(0) = 1$, we are done, and if $\tilde{Q}_n(0) = -1$ We replace $\tilde{P}_n, \tilde{Q}_n$ by $-\tilde{P}_n, - \tilde{Q}_n$, which satisfy all conditions of Theorem 15.2.5.
\end{proof}
\paragraph{Ex. 15.2.8}{\it Let $n$ be even, and let $P_n(u)$ be the polynomial from Theorem 15.2.5. Complete the proof of Corollary 15.2.6 by showing that the polar distances of the $n$-division points of the lemniscate are roots of $uP_n(u^4)(1-u^2)$.
}
\begin{proof}
The polar distances of the $n$-division points are
$$u_m = \varphi\left( m \frac{2 \varpi}{n}\right),\qquad m=0,1,\ldots,n-1.$$
If $n$ is even, then
$$\varphi(nx) = \varphi(x)\frac{P_{n}\left(\varphi^4(x)\right)}{Q_{n}\left(\varphi^4(x)\right)} \varphi'(x).$$
With $x = \frac{2 \varpi}{n}$, we obtain
$$0 = \varphi(m \cdot 2 \varpi) = \varphi\left(n\cdot m \frac{2 \varpi}{n}\right) = \varphi\left( m \frac{2 \varpi}{n}\right)\frac{P_n\left(\varphi^4\left( m \frac{2 \varpi}{n}\right)\right)}{Q_n\left(\varphi^4\left( m \frac{2 \varpi}{n}\right)\right)}\varphi'\left(m \frac{2 \varpi}{n}\right),$$
where, by Exercise 9, the denominator $Q_n\left(\varphi^4\left( m \frac{2 \varpi}{n}\right)\right)$ is non vanishing.
Since $\varphi'\left(m \frac{2 \varpi}{n}\right) = \pm\sqrt{1 - \varphi^4\left(m \frac{2 \varpi}{n}\right)}$, we obtain
$$0 = u_m P_n(u_m^4) \sqrt{1 - u_m^4}.$$
$\sqrt{1 - u_m^4} = \sqrt{1 - u_m^2} \sqrt{1+u_m^2}$, where $1+ u_m^2 \ne 0$, thus $\sqrt{1 -u_m^4} = 0 \iff 1 - u_m^2 = 0$. Therefore $u_m= \varphi\left( m \frac{2 \varpi}{n}\right)$ is a root of
$$u P_n(u^4)(1-u^2).$$
\end{proof}
\paragraph{Ex. 15.2.9}{\it This exercise is concerned with the proof of Corollary 15.2.7.
\be
\item[(a)] Suppose that $P(u), Q(u) \in \Z[u]$ are relatively prime and $Q(0) = 1$. Prove that $uP(u^4)$ and $Q(u^4)$ have no common roots in any extension of $\Q$.
\item[(b)] Fix $x$ in $\R$ and $m>0$ in $\Z$, and let $P_m(u),Q_m(u) \in \Z[u]$ be as in Theorem 15.2.5. Thus $\varphi(mx) Q_m(\varphi^4(x)) = \varphi(x) P_m(\varphi^4(x))$. Prove that $Q_m(\varphi^4(x)) \ne 0$ when $\varphi(x)\ne 0$.
\item[(c)] Show that $\varphi\left(\frac{2 \varpi}{n}\right) \ne 0$ when $n>2$ is in $\Z$ and conclude that $Q_m\left(\varphi^4\left(\frac{2 \varpi}{n}\right)\right) \ne 0$.
\ee
}
\begin{proof}
\item[(a)]
The ring $\Z$ is principal, thus is a UFD with field of fractions $\Q$. By Gauss's Lemma (Theorem A.3.2, or Theorem A.5.8), if $P,Q \in \Z[u]$ are relatively prime in $\Z[u]$, then $P,Q$ are relatively prime in $\Q[u]$.
Since $P(u),Q(u)$ are relatively prime in $\Q[u]$, there are some polynomials $A,B \in \Q[u]$ such that $A(u)P(u) + B(u) Q(u) = 1$, thus the substitution $u \to u^4$ gives $A(u^4) P(u^4) + B(u^4)Q(u^4) = 1$. Reasoning by contradiction, suppose that $uP(u^4)$ and $Q(u^4)$ have a common root $\alpha$ in some extension of $\Q$. Since $Q(0) = 1$, $\alpha \ne 0$, thus $P(\alpha^4) = 0$. Then $P(\alpha^4)= Q(\alpha^4) = 0$ implies $1 = A(\alpha^4) P(\alpha^4) + B(\alpha^4)Q(\alpha^4) = 0$: this is a contradiction.
So $uP(u^4)$ and $Q(u^4)$ have no common roots in any extension of $\Q$.
\item[(b)] If $m$ is odd, then $\varphi(mx) Q_m(\varphi^4)(x)) = \varphi(x) P_m(\varphi^4(x))$. Reasoning by contradiction, suppose that, for some $x \in \R$, $Q_m(\varphi^4(x)) = 0$. Then $\varphi(x) P_m(\varphi^4(x) = 0$, so that $\alpha = \varphi(x)$ is a common root of $Q_m(u^4)$ and $uP_m(u^4)$. Since $P_m,Q_m$ are relatively prime, and $Q_m(0) = 1$, this is impossible by part (a).
If $m$ is even, then $\varphi(mx) Q_m(\varphi^4(x)) = \varphi(x) P_m(\varphi^4(x)) \varphi'(x)$. Suppose that, for some $x \in \R$, $Q_m(\varphi^4(x)) = 0$. Then $\varphi(x) P_m(\varphi^4(x) ) \varphi'(x)= 0$. If $\varphi'(x) =0$, then $\sqrt{1 - \varphi^4(x)} = 0$, thus $\varphi^4(x) = 1$, and $\varphi(x) = \pm 1$. If $\varphi(x) \not \in \{-1,1\}$, then $\varphi(x) P_m(\varphi(x)) =0$, so that $\alpha = \varphi(x)$ is a common root of $Q_m(u^4)$ and $uP_m(u^4)$, which is impossible by part (a).
We have proved that $Q_m(\varphi^4(x)) \ne 0$ when $\varphi(x)\not \in \{-1,1\}$.
(Misprint in the sentence of part (b) ? If $\varphi(x) = 0$, then $Q_m(\varphi^4(x)) = Q_m(0) = 1 \ne 0$, so there is no need to suppose $\varphi(x) \ne 0$.)
\item[(c)] For all $x \in \R$, $\varphi(x) = 0 $ if and only if $x = k \varpi$ for some $k \in \Z$.
We must verify that $\varphi\left(\frac{2\varpi}{n}\right) \not \in \{-1,1\}$. If $n>2$, then $0<\frac{2\varpi}{n}\ < \varpi$. This proves that $0 < \varphi\left(\frac{2\varpi}{n}\right) <1$, thus $\varphi\left(\frac{2\varpi}{n}\right) \not \in \{-1,0,1\}$.
By our version of part (b), this implies that $$Q_m\left(\varphi^4\left(\frac{2\varpi}{n}\right)\right) \ne 0.$$
Note: If we read the proof of Theorem 15.2.5, it is obvious that the denominators $Q_n(\varphi^4(x))$ never vanish, for all $x \in \R$, because $1 + \varphi^2(nx) \varphi^2(x) \ne 0$.
\end{proof}
\paragraph{Ex. 15.2.10}{\it The polar distances of the $5$-division points of the lemniscate satisfy the equation
$$0 = r_0(r_0^{24} + 50 r_0^{20} - 125 r_0^{16} + 300 r_0^{12} - 105 r_0^8 - 62 r_0^4 + 5).$$
This equation was first derived by Fagnano in 1718.
\be
\item[(a)] Show that the $r_0$ corresponding to the $10$-division points also satisfy this equation.
\item[(b)] Use Maple or Mathematica (or Sage!) to show that this equation factors as
$$0 = r_0(r_0^8 - 2 r_0^4 + 5)(r_0^{16}+52r_0^{12} - 26 r_0^8 - 12 r_0^4 + 1)$$
and that the only positive real solutions are
$$\sqrt[4]{-13 + 6 \sqrt{5} \pm 2 \sqrt{85-38 \sqrt{5}}}.$$
Explain (with a picture) how these solutions relate to the $5$- and $10$-division points.
\ee
}
\begin{proof}
\item[(a)] Since $5$ is odd, the $5$-division points are roots of $uP_5(u^4)$ by Corollary 15.2.6.
We obtain $P_5$ with the Sage function given in Exercise 7:
$$P_5(u) = u^{6} + 50u^{5} - 125u^{4} + 300u^{3} - 105u^{2} - 62u + 5.$$
Therefore the polar distances $r_0$ of the $5$-divisions points of the lemniscate satisfy the equation
$$0 = r_0(r_0^{24} + 50 r_0^{20} - 125 r_0^{16} + 300 r_0^{12} - 105 r_0^8 - 62 r_0^4 + 5).$$
\bigskip
We have seen in Exercise 6 that the $10$-division points are the $5$-divisions points, together with the symmetric points about the $x$-axis, which have same polar distances. Therefore the polar distance of any $10$-division point is also a polar distance of a $5$-division point, thus verify the given equation (see figure in Exercise 6).
\item[(b)] We saw in Exercise 7 that $P_5(u)$ factors as
$$P_5(u) = (u^{2} - 2u + 5) (u^{4} + 52u^{3} - 26u^{2} - 12u + 1).$$
Therefore the polar distances of the $5$-division points (and of the $10$-division points) satisfy
$$0 = r_0P_5(r_0^4) =r_0 (r_0^{8} - 2r_0^{4} + 5) (r_0^{16} + 52r_0^{12} - 26r_0^{8} - 12r_0^4 + 1).$$
$r_0^{8} - 2r_0^{4} + 5 = (r_0^4-1)^2 + 4 >0$ thus $r_0^{8} - 2r_0^{4} + 5$ has no real root.
We obtain the positive roots of $u^{4} + 52u^{3} - 26u^{2} - 12u + 1$ with Sage:
\begin{verbatim}
u = var('u')
P = u^4+52*u^3-26*u^2-12*u+1;
S = P.solve(u)
S
\end{verbatim}
\begin{align*}\
[u = -6 \, \sqrt{5} - \frac{1}{2} \, \sqrt{608 \, \sqrt{5} + 1360} - 13, \\
u = -6 \, \sqrt{5} + \frac{1}{2} \, \sqrt{608 \, \sqrt{5} + 1360}- 13, \\
u = 6 \, \sqrt{5} - \frac{1}{2} \, \sqrt{-608 \, \sqrt{5} + 1360}- 13,\\
u = 6 \, \sqrt{5} + \frac{1}{2} \, \sqrt{-608 \, \sqrt{5} + 1360}- 13]
\end{align*}
\begin{verbatim}
[e.right().n() for e in S]
\end{verbatim}
$$\left[-52.4909612184115, -0.341854511585989, 0.0733810146911846,0.759434715306293\right]$$
\begin{verbatim}
S[2].right()^(1/4),S[3].right()^(1/4)
\end{verbatim}
$$\left({\left(6 \, \sqrt{5} - \frac{1}{2} \, \sqrt{-608 \, \sqrt{5} +
1360} - 13\right)}^{\frac{1}{4}}, {\left(6 \, \sqrt{5} + \frac{1}{2} \,
\sqrt{-608 \, \sqrt{5} + 1360} - 13\right)}^{\frac{1}{4}}\right)$$
Since $1360 = 1 6 \times 85$, and $608 = 16 \times 38$, we obtain the two positive solutions of the equation
$$\sqrt[4]{-13 + 6 \sqrt{5} \pm 2 \sqrt{85-38 \sqrt{5}}}.$$
Since there are only two $5$-division points $M_1,M_2$ in the right loop of the lemniscate, the 5 division points have polar distances (using $OM_1 > OM_2$)
\begin{align*}
&OM_0 = 0 \\
&OM_1 = OM_4= \left( \sqrt[4]{-13 + 6 \sqrt{5} +2 \sqrt{85-38 \sqrt{5}}} \right),\\
&OM_2 = OM_3 = \left( \sqrt[4]{-13 + 6 \sqrt{5} - 2 \sqrt{85-38 \sqrt{5}}} \right).\\
\end{align*}
(See the figure of Exercise 6).
By Proposition 15.1.1, all these points are constructible. The $10$-division points have same polar distances, and are also constructible.
\end{proof}
\paragraph{Ex. 15.2.11}{\it Use $\sin(x+y) = \sin x \cos y + \sin y \cos x$ to show that if $\alpha,\beta \in [0,1]$, then
$$\int_0^\alpha \frac{1}{\sqrt{1-t^2}} \D t + \int_0^\beta \frac{1}{\sqrt{1-t^2}} \D t = \int_0^\gamma \frac{1}{\sqrt{1-t^2}} \D t,$$
where $\gamma$ is the real number defined by
$$\gamma = \alpha \sqrt{1-\beta^2} + \beta \sqrt{1- \alpha^2}.$$
Note the similarity to (15.10).
}
\begin{proof} If $\alpha, \beta \in [0,1]$, then there are unique $x,y \in [0,\pi/2]$ such that $\alpha = \sin x$, $\beta = \sin y$. Then $x = \mathrm{arcsin}(\alpha), y = \mathrm{arcsin}(\beta))$, where $\mathrm{arcsin}$ is the reciprocal function of $f$, $f$ being the restriction of $\sin$ to $[0,\pi]$. For every $t \in ]-1,1[$, $f$ is differentiable at $f^{-1}(t) \in ]0,\pi[$, and $f'(f^{-1}(t) \ne 0$, thus $f^{-1} = \mathrm{arcsin} :[-1,1] \to [0,\pi]$ is differentiable on $]-1,1[$, and for all $t \in ]-1,1[$,
$$\mathrm{arcsin}'(t) = (f^{-1})'(t) = \frac{1}{f'(f^{-1}(t))} = \frac{1}{\cos( \mathrm{arcsin}(t))} = \frac{1}{\sqrt{1 - \sin^2(\mathrm{arcsin}(t))}} = \frac{1}{\sqrt{1 -t^2}}.$$
Since $t \mapsto \frac{1}{\sqrt{1-t^2}}$ is continuous on $]-1,1[$, for all $x \in ]-1,1[$,
$$\mathrm{arcsin}(x) = \int_0^x \frac{1}{\sqrt{1-t^2}} \D t.$$
(This equality remains true for $x = \pm 1$:
$\int_0^1 \frac{1}{\sqrt{1-t^2}} \D t$ is convergent, and $ \int_0^1 \frac{1}{\sqrt{1-t^2}} \D t = \lim\limits_{x \to 1} \int_0^x \frac{1}{\sqrt{1-t^2}} \D t$, with value $\mathrm{arcsin}(1) = \pi/2$).
Therefore, for all $\theta \in [0,\pi]$, and for all $z \in [-1,1]$,
$$ z = \sin \theta \iff \theta= \mathrm{arcsin}(z) \iff \theta = \int_0^z \frac{1}{\sqrt{1-t^2}} \D t.$$
(Alternatively, we can take this equivalence as a definition of $\sin \theta$, to continue Exercise 4.)
Write $\gamma =\sin(x+y)$. Since $0 \leq x+y \leq \pi$, we obtain $x+y =\mathrm{arcsin}(\gamma)$, that is
$$\int_0^\alpha \frac{1}{\sqrt{1-t^2}} \D t + \int_0^\beta \frac{1}{\sqrt{1-t^2}} \D t = \int_0^\gamma \frac{1}{\sqrt{1-t^2}} \D t.$$
Moreover, since $x,y \in [0,\frac{\pi}{2}]$, $\cos x \geq 0, \cos y \geq 0$, thus
$$\cos x = \sqrt{1- \sin^2 x}, \qquad \cos y = \sqrt{1-\sin^2 y},$$
and
\begin{align*}
\gamma &= \sin(x+y)\\
&=\sin x \cos y + \sin y \cos x\\
&=\sin x \sqrt{1-\sin^2 y}+ \sin y \sqrt{1-\sin^2 x}\\
&= \alpha \sqrt{1-\beta^2} + \beta \sqrt{1- \alpha^2}.
\end{align*}
\end{proof}
\paragraph{Ex. 15.2.12}{\it Show that the substitution $t = \sin \theta$ transforms (15.20) into (15.21), and use this to prove carefully that $\varphi(u) = \sin \mathrm{am}(u)$ when the modulus is $k = i$.
}
\begin{proof}
Consider the integral
$$I = \int_\gamma^\delta \frac{1}{\sqrt{1 - k^2 \sin^2 \theta}} \D \theta,$$
where $\gamma, \delta$ are such that $[\gamma, \delta] \subset ]0,\pi[$ and $ \theta \mapsto f(\theta) = \frac{1}{\sqrt{1 - k^2 \sin^2 \theta}}$ is defined (and continuous) on $[\gamma, \delta]$:
if the modulus $k$ is real and positive, this requires $[\gamma,\delta] \subset ]-\mathrm{arcsin}\left(\frac{1}{k}\right), \mathrm{arcsin}\left(\frac{1}{k}\right)[$.
Write $\alpha = \sin(\gamma), \beta = \sin(\delta)$, and consider $\psi = \mathrm{arcsin} : [-1,1] \to [0,\pi]$ (so that $t = \sin \theta \iff \theta = \psi(t)$ if $-1<t<1$ and $\theta \in [0,\pi])$).
Then $\psi$ is continuously differentiable, and is strictly increasing, thus $\psi([\alpha,\beta]) = [\psi(\alpha),\psi(\beta)]$, and $\psi$ induces a bijection $[\alpha, \beta] \to [\psi(\alpha),\psi(\beta)] = [\gamma, \delta]$. The Theorem of Integration by Substitution gives
$$\int_\alpha^\beta f(\psi(t)) \psi'(t) \D t = \int_{\psi(\alpha)}^{\psi(\beta)} f(\theta) \D \theta,$$
where
\begin{align*}
&f(\psi(t)) = \frac{1}{\sqrt{1-k^2 t^2}},\\
&\psi'(t) = \frac{1}{\sqrt{1-t^2}}.
\end{align*}
Therefore, if $\int_\gamma^\delta \frac{1}{\sqrt{1 - k^2 \sin^2 \theta}} \D \theta$ make sense,
$$\int_{\sin \gamma}^{\sin \delta} \frac{1}{\sqrt{(1-t^2)(1-k^2t^2)}} \D t = \int_\gamma^\delta \frac{1}{\sqrt{1 - k^2 \sin^2 \theta}} \D \theta,\qquad (\gamma, \delta \in [0,\pi]).$$
\bigskip
Suppose now that $k = i$. Then, for all $r \in ]-1,1[$,
$$\int_0^r \frac{1}{\sqrt{1-t^4}} \D t = \int_0^{\mathrm{arcsin}(r)} \frac{1}{\sqrt{1 + \sin^2 \theta}} \D \theta.$$
Therefore, for all $r \in ]-1,1[$, and for all $s \in ]-\frac{\varpi}{2}, \frac{\varpi}{2}[$,
\begin{align*}
r = \varphi(s) &\iff s = \int_0^r \frac{1}{\sqrt{1-t^4}} \D t \\
&\iff s = \int_0^{\mathrm{arcsin}(r)} \frac{1}{\sqrt{1 + \sin^2 \theta}} \D \theta\\
&\iff \mathrm{arcsin}(r) = \mathrm{am}(s) \Rightarrow r = \sin \mathrm{am}(s)
\end{align*}
Therefore, for all $s \in ]-\frac{\varpi}{2}, \frac{\varpi}{2}[$, $\varphi(s) = \sin \mathrm{am}(s) = \mathrm{sn}(s)$, for the modulus $k = i$.
By continuity, this is also true for $s = \pm \frac{\varpi}{2}$:
$$\varphi(s) = \mathrm{sn}(s), \qquad -\frac{\varpi}{2}\leq s \leq\frac{\varpi}{2}.$$
If we know the properties of symmetry (15.9) and periodicity of $\mathrm{sn}$, we can conclude $\varphi = \mathrm{sn}$ for the modulus $k=i$.
\end{proof}
\subsection{THE COMPLEX LEMNISCATIC FUNCTION}
\paragraph{Ex. 15.3.1}{\it Suppose that $g(z)$ is an analytic function satisfying $g(iz) = i g(z)$. Prove that $g'(iz) = g'(z)$.
}
\begin{proof}
By the Chain Rule, $g(iz) = i g(z)$ implies $ig'(iz) = ig'(z)$, thus $g'(iz) = g'(z)$.
\end{proof}
\paragraph{Ex. 15.3.2}{\it This exercise is concerned with the proof of Proposition 15.3.1.
\be
\item[(a)] Prove that $\varphi(x+iy)$, as defined by (15.22), satisfies the Cauchy-Riemann equations.
\item[(b)] Prove (15.23), (15.24), (15.25) and (15.26).
\ee
}
\begin{proof}
\item[(a)] By the definition of $\varphi$ on $\Omega = \{z \in \C \mid z \ne (m+in)\frac{\varpi}{2}, m\equiv n \equiv 1 \pmod 2\}$, for all $z = x+iy \in \Omega$,
$$\varphi(x+iy) = \frac{\varphi(x) \varphi'(y) + i \varphi(y) \varphi'(x)}{1 - \varphi^2(x) \varphi^2(y)}=u(x,y) + i v(x,y) ,$$
where
$$u(x,y) = \frac{\varphi(x) \varphi'(y)}{1 - \varphi^2(x) \varphi^2(y)},\qquad v(x,y) = \frac{\varphi(y) \varphi'(x)}{1 - \varphi^2(x) \varphi^2(y)} (= u(y,x)).$$
If we write $d = 1 - \varphi^2(x) \varphi^2(y)$ the denominator, then $d \ne 0$ on $\Omega$.
Using $\varphi''(x) = -2 \varphi^3(x)$ (see Exercise 15.2.3), and $\varphi'^2(x) = 1 - \varphi^4(x)$, we obtain
\begin{align*}
d^2\cdot \frac{\partial u}{\partial x}(x,y) &= \varphi'(x) \varphi'(y) \left(1 - \varphi^2(x) \varphi^2(y)\right) + 2 \varphi'(x) \varphi'(y) \varphi^2(x) \varphi^2(y)\\
&= \varphi'(x) \varphi'(y) \left( 1 + \varphi^2(x) \varphi^2(y)\right),\\
d^2\cdot \frac{\partial u}{\partial y}(x,y) &= \varphi(x) \varphi''(y)\left (1 - \varphi^2(x) \varphi^2(y) \right) + 2 \varphi^3(x) \varphi(y) \varphi'(y)^2\\
&=-2\varphi(x) \varphi^3(y)\left (1 - \varphi^2(x) \varphi^2(y) \right) +2 \varphi^3(x) \varphi(y)\left(1 - \varphi^4(y)\right) \\
&= -2\varphi(x) \varphi^3(y) + 2 \varphi^3(x) \varphi^5(y) + 2 \varphi^3(x) \varphi(y) - 2 \varphi^3(x) \varphi^5(y)\\
&= 2 \varphi(x) \varphi(y) (\varphi^2(x) - \varphi^2(y)),\\
\end{align*}
and, using $v(x,y) = u(y,x)$,
\begin{align*}
d^2\cdot \frac{\partial v}{\partial x}(x,y) &= 2 \varphi(y) \varphi(x) (\varphi^2(y) - \varphi^2(x))\\
d^2\cdot \frac{\partial v}{\partial y}(x,y) &= \varphi'(y) \varphi'(x) \left( 1 + \varphi^2(y) \varphi^2(x)\right).
\end{align*}
Therefore, using $d\ne 0$ on $\Omega$,
$$ \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y},\qquad \frac{\partial u}{\partial y} = - \frac{\partial v}{\partial x},$$
so that $\varphi$ satisfies the Cauchy-Riemann equations on $\Omega$. Thus $\varphi$ is analytic on $\Omega$.
\item[(b)] For $s \in [0 , \frac{\varpi}{2}]$, and $r\in [0,1]$,
$$r = \varphi(s) \iff s = \int_0^r \frac{1}{\sqrt{1 - t^4}} \D t.$$
Since $0 = \int_0^r \frac{1}{\sqrt{1 - t^4}} \D t$, $\varphi(0) = 0$, and since $\frac{\varpi}{2} = \int_0^1\frac{1}{\sqrt{1 - t^4}} \D t$, $\varphi\left( \frac{\varpi}{2}\right) = 1$. Using $\phi'(x) = \sqrt{1 - \varphi^4(x)}$ for $0 \leq x \leq \frac{\varpi}{2}$ (see Section 15.2), we obtain $\varphi'(0) = 1, \varphi'\left (\frac{\varpi}{2}\right) = 0$.
By (15.9), for all real $s$, $\varphi(\varpi - s) = \varphi(s)$, which gives $- \varphi'(\varpi - s) = \varphi'(s)$, thus $\varphi(\varpi) = 0$, and $\varphi'(\varpi) = -\varphi'(0) = -1$.
Moreover $\varphi$ is odd, thus $\varphi\left( - \frac{\varpi}{2}\right) = -1, \varphi'\left(\frac{\varpi}{2}\right) = 0$. Since $\varphi$ has period $2 \varpi$,
$\varphi \left( \frac{3 \varpi}{2}\right) = -1, \varphi'\left(\frac{3\varpi}{2}\right) = 0$.
We have proved (15.23):
$$
\begin{array}{c|c|c}
x & \varphi(x) & \varphi'(x)\\
\hline
\frac{\varpi}{2} & 1 & 0\\
\varpi & 0 & -1\\
\frac{3\varpi}{2} & - 1 & 0\\
0 & 0 & 1
\end{array}
$$
By definition of $\varphi$ on $\Omega \subset \C$, for all $z = x + iy \in \Omega$,
$$\varphi(x+iy) = \frac{\varphi(x) \varphi'(y) + i \varphi(y) \varphi'(x)}{1 - \varphi^2(x) \varphi^2(y)}.$$
Therefore, since $\varphi$ is odd and $\varphi'$ is even,
\begin{align*}
\varphi(iz) &= \varphi(-y + ix)\\
& = \frac{\varphi(-y) \varphi'(x) + i \varphi(x) \varphi'(-y)}{1 - \varphi^2(-y) \varphi^2(x)}\\
&= \frac{-\varphi(y) \varphi'(x) + i \varphi(x) \varphi'(y)}{1 - \varphi^2(x) \varphi^2(y)}\\
&= i \frac{\varphi(x) \varphi'(y) + i \varphi(y) \varphi'(x)}{1 - \varphi^2(x) \varphi^2(y)}\\
&= i \varphi(z).
\end{align*}
Using the Chain Rule (see Exercise 1), $i \varphi'(iz) = i \varphi'(z)$, thus $\varphi'(iz) = \varphi'(z)$, for all $z \in \Omega$. This proves (15.24):
\begin{align*}
\varphi(iz) &= i \varphi(z),\\
\varphi'(iz) &= \varphi'(z)\qquad (z \in \Omega).
\end{align*}
Since $\varphi$ and $\varphi'$ have period $2 \omega$ on $\R$,if $k \in \Z$, $\varphi(2k \varpi) = \varphi(0) = 0$, and $\varphi((2k + 1)\varpi) = \varphi(\varpi) = 0$. Similarly, $\varphi'(2k \varpi) = \varphi(0) = 1, \varphi'((2k+1) \varpi) = \varphi'(\varpi) = -1$. Using (15.24), $\varphi(m\varpi i) = i \varphi(m \varpi), \varphi'(m \varpi i) = \varphi'(m\ \varpi)$.This shows (15.25):
\begin{align*}
\varphi(m \varpi) &=\varphi( m \varpi i) = 0,\\
\varphi'(m \varpi) &= \varphi'(m \varpi i) = (-1)^m \qquad (m \in \Z).
\end{align*}
Using the Addition Law, for all $z \in \Omega$ (then $ z + m\varpi + n \varpi i \in \Omega$ for $m,n \in \Z$),
\begin{align*}
\varphi(z + m \varpi) &= \frac{\varphi(z) \varphi'(m\varpi) + \varphi(m \varpi) \varphi'(z)}{1 + \varphi^2(z) \varphi^2(m \varpi)}\\
&=(-1)^m \varphi(z),\\
\varphi(z + n \varpi i) &= \frac{\varphi(z) \varphi'(n\varpi i) + \varphi(n \varpi i) \varphi'(z)}{1 + \varphi^2(z) \varphi^2(n \varpi) i}\\
&=(-1)^n \varphi(z),
\end{align*}
This proves (15.26), and
$$\varphi(z + m \varpi + n \varpi i) = (-1)^{m+n} \varphi(z)\qquad (z \in \Omega).$$
\end{proof}
\paragraph{Ex. 15.3.3}{\it Prove the formula for $\varphi\left(z \pm \frac{\varpi}{2} i\right)$ stated in the proof of Theorem 15.3.2.
}
\begin{proof}
By (15.24) and (15.23),
$$\varphi\left(\frac{\varpi}{2}i\right) = i \varphi\left(\frac{\varpi}{2}\right) = i, \qquad \varphi'\left(\frac{\varpi}{2}i\right) = \varphi'\left(\frac{\varpi}{2}\right) = 0,$$
and
$$\varphi\left(-\frac{\varpi}{2}i\right) = i\varphi\left(-\frac{\varpi}{2}\right) = -i,\qquad \varphi'\left(-\frac{\varpi}{2}i\right) = \varphi'\left(-\frac{\varpi}{2}\right) = 0.$$
Using the addition law (Proposition 15.3.1(b)), we see that
\begin{align*}
\varphi\left( z + \frac{\varpi}{2}i \right) &=
\frac{\varphi(z) \varphi'\left( \frac{\varpi}{2}i\right) + \varphi\left(\frac{\varpi}{2}i\right) \varphi'(z)}{1 + \varphi^2(z) \varphi^2\left(\frac{\varpi}{2}i\right)}\\
&= \frac{i \varphi'(z)}{1 - \varphi^2(z)},
\end{align*}
and similarly,
\begin{align*}
\varphi\left( z -\frac{\varpi}{2}i \right) &=
\frac{\varphi(z) \varphi'\left( -\frac{\varpi}{2}i\right) + \varphi\left(-\frac{\varpi}{2}i\right) \varphi'(z)}{1 + \varphi^2(z) \varphi^2\left(-\frac{\varpi}{2}i\right)}\\
&= \frac{-i \varphi'(z)}{1 - \varphi^2(z)}.
\end{align*}
We have proved
$$\varphi\left( z \pm \frac{\varpi}{2}i \right) = \pm \frac{i \varphi'(z)}{1 - \varphi^2(z)}.$$
\end{proof}
\paragraph{Ex. 15.3.4}{\it Prove that $\varphi'(z)$ vanishes at all points of form $(m+in)\frac{\varpi}{2}$, $m+n$ odd.
}
\begin{proof}
Note that, since $\varphi(z + k \varpi + l \varpi i) = (-1)^{k+l}\varphi(z)$, we obtain by differentiation
$$\varphi'(z + k \varpi + l \varpi i) = (-1)^{k+l}\varphi'(z), \qquad (z \in \Omega, \ k,l \in \Z).$$
Suppose that $m+n$ is odd, where $m,n \in \Z$.
\item[$\bullet$] If $m$ is odd, and $n$ even, then $m = 2k+1, n = 2l$, where $k,l$ are integers. Then
\begin{align*}
\varphi'\left(( m +in)\frac{\varpi}{2}\right) &= \varphi'\left( \frac{\varpi}{2} + k \varpi + l \varpi \right)\\
&= (-1)^{k+l} \varphi'\left( \frac{\varpi}{2}\right) = 0.
\end{align*}
\item[$\bullet$] If $m$ is even , and $n$ odd, then $m = 2k, n = 2l + 1$, where $k,l$ are integers. Then, using (15.24),
\begin{align*}
\varphi'\left(( m +in)\frac{\varpi}{2}\right) &= \varphi'\left( \frac{\varpi}{2}i + k \varpi + l \varpi \right)\\
&= (-1)^{k+l} \varphi'\left( \frac{\varpi}{2}i\right) \\
&= (-1)^{k+l} \varphi'\left( \frac{\varpi}{2}\right) = 0.
\end{align*}
Thus $\varphi'(z)$ vanishes at all points of form $(m+in)\frac{\varpi}{2}$, $m+n$ odd.
\bigskip
But are these points the only zeros of $\varphi'(z)$ ? In Exercise 6, we need also the converse, which will prove now.
Suppose that $\varphi'(z) = 0$. As in the proof of Theorem 15.3.2, for all $z \in \Omega$ such that $\varphi(z) \ne \pm i$,
$$\varphi \left(z + \frac{\varpi}{2} \right) = \frac{\varphi(z) \varphi'\left(\frac{\varpi}{2}\right) + \varphi\left(\frac{\varpi}{2}\right) \varphi'(z)}{1 + \varphi^2(z) \varphi^2\left(\frac{\varpi}{2}\right)}=\frac{\varphi'(z)}{1 + \varphi^2(z)},$$
thus
$$\varphi'(z) = (1 + \varphi^2(z)) \varphi \left(z + \frac{\varpi}{2} \right).$$
By the Principle of Analytic Continuation (see Exercise 5), since both members are analytic, this formula, which is true for all $z \in \R$, is true for all $z \in \Omega$ such that $z+ \frac{\varpi}{2}$ is not a pole of $\varphi$.
Therefore, for all $z\in \omega$
$$\varphi'(z) = 0 \Rightarrow \varphi \left(z + \frac{\varpi}{2} \right) = 0, \text { or } \varphi(z) = \pm i, \text { or } z + \frac{\varpi}{2} \text{ is a pole}.$$
$\bullet$ If $\varphi \left(z + \frac{\varpi}{2} \right) = 0$, by Proposition 15.3.2,
$$z + \frac{\varpi}{2} = (p+iq)\varpi,\qquad p,q\in \Z,$$
thus $z = (2p-1 + i 2q)\frac{\varpi}{2} = (m +in)\frac{\varpi}{2}$, where $m = 2p-1, n = 2q$, and $m+n$ is odd.
$\bullet$ If $\varphi(z) = -i$, then $\varphi(iz) = 1 = \varphi\left(\frac{\varpi}{2}\right) $, thus, using $\varphi'(iz) = \varphi'(z)$, and the addition formula,
$$\varphi\left( iz - \frac{\varpi}{2} \right)= \frac{\varphi(iz) \varphi'\left(\frac{\varpi}{2}\right) - \varphi\left(\frac{\varpi}{2}\right) \varphi'(iz)}{1 + \varphi^2(iz) \varphi^2\left(\frac{\varpi}{2}\right)} = -\frac{\varphi'(iz)}{2} = - \frac{\varphi'(z)}{2} = 0.$$
Therefore, by Proposition 15.3.2(a),
$$iz - \frac{\varpi}{2} = (p+iq)\varpi,\qquad p,q\in \Z,$$
thus, multiplying by $-i$,
$$ z + i \frac{\varpi}{2} = (-ip +q) \varpi,$$
and
$$z = \left[2q + (-2p-1)i\right] \frac{\varpi}{2} = (m+ni) \frac{\varpi}{2}, \text{where } m = 2q,n=-2p-1 \in \Z,\ m+n \text{ odd}.$$
$\bullet$ If $\varphi(z) = i$, then $\varphi(iz) = -1 =\varphi\left(-\frac{\varpi}{2}\right)$, thus
$$\varphi\left( iz + \frac{\varpi}{2} \right)= \frac{\varphi(iz) \varphi'\left(\frac{\varpi}{2}\right) +\varphi\left(\frac{\varpi}{2}\right) \varphi'(iz)}{1 + \varphi^2(iz) \varphi^2\left(\frac{\varpi}{2}\right)} = \frac{\varphi'(iz)}{2} = \frac{\varphi'(z)}{2} = 0.$$
Therefore
$$ iz + \frac{\varpi}{2} = (p+iq)\varpi,\qquad p,q\in \Z,$$
thus
$$z = i\frac{\varpi}{2} +(-ip +q)\varpi,$$
and
$$z = \left[2q + (-2p+1)i\right] \frac{\varpi}{2} = (m+ni) \frac{\varpi}{2}, \text{where } m = 2q,n=-2p+1 \in \Z,\ m+n \text{ odd}.$$
$\bullet$ If $z + \frac{\varpi}{2}$ is a pole of $\varphi$, then
$$z + \frac{\varpi}{2} = (p + iq) \frac{\varpi}{2}, \qquad p\equiv q \equiv 1 \pmod 2,$$
thus
\begin{align*}
z&=(p-1 + i q)\frac{\varpi}{2}\\
&= (m + in) \frac{\varpi}{2},\qquad \text{where } m = p-1,n=q,\text {and } m+n = p+q-1 \equiv 1 \pmod 2.
\end{align*}
(This case gives the same solutions that $\varphi(z) = i$, so that these two cases are equivalent.)
In all cases, $z = (m+ni) \frac{\varpi}{2}$, where $m+n$ is odd, thus all zeros of $\varphi'$ are our known zeros.
\end{proof}
\paragraph{Ex. 15.3.5}{\it A useful observation is that an identity for $\varphi$ proved over $\R$ automatically becomes an identity over $\C$.
\be
\item[(a)] Prove this carefully, using results from complex analysis such as [13,6.1.1]
\item[(b)] Explain why $\varphi'^2(z) = 1 - \varphi^4(z)$ holds for all $z \in \Omega$.
\ee
}
\begin{proof}
\item[(a)] We recall the Principle of Analytic Continuation (or Identity Theorem), given in [13,6.1.1] in some larger context:
{\it
`` Let $f,g$ be analytic in a region (connected open set) $\Omega \subset \C$. Suppose that there is some $a \in \Omega$, and a sequence $(z_n)_{n\in \N} \in (\Omega \setminus\{a\})^{\N}$ of points of $\Omega$ distinct of $a$ converging to $a \in \Omega$, such that $f(z_n) = g(z_n)$ for all $n \in \N = \{0,1,2,\cdots\}$. Then $f(z) = g(z)$ for all $z \in \Omega$.''}
Here $\Omega = \{z \in \C \mid z \ne (m+in)\frac{\varpi}{2}, m\equiv n \equiv 1 \pmod 2\}$. Then $\Omega \supset \R$ is open, and path-connected, thus is connected. Suppose that $f,g$ are analytic on $\Omega$, and $f(x) = g(x)$ for all $x \in \R$. Since any point $a$ of $\R$ is a limit of some sequence $(z_n)_{n \in \N} \in \R^\N$ (for instance $z_n = a + \frac{1}{n+1}, \ n \in \N = \{ 0,1,2,\cdots\}$), where $z_n \ne a$ for all $n \in \N$. Since $z_n \in \R$ for all $n$, $f(z_n) = g(z_n)$. The Principle of Analytic Continuation shows that $f(z) = g(z)$ for all $z \in \Omega$.
\item[(b)] If we define $f,g : \Omega \to \C$ by $f(z) = \varphi'^2(z), g(z) = 1 - \varphi^4(z)$ for all $z \in \Omega$, then $f,g$ are analytic and $f(x) = g(x) $ for all $x \in \R$ by Section 15.2. Then part (b) shows that $f(z) = g(z)$ for all $z \in \Omega$, thus
$$\varphi'^2(z) = 1 - \varphi^4(z),\qquad z \in \Omega.$$
\end{proof}
\paragraph{Ex. 15.3.6}{\it By Theorem 15.3.3, $\varphi(z) = \varphi(z_0)$ if and only if $z = (-1)^{m+n} z_0 + (m + in) \varpi$. Following Abel, prove this using (15.13).
}
\begin{proof}
If $z = (-1)^{m+n} z_0 + (m + in) \varpi$, then the periodicity and odd parity of $\varphi$ shows that
$$\varphi(z) = \varphi\left((-1)^{m+n} z_0 + (m + in)\varpi\right) = (-1)^{m+n} \varphi\left((-1)^{m+n} z_0\right) = \varphi(z_0).$$
Conversely, suppose that $\varphi(z) = \varphi(z_0)$ (where $z,z_0$ are not poles of $\varphi$). By Proposition 13.3.1, the addition law gives, for all $x,y \in \C$ such that both members are defined,
$$\varphi(x+y) = \frac{\varphi(x) \varphi'(y) + \varphi'(x)\varphi(y)}{1+ \varphi^2(x) \varphi^2(y)}, \qquad \varphi(x-y) = \frac{\varphi(x) \varphi'(y) - \varphi'(x)\varphi(y)}{1+ \varphi^2(x) \varphi^2(y)},$$
thus, by subtraction,
$$\varphi(x+y)- \varphi(x-y) = \frac{ \varphi'(x) \varphi(y)}{1+ \varphi^2(x) \varphi^2(y)}.$$
Take $x = \frac{z+z_0}{2}, y = \frac{z-z_0}{2}$ in this formula. We obtain
$$\varphi(z)- \varphi(z_0) = \frac{\varphi'\left( \frac{z+z_0}{2}\right) \varphi\left(\frac{z-z_0}{2}\right) }{1+ \varphi^2\left( \frac{z+z_0}{2}\right) \varphi^2\left(\frac{z-z_0}{2}\right)}.$$
(This formula is analogous to the trigonometric formula $\sin p - \sin q = 2 \cos \frac{p+q}{2} \sin \frac{p-q}{2}$.)
Therefore,
$$(\varphi(z)- \varphi(z_0))\left(1+ \varphi^2\left( \frac{z+z_0}{2}\right) \varphi^2\left(\frac{z-z_0}{2}\right)\right)= \varphi'\left( \frac{z+z_0}{2}\right) \varphi\left(\frac{z-z_0}{2}\right) .$$
By the Principle of Analytic Continuation (as in the proof of Proposition 15.3.1), this formula is true for all $z$ such that both members are defined, including the points such that $1+\varphi^2\left( \frac{z+z_0}{2}\right) = 0$. In others words, this is true for all $z \in \Omega$ such that $\frac{z-z_0}{2}, \frac{z+z_0}{2}$ are not poles of $\varphi$.
Thus $\varphi(z) = \varphi(z_0)$ implies that
$$ \varphi\left(\frac{z-z_0}{2}\right)=0, \text{ or } \varphi'\left( \frac{z+z_0}{2}\right) = 0, \text{ or } \frac{z-z_0}{2} \not \in \Omega, \text{ or } \frac{z+z_0}{2} \not \in \Omega.$$
\be
\item[$\bullet$] Suppose that $\varphi\left(\frac{z-z_0}{2}\right)=0$.
By Proposition 15.3.2, the zeros of $\varphi$ are $z = (p+iq)\varpi, \ p,q \in \Z$, thus
\begin{align*}
\varphi\left(\frac{z-z_0}{2}\right)=0 & \iff \frac{z-z_0}{2} = (p+qi)\varpi,\qquad p,q \in \Z\\
&\iff z = z_0 + 2p\varpi+ 2q \varpi i,\qquad p,q \in \Z.\\
\end{align*}
This shows that
$$ z = (-1)^{m+n} z_0 + (m + in)\varpi, \qquad \text{where } m = 2p, n = 2q \in \Z.$$
\item[$\bullet$] Suppose that $\varphi'\left( \frac{z+z_0}{2}\right) = 0$.
By Exercise 4, we know that the points $(m+in)\frac{\varpi}{2}$, $m+n$ odd, are zeros of $\varphi'$, and we showed that they are the only zeros of $\varphi'$ (without using Theorem 15.3.3).
Therefore,
\begin{align*}
\varphi'\left( \frac{z+z_0}{2}\right) = 0 \iff &\frac{z+z_0}{2} = (m+in)\frac{\varpi}{2},\ m+n \equiv 1 \pmod 2\\
\iff &z = -z_0 + (m+in)\varpi,\ m+n \equiv 1 \pmod 2\\
\end{align*}
This shows that
$$ z = (-1)^{m+n} z_0 + (m+in) \varpi, \qquad m,n \in \Z.$$
\item[$\bullet$] Suppose that $\frac{z - z_0}{2} \not \in \Omega$. Then $\frac{z - z_0}{2}$ is a pole. By Theorem 15.3.2,
$$\frac{z - z_0}{2} = (m+in) \frac{\varpi}{2}, \qquad m \equiv n \equiv 1 \pmod 2,$$
thus
$$z = z_0 + (m+in) \varpi,\qquad m\equiv n \equiv 1 \pmod 2,$$
so that
$$z = (-1)^{m+n}z_0 + (m+in)\varpi.$$
\item[$\bullet$] Suppose at last that $\frac{z + z_0}{2} \not \in \Omega$ (this case is more tricky). Then
$$\frac{z + z_0}{2} = (m+in) \frac{\varpi}{2}, \qquad m \equiv n \equiv 1 \pmod 2,$$
thus
$$z = - z_0 + (m+in) \varpi,\qquad m\equiv n \equiv 1 \pmod 2,$$
where the sign $(-1)$ before $z_0$ is not equal to $(-1)^{m+n}$ !?!
But fortunately, in this case, by Proposition 15.3.1,
$$\varphi(z) = \varphi(-z_0 + (m+in)\varpi) = (-1)^{m+n} \varphi(-z_0) = \varphi(-z_0) = - \varphi(z_0).$$
Since by hypothesis $\varphi(z) = \varphi(z_0)$, we obtain $\varphi(z_0) = -\varphi(z_0)$, thus $\varphi(z_0) = 0$, and $\varphi(z) = \varphi(z_0)$ is equivalent to $\varphi(z) = 0$.
By Proposition 15.3.2, $z_0 = (p + iq) \varpi, z = (r+is) \varpi$, where $p,q,r,s$ are integers. Thus
$$z = z_0 + (r-p + i(s -q))\varpi =z_0 + (m'+in')\varpi,\ \text{where } m'= r-p, n' = s-q \in \Z,$$
and
$$z = -z_0 + (r+p + i (s+q)\varpi = -z_0 + (m''+in''),\ \text{where } m'' = r+p, n '' = s+q \in \Z.$$
Note that $m'+n' \equiv m''+n'' \pmod 2$. If $m'+n'$ is even then $z = (-1)^{m'+n'}z_0 + (m'+in')\varpi$, and if $m'+n'$ is odd, then $z = (-1)^{m''+n''}z_0 + (m''+in'')\varpi.$
\ee
In all cases $z = (-1)^{m+n} z_0 + (m+in)\varpi$, for some $m,n \in \Z$.
\end{proof}
\subsection{COMPLEX MULTIPLICATION}
\paragraph{Ex. 15.4.1}{\it Prove (15.36).
\begin{align*}
\varphi\left((1+i)z\right) &= \frac{(1+i) \varphi(z) \varphi'(z)}{1 - \varphi^4(z)},\\
\varphi\left((1-i)z\right) &= \frac{(1-i) \varphi(z) \varphi'(z)}{1 - \varphi^4(z)}.
\end{align*}
}
\begin{proof} Using the addition law together with (15.24):
$$\varphi(iz) = i \varphi(z), \qquad \varphi'(iz) = \varphi'(z),$$
we obtain
\begin{align*}
\varphi((1+i)z) &= \varphi(z+iz)\\